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Introduction

Smart electric devices automatically monitor information about energy consumption or production, they are dened by the ability to connect to a network and to operate remotely. They report meaningful and appropriate information to relevant parties (consumers, energy distribution system operators or energy providers) and their systems. Modern electric smart devices produce enormous amount of data. The rst one is the inherently primary data associated to the devices' main activity and implemented features. Its exploration and use involve privacy issues which have been largely debated and are beyond the scope of this work. In addition to this, the second category of transmitted information is about events, a relatively new category of data, the value of which has yet not been assessed. Event is basically a notication that originates from a electrical device and contains the information regarding the object, action or process to which the event is related. Events are issued while monitoring dierent aspects of the system and give an overview about equipment communications, devices' secondary non-core functionalities, network intrusions or activity on the grid.

We believe that event logs could be processed and analysed to unveil useful information, in addition to devices' primary data. More precisely, we assume that these data can be useful to inform about the device's operative state and eventually to predict device failure. However, event logs concern a wide range of uses and the diculty comes from the volume and variety of logs received.

Log events are continuously recorded composing a data streamow related with high volumes, as being generated not only for irregular functional conditions, but also for normal operative states.

The main challenge is to analyse this data and extract useful knowledge from the unremitting ow of notications. The issue therefore is to identify appropriate events containing helpful information. Furthermore, it is essential to detect a shift or an alteration in the patterns of these specic events which could alert users about a fault occurrence.

In literature, patterns from event logs are dened in various ways, for example as partial orders of a process [START_REF] Sander | Discovering block-structured process models from event logs -a constructive approach[END_REF][START_REF] Sander | Discovery of frequent episodes in event logs[END_REF][START_REF] Diamantini | Behavioral process mining for unstructured processes[END_REF] , or considered as Petri nets [START_REF] Mannhardt | From low-level events to activities -a pattern-based approach[END_REF] . Also as repeated sequences that capture process models from event logs in order to improve their detection [START_REF] Jagadeesh | Abstractions in process mining: A taxonomy of patterns[END_REF] . From these denitions, authors develop some specic pattern detection approaches mainly based on unsupervised or supervised learning techniques. Unsupervised pattern detection approaches take an event log as input and generate patterns based on statistical properties [START_REF] Sander | Discovery of frequent episodes in event logs[END_REF][START_REF] Diamantini | Behavioral process mining for unstructured processes[END_REF][START_REF] Jagadeesh | Abstractions in process mining: A taxonomy of patterns[END_REF] . In unsupervised learning, clustering techniques are widely used [START_REF] Vaarandi | Logcluster -a data clustering and pattern mining algorithm for event logs[END_REF][START_REF] Adetokunbo | Clustering event logs using iterative partitioning[END_REF] . Supervised pattern detection approaches take patterns and logs as input and detect pattern instances as results [START_REF] Mannhardt | From low-level events to activities -a pattern-based approach[END_REF] . Combination of these two approaches into semi-supervised techniques have been also studied [START_REF] Lu | Semi-supervised log pattern detection and exploration using event concurrence and contextual information[END_REF] . From another point of view, visualization and interactive tools have been developed to help user observe and analyse both patterns and event sequences, as EventFlow [START_REF] Monroe | Temporal event sequence simplication[END_REF] .

Event logs are frequently composed of event codes and their associated text messages. In that case, the use of text parsing or natural language processing techniques is necessary [START_REF] Vaarandi | Logcluster -a data clustering and pattern mining algorithm for event logs[END_REF][START_REF] Xu | Using machine learning techniques in console log analysis[END_REF] .

Moreover, some specic works dealing with predictive maintenance based on event logs have also been tackled. Let us mention a general classication-based failure prediction method which has been tested on real ATM run-time event logs data [START_REF] Wang | Predictive maintenance based on event-log analysis: A case study[END_REF] , or event logs data extracted from medical equipments used to treat a multi-instance learning task [START_REF] Sipos | Log-based predictive maintenance[END_REF] . Also, a Cox proportional hazard model has been used to provide a prediction of system failures based on the time-to-failure data extracted from the event sequences [START_REF] Li | Failure event prediction using the cox proportional hazard model driven by frequent failure signatures[END_REF] .

In this work, we consider the event distribution over time as a function of time. Our rst objective is to extract characteristic features from the time series, which will then be presented to a learning algorithm. In order to make this step as automatic as possible, we decided to perform the Discrete Wavelet Transform (DWT) which is an appropriate tool for noise ltering, data reduction, and singularity detection, and thus it a good choice for time series and signal processing. The decomposition coecients obtained from the DWT are then used as input of a supervised learning algorithm. A variety of task can be successfully tackled using this approach [START_REF] Soltani | On the use of the wavelet decomposition for time series prediction[END_REF][START_REF] Santos | Discrete wavelet transform coupled with ann for daily discharge forecasting into tres marias reservoir[END_REF][START_REF] Jothimani | Discrete wavelet transform-based prediction of stock index: A study on national stock exchange fty index[END_REF][START_REF] Liu | Time series forecasting based on wavelet decomposition and feature extraction[END_REF] . In our case, we use a random forest both to predict and to measure variable importance in order to select the best features.

In this paper, we propose a supervised approach to predict faults from event log data using wavelets features. The goal is rst to use the Discrete Wavelet Transform to detect and characterize features of our electric event logs. Then, we use these features as an input of a random forest model to predict faults. Next section introduces the information we use from event logs and how we transform them into time series trajectories or time functions. To cope with the temporal dependence and functional structure of these objects, we introduce in Section 3 the wavelets transform. The section also includes an overview of random forest. Section 4 describes the experiences and presents the results. The work concludes with a discussion on both industrial and modelling aspects in Section 5.

From event to time functions

Our study is based on events monitored on electrical devices installed on ENEDIS network, the French Distribution System Operator. Each electrical device records and transmits real-time event data to a centralized information system. We extract and deal with 3 available attributes: the event code related to a time-stamp and the id of the source device. An example of our logs is displayed in Table 1. We dene an additional feature, a group code representing an hierarchical level of event codes. These values were agreed upon with domain experts into 13 groups. None of these notications have any level of criticality or priority. Events were aggregated to a daily basis. Figure 1 shows the A23 event distributions for two electrical devices from the beginning of the study to the last day of observations. The observation period starts on May 01 2013 and stops on November 02 2014 and the total number of events is about 1.25 millions recorded on 2623 devices. Devices were monitored over a considerable period of time and presented similar settings and technical specications during this period. The devices main activity is monitored throughout their lifespan. A fault occurrence is considered when the device fails to provide its main function.

Among all, 1858 devices were properly functional and had a functional status over the observation period, providing their primary function. All of the device were brought to service a priori to the beginning of observation period (see dev003, Figure 2) and were selected as being operative a posteriori to the observation period, over a signicant interval of time, to ensure their normal functioning.

A part of devices developed a fault before the end of the observation period, with the lost of their primary functions. These devices were brought to service either before or after the beginning of the observation time. The devices were withdrawn from the eld and a technical diagnosis conrmed failure on these equipments. Devices failing to provide their main activity for which technical diagnosis did not conrm the failure were not considered in the study. 765 faulty devices were considered in this study (see dev002 or dev001, Figure 2). present a fault occurrence. gap represents the number of days in advance the fault occurrence is recorded, and therefore predicted. Device dev003 does not present any fault occurrence. δ is the temporal period on which wavelet features decomposition is applied.

As stated above, both devices with positive and negative fault occurrences present event proles throughout their lifespan. The purpose of this study is to compare temporal event prole of faulty and working devices in order to identify useful events for predictive maintenance. Hence, the rst goal is to capture events frequencies and dynamics of both devices' health status. The second goal is to predict fault occurrence using these summarized temporal proles while identifying meaningful events. In operative conditions, we wish to detect a failure with a delay which needs to be suciently long to allow the attendance of alarms on devices. In this study we considered a predictive gap ranging from zero up to 15 days.

From the available data we only use the absolute frequency of events and the event code classication. We focus then on the number of logs eectively observed over a reasonable period of length δ using a given time resolution (e.g. hours, days) for each type of event. We then consider

(N (t 1 ), . . . , N (t δ )), (1) 
where N (t j ) is the number of events at time t j . To x ideas, say that δ may span over two weeks and using a daily resolution the vector of counts would have length equal to 14. Figure 3 plots four cases of these trajectories. This vector constitutes the building block of our approach since we create instances of this vector for both normal and abnormal regimes (cf. Section 3). Actually, each instance is the tracking of a device along a period of length δ. Then the couple device × time should not be view as tracking over contemporaneous instants but as snapshots of the life time of the devices.

If we now considerer that K dierent type of events exists, then we have

(N k (t 1 ), . . . , N k (t δ )), k = 1, ..., K,
that is each device × time is a set of K counting vectors. From the mathematical point of view, we may look at vectors (1) as time series trajectories. And since there exists K of them, we have a multivariate time series where there may be some dependence structure between components of the vectors as well as time dependence within components.

One way to cope with time dependence is to see each trajectory as a discrete sampling, eventually with some noise, of the time function z k (t), t ∈ [0, δ], k = 1, . . . , K. Notice again that time should be consider as relative to period δ and not as an absolute quantity.

To x ideas, let us introduce a graphical representations of the some of the data up to this point.

We follow the construction detailed above considering only events from one code to construct a sample of trajectories containing both faulty and working devices. Then, we use a simple metric between trajectories based on the euclidean distance on standardized versions of the trajectories.

The associated distance matrix is then used as input of a multidimensional scaling in order to get the a simple planar representation of the observations, represented in Figure 4.

Here, each point is a trajectory and its coordinates are chosen to preserve, as well as possible, the distances between trajectories. Notice that since no information about the class is used this technique is essentially unsupervised. However we add a colour reference (grey: working devices, red: faulty devices) to the scatter plot in order to visualize eventual dierences. Even if the sample is very unbalanced, a clear distinction between both classes is appreciated. Distances between working devices are relatively small with reference to distances between faulty devices. Other conclusion we can draw is that a (eventually non linear) reduction of the dimension may suce to extract the useful information on the signals. Taking into account the time dependent structure of the functions is necessary to obtain an appropriate construction that yields on a dimension reduction.

Methods

We describe here the methods we use to construct our solution. They are related rst on how to represent the multivariate time series with a handy set of interpretable features. Then we build a 2-class discriminant classier where we assume that each class represents a logging regime. The rst one is the normal log regime where the working device has a working status. This regime, should be the most frequent one. The second regime, more rare by nature, represent a working device that is close to a failure status. The rst problem is solved using the wavelet transform while the classier we use is random forest. properties. That is, the transform will give information on locations connected to only a time span (not the global time) and scales connected to only some frequencies (and not all of them). This is in dierence with a time domain analysis that has no localization on frequencies or a frequency domain analysis that has no localization on time.

Moreover we use the Discrete Wavelet Transform (DWT) which is provides an orthonormal basis of the space, allowing us to encode all the available information on a signal without any loss of information [START_REF] Nason | Wavelet methods in statistics with R[END_REF] . In what follow we explain the necessary material to understand our approach.

Consider the signal z(t) which is an univariate function dened on the time domain T , for example T = [0, 1]. The DWT will provide two terms: a global approximation of the signal S(t)

and the ensemble of details D(t) well localized both in time and frequency.

If z ∈ L 2 ([0, 1]),
then the DWT provides us with a basis of the functional space. The basis is created by simple transformations of a scaling function φ(t) and a wavelet mother ψ(t) which are associated to the orthogonal multi resolution analysis of L 2 ([0, 1]). Indeed, we consider the family {φ j,k (x) = 2 -j φ(2 -j x -k)} j,k which is obtained by dilatations of a factor 2 j and by integer translations on the new scale. Similar operations are done to get the family {ψ j,k (x)} j,k . Then, a nite energy signal z can be expressed as

z(t) = 2 j 0 -1 k=0 c j0,k φ j0,k (t) Sj 0 (t) + J-1 j=0 2 j -1 k=0 d j,k ψ j,k (t) D(t) , (2) 
where c j,k =< z, φ j,k >, d j,k =< z, φ j,k > are the scale coecients and wavelet coecients respectively. The scale j 0 separates the two terms. The rst one, gives a smooth approximation at resolution 2 j0 . The second one, keeps all the details of the curves on a hierarchical structure depending on scales and locations. The approximation coecients c j0,k retains the information of the local (at location k) mean level of the curve, while the detail coecients d j,k codes the information of discontinuities and other singularities.

With nite data {z(t i ), i = 1, . . . , N }, the signal z(t) can only be approximated by a truncation at some maximum scale level J = log 2 (N ), that is we approximate (2) by

z J (t) = c 0 φ 0,0 (t) + J-1 j=0 2 j -1 k=0 d j,k ψ j,k (t). (3) 
Notice that we have also xed the approximation part at the coarsest resolution j 0 = 0 which means that only one scaling coecient is used to approximate this term. For convenience we choose the number of sampling points per curve, N , to be a power of 2. The maximum number of scales J is then an integer. With this, we are in conditions to use the highly ecient Mallat's pyramidal algorithm [START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF] to obtain both the scaling and wavelet coecients. If the sampling grid {i/N, i = 1, . . . , N } is not regular or N is not a power of 2, then one can choose a ner regular grid and use any interpolation scheme to meet our choices.

Haar wavelet leads to a easy and clear intuition on the wavelets coecients. The only scaling coecients we retain is proportional to mean level of the whole signal. The approximation term is then a constant function S 0 (t) = c 0,0 ψ(t) proportional to the mean function of the signal.

If we increase the resolution of the approximation to the next scale, then the approximation part will be a ladder function, that is a piecewise constant function with a jump in the middle point of the sampling grid. Aside the jump, the signal is approximated by the mean level of each side.

A similar reasoning applies to the next scales, at each time cutting into halves and approximating each half by a constant function equal to the mean level of the observations on the half.

The detail coecients are the dierence on the constant approximations between two juxtaposed halves. We interpret them as the change observed at some resolution (related to the scale j) and at some time (related to the location k).

In what follows we will need to reduce the number of coecients we use in order to keep the calculations into a reasonable time. With this, we are further truncating the approximation on

(3) into smaller values of J. Since ner approximations may capture only the signal's noise, the changes on these scales would reect random uctuations not necessarily connected to the structure of the signal. For this, one should only retain coarsest scales. and the detail coecients

d 0,0 , d 0,1 .
In what follows we set ψ to be

ψ(t) =      1 if 0 ≤ x < 1/2 -1 if 1/2 ≤ x < 1 0 otherwise. ( 4 
)
which is known as the Haar wavelet. The corresponding scaling function is ψ(x) = 1 if 0 ≤ x ≤ 1 and 0 otherwise. the resolution level at which we look at the signal, for scales close to j = 0 the analysing functions are global, while at scale j = 5, the 32 resulting coecients gives very localized information. Note that this level of detail can be misleading if considered only at one individual scale. For instance the last coecient at scale 5 is large and negative because the last number of logs is lower than the precedent one. Moreover, noise is also more important at these high frequencies. One may rely on shrinkage methods to choose which of the estimated coecients are signicantly dierent from zero.

Our approach is slight dierent, we choose to work only with the scale coecient c 0,0 and the detail coecients d 0,0 , d 0,1 . With this, the number of coecients retained in what follows is kept into a reasonable size when multiplied by the number of event codes. Intuitively, these coecients allows one to reconstruct the trajectories with the approximation S 1 (t) which is exactly the mean level of the function, given by c 0,0 , and the detail coecients d 0,0 , d 0,1 . Notice that this reconstruction is the best linear approximation one can do with three coecients. In what follows we are using the estimated coecients as features of a random forest predictor.

Random forest

Very popular in statistical machine learning, random forests (RF) are an ensemble method [START_REF] Breiman | Random forests[END_REF] .

It builds up on specic versions of CART (Classication And Regression Trees) [START_REF] Breiman | Classication and regression trees[END_REF] , which is an algorithm that constructs binary tree-based predictors. With respect to individual predictors, the aggregate one aims to augment robustness, variance reduction and improve prediction performance.

For this, RF add two layers of randomness. First, each tree-based predictors is trained only on a dierent bootstrap sample from the data. Second, only a strictly subset of variables are randomly chosen as candidates at each split of the trees' construction. Note that the trees are constructed up to its maximal size and they are not pruned. While using a stopping criterion and pruning are usual in CART, these versions of tree-predictors sacrices generalization power by a better insample t at least on each bootstraped sample and introduces bias by considering only partial information from available variables. With this, individual trees tend to be less dependent between them which is useful under an aggregation scheme. RF is then the resulting predictor obtained by some aggregation rule of the individual prediction of the so described trees. Usual choices of the aggregation rule are majority vote for classication and mean average for regression.

We use two intrinsic features of random forest to help the interpretation of the results : a measure of variable importance and a notion of proximity between observations.

Variable importance measure.

Dierent approaches can be used to determine the importance of a feature for the construction of the forest [START_REF] Genuer | Variable selection using random forests[END_REF][START_REF] Gregorutti | Grouped variable importance with random forests and application to multiple functional data analysis[END_REF] . In this work, a variable is considered more important if it participates more to the decrease of some impurity notion (e.g. the Gini index).

Then, we can track over the individual trees where each variable participates on each node split and record the decrease on the Gini coecient. Then a plot like the one in Figure 7 where the variables are represented in lines sorted decreasingly on the mean Gini reduction. Most important variables on the construction of the classier are on top of the plot.

Observations proximity

Two observations are closer if they are classied within the same terminal node by more and more individuals trees. Then, the proximity is normalized to be between 0 and 1. If we call p ii the proximity between observation i and i , then we obtain a dissimilarity measure 1 -p ii . While the change is trivial, it allows us now to perform a multidimensional scaling on the proximity matrix associated to the proximity measurements. This yields on a natural representation of the individuals that analogously to discriminant analysis represents in a low dimensional space how the classier 'sees' the individuals.

Experiments

In all our experiments we use the open source R software. DWT is performed using wavethresh and randomForest is used to learn random forests. In the experiments to follow we use the default options of randomForest to construct the predictors, i.e. the number of trees ntree is set at 500 and the number of variables mtry chosen randomly at each split is roughly the square root of the total number of variables.

For each gap before fault, we create a dataset of positive and negative failure occurrences as shown in 2). From faulty devices, δ time points (albeit the gap period) before fault occurrence were considered to compute K event vectors. Among working devices, a period of length δ is drawn randomly per device to compute K event vectors per device. Notice that each device at some point of the time is described as a number of 39 features, that is 3 wavelets coecients per group of events' code, with a total of 13 event codes.

Predictive performance

We apply a random forest classier for each of 16 datasets composed of 39 wavelets coecients.

Two week event prole (for each device) is characterized by 3 coecients for each of the 13 groups of events. We compute both false negative rate (FNR) representing the percentage of faulty devices classied as working devices and false positive rate (FPR) as the percentage of working devices predicted as prone to failure. We also compute the global model error, summarizing the percentage of observations which are classied wrong and resuming model global accuracy.

The performance scores of random forest models are displayed in Figure 6, results are presented in relation to the predictive gap before failure occurrence. Global model accuracy ranges from 79%, when the predictive gap equals to 15 days, up to 89% when detecting fault the day of occurrence.

This performance, that at rst sight appears rather inaccurate in an industrial context, displays evidence of meaningful information in the event logs. Overall, the predicting error rate is higher for faulty devices and it is easier to decide on a working status on the basis of resumed event prole of a device, independently of the prediction gap (see Figure 6, the red curve corresponding to the FNR stays above the blue line representing the FPR). The error rate is lower when classifying working devices, as observations of negative fault occurrence dominate the learning error. The result is consistent with the fact that random forests tend to maximize the model global accuracy, keeping a low error rate on larger classes (working devices) while allowing the smaller classes have a larger error rate.

The smaller the temporal gap is, the more precise it is to predict both fault occurrence or devices' normal regime by event data, for example the FPR for working regimes being equal to 3.74% for 1 day-ahead prediction and 7.15% for a 10-day-ahead horizon, see Figure 6.

Variable importance

Figure 7 shows importance ranking of attributes in classication for a 0 days predictive gap, variable importance displays similar results for all of the 16 models for dierent values of the predictive gap (results not shown). 3 groups of events appear relevant when predicting fault occurrence : A, B and J. First and third wavelet components of B group appear to be the red ag for an abnormal regime leading to a failure. A dierent level of these events for a device and an alteration of the number of received events can be seen as an alarm for failure occurrence. Overall, we observe the same pattern for all of three groups of events: the faulty devices' average level of events is generally higher than working devices' event frequencies. Moreover, there is a substantial gap between the event regime 7 days before failure occurrence and the week before that. This is particularly interesting, as events are related to low level communication on the grid. We suppose that failure aects the ability of devices to interact with other devices on the network.

More helpful, Figure 7 shows that a considerable amount of information received and processed by the system are not relevant for revealing devices' operative status. Independently of their number or frequency, events of group C, G, K, D and F, seem to carry very little information about a possible failure of an equipment. This is to be expected as these events monitor dierent software activity of various devices of the grid. In a predictive maintenance framework, the monitoring and processing of these categories presents no interest, events have no correlation with the fault occurrence. As in Figure 4, we use a multidimensional scaling to represent observation proximity in Figure 8.
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Additional experiments

Events of category B, J and A were the most relevant to describe device operative state and to detect a device in a abnormal regime leading to a failure. Using exclusively events of these three groups, we performed an additional set of experiments by including non grouped events as features and applying same methodological approach as described above on individual events. We treated 17 individual code events, therefore 51 wavelets attributes were computed and introduced as features to random forests classier. All other parameters remained unchanged. Performances scores of 16 models based on 51 features perform similarly to the global approach (results are not shown) which is using all grouped events. Essentially, error rates of non grouped B, J and A events models are lower than error of models using all code events.

Discussion and conclusion

From the modeling point of view, the use of wavelets and random forests gave several benets.

First, the proposed approach is general in the sense that it is not specic for predictive maintenance. Actually, it may be used on dierent kind of anomaly detection from event logs such as intrusion detection, outage occurrence, etc., as long as one disposes with a way to construct the two class learning data set. Second, wavelets allows an important dimension reduction while keeping discriminatory power. With this, up-scaling the procedure is feasible since the processing needed to pass from functions to wavelet coecients may be done independently (and so using parallel or distributed computing schemes) for each device. Last, random forest gives interest insights through feature selection and observations proximity. The former benets from localized coecients that gives nice interpretation properties to the DWT. The latter can be used together with graphical displays to make emerge patterns in data that are otherwise dicult to unveil.

A natural question that may arise is about the particular choice of the functional basis (i.e.

wavelets) and the classier (i.e. random forest). One may naturally argue that other combination like for instance principal components and logistic regression would be equally reasonable. Our choices are guided for both interpretability and performance. Besides of having a low error level classier we look for tools that allow the practitioner to better understand the underlying problem.

The rst three principal components would extract a mean behaviour of the curves where what we look for is the specic behaviour of each frequency curve that best explains its evolution. Location properties of wavelets, discussed in Section 3, induce the nice interpretability we look for while compressing the information by a handy number of features. Random Forest also contribute to provide with insights on the tted model as it was discussed in Section 4.2 and 4.3.

In our case, when processing log events we found evidence of untapped information on both fault occurrence and the normal devices' regime when monitoring electrical devices information ow. When predicting the fault occurrence the FNR ranges from 18.72% when conrming the fault by analysing event prole the day of fault occurrence, and goes up to 46.38% to 15 days predictive gap. In regard to these results, there a number of points that we should comment on.

First, the increase of FNR inversely proportional to temporal gap implies that, in some extent, at least two weeks before failure occurrence a part of the devices have a similar event prole as working devices and their event regime undergoes a gradual daily alteration until failure. The degradation seems to accelerate 7 days before failure occurrence, the FNR equals to 40.99% and we gain several points of precision each day. We suppose that failure rstly aects non essential functionalities, from which the event logs are issued, and only secondarily it leads to the cession of the main activity. This progressive shift underlines the fact that a fault occurrence does not necessarily imply a full and immediate standstill of a device as it continues to provide their primary function. In regard to these elements, the use of these notications in a predictive maintenance tool is of a particular interest to track future devices fault.

Second, a part of faulty devices are misclassied and display similar log event prole as working devices until failure occurrence (FNR equals to 18.44% for a 1 day predictive gap). See also Figure 8, a part of red observations (faulty devices) are situated among grey observations (working devices).

It is likely that the category of tracked failure is not similar to the previously described case, which aects primary and secondary functionalities dierently. For these devices, functional features related to the main activity should probably be measured as log event prole do not change priori to the failure.

One last point of a particular interest in the results are the early signs of breakdown aecting the devices more than two weeks in advance (FNR equals to 46.24% 2 weeks priori to failure). This result is supported by the high variable importance of the rst wavelet component for all three groups of events, even for a high prediction gap (see 4.2). A really moderate usury of hardware related to external factors or network overload could aect a part of equipment. To a dierent degree, we could also suppose that these devices show an abnormal event prole as soon as they are installed and a latent defect aects their non-core functionalities.

To sum up, classication results show that abnormal dynamics in specic events, can be considered, to a certain extent, forerunner of a future fault. For a long term preventive strategy, there is an obvious need to cross the proles of identied group of events with other sources of informations to increase model accuracy. Geographical situation the grid, power demand, voltage quality, or environmental factors could aect gradually devices leading potentially to a failure.

Primary data and the monitoring of information resulting of the implemented features could allow to enhance the predictive capacity of events. Information on other components of the grid could oer complementary perspectives on the network activity leading to devices usury. Even if the predictive performance does not allow to develop an operative tool, this model allows to identify a high risk population to failure. In a supervision context, the daily processing of ongoing events could allow for these devices to be prioritized and then acted upon with necessary actions.

Figure 1 :

 1 Figure 1: Example of A23 daily event distributions for two electrical devices (dev001 and dev002) from 2013-05-01 to 2014-11-02. The red line shows the end of the observation period.

Figure 2 :

 2 Figure 2: Examples of 3 devices throughout the observation period. Device dev001 and dev002 present a fault occurrence. gap represents the number of days in advance the fault occurrence is recorded, and therefore predicted. Device dev003 does not present any fault occurrence. δ is the temporal period on which wavelet features decomposition is applied.

Figure 3 :

 3 Figure 3: Examples of trajectories from event logs data. Tracking is done daily over 64 days. Cases (a) and (b) are from working devices; and cases (c) and (d) are from faulty ones.

Figure 4 :

 4 Figure 4: Multi dimensional scaling of trajectories from one event code. Each point represents a trajectory from a working device (in gray) or a faulty device (in red).
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 31 Wavelets transformWavelets are a domain transform technique that allows one to represent time domain signals into a bivariate domain location-scale[START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF] . While location in the new domain is connected to the original time domain, scales can be associated to Fourier frequencies and both with good localization

Figure 5 :

 5 Figure 5: Tracking of one event over time (right) and its DWT (left).

Figure 6 :

 6 Figure 6: Predictions performance at various gaps, in days, to failure. Red curve shows classication results of failed devices, blue curve shows classication results of working devices and black curve global error.

Figure 7 :

 7 Figure 7: Random forest variable importance output for a 0 day temporal gap

2 Figure 8 :

 28 Figure 8: MDS from RF. Each point represents a trajectory from a working device (in gray) or a faulty device (in red).

Table 1 :

 1 Event logs data.

	timestamp	deviceId	eventCode	groupCode
	2014-01-24 17:49:44.537	001	A3	A
	2014-01-24 15:09:35.970	001	A23	A
	2014-01-25 03:55:56.872	002	A3	A
	2014-01-27 00:14:42.463	002	B8	B
	2014-01-27 08:10:25.470	002	A23	A
	...	...	...	...
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