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ABSTRACT

We experimentally control the turbulent flow over backward-

facing step (ReH = 31500). The goal is to modify the internal

(Xr) and external (Lr) recirculation points and consequently the

recirculation zone (Ar). A model-free machine learning control

(MLC) is used as control logic. As benchmark, an optimized

periodic forcing is employed. MLC generalizes periodic forc-

ing by a multi-frequency actuation. In addition, a sensor-based

control and a non-autonomous feedback, open- and closed-loop

laws, were use to optimize the control. The MLC multi-frequency

forcing outperforms, as expected, periodic forcing. The non-

autonomous feedback brings a further improvement. The un-

forced and actuated flows have been investigated in real-time

with a TSI particle image velocimetry (PIV) system. The cur-

rent study shows that a generalization of multi-frequency forcing

and sensor feedback significantly reduces the turbulent recircu-

lation zone, far beyond optimized periodic forcing. The study

suggests that MLC can effectively explore and optimize new feed-

back actuation mechanisms and we anticipate MLC to be a game

changer in turbulence control.
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NOMENCLATURE

Ar Recirculation area.

b Control law candidate.

δ Boundary layer.

f Frequency.

H Step height.

i MLC individual.

J Cost function.

Lr External separation point.

λ Actuation cost.

n MLC generation.

P Pressure probe.

Re Reynolds number.

U0 Free stream velocity.

ujet Free stream velocity.

Te MLC evaluation time.

s Sensor.

StH Strouhal number.

Xr Internal separation point.
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FIGURE 1. SCHEMATIC OF THE EXPERIMENTAL SETUP

INTRODUCTION

Flow with separation and reattachment has long been a sub-

ject of fundamental fluid dynamics research. This flow gives

rise to unsteadiness, pressure fluctuations, structure vibrations

and noise [1]. The flow over a backward-facing step (BFS) is

a common separating/reattaching flow found in nature. There-

fore is deeply studied both numerically and experimentally (see

[1–4]). The control of separated and reattaching flows is an es-

sential issue for practical applications. Periodically perturbing

the shear layer at the separation location using synthetic jet ac-

tuator was found to be an effective tool to control these flows

[5–8]. Bhattacharjee et al. [9] claimed that the most effective

non-dimensional forcing frequency, so called Strouhal Number

(StH = f ∗H/U0), was between 0.2 and 0.4. Closed-loop control

offers further possibilities to improve the actuation efficiency by

adapting the control to different flow conditions. There are two

main ways to generate the closed-loop control laws. The first one

is to compute the model using previous knowledge of the physics

of the flow [10]. But, these models, obtained from the derivation

of the NavierStokes equations, are of very high order and require

reduction before they can be used in a realistic settings [11]. The

challenges of model-based control design have led us to inclined

to model-free control strategies using machine learning methods

such as genetic programming (GP). GP is a powerful regression

method which can detect and exploit nonlinear actuation mecha-

nisms in an unsupervised manner, as evidenced in several shear

flow control experiments [11–13].

The goal of this study is to use the performance benefits of

machine learning control MLC in active flow control to find a

cost effective control law. The control objective is to reduce the

recirculation zone downstream of a backward-facing step (BFS).

Particle image velocimetry PIV will be employed to the physical

mechanisms of turbulent unperturbed and perturbed flows.

1.85mm

1.66mm

20mm

20mm

Intake Channel
Nozzle

Diaphragm
Piezoelectric Element Pump

(a)

FIGURE 2. ACTUATION SYSTEM. a) PULSED JET SCKETCH;

b) VELOCITY RESPONSE TO AN ARBITRARY SIGNAL

EXPERIMENTAL APPARATUS AND TECHNIQUES

Description of the test facility and the step

The experiments were conducted in an optically accessi-

ble closed-loop wind tunnel. The test section is 2m wide, 2m

high and 10m long. The free stream velocity is U0 = 5.7m/s,

ReH = 31500 (δ = 0.68H, Reδ = 21500). The air is conditioned

in a settling chamber to minimize free stream turbulence through

a contoured converging nozzle. The model is mounted in the

middle of the test section. The step height of the backward-

facing step is H = 83mm and corresponds to an expansion ratio

of 1.04, i.e. negligible inference of the upper wall. An effec-

tively nominally two-dimensional flow is provided by the large

span of 2000mm yielding an aspect ratio of 24 [14]. The array

of actuators was placed at the middle the test section width and

is 5H long (20%), leaving a free space of 800mm between the

control area and the test section walls. This prevents flow inter-

actions between the corner of the test section and the backward

facing step. The origin of the coordinate system is located at the

edge of the step. The flow is described in a Cartesian coordi-

nate system with x, y, z representing streamwise, spanwise (or

lateral) and transverse (or normal to ground) directions, respec-

tively. The setup described above is illustrated in a 3D view in

FIG. 1.

Actuation system

The actuation system is driven by 20 piezoelectric devices

(Murata micro-blowers, see FIG. 2(a)) which distribute the air

flow through micro-nozzles (micro-pulsed jets). The distance be-

tween two neighboring micro-nozzles is 20 mm. The location of

the actuators was chosen in agreement with literature and previ-

ous works [11] The micro-jets axes are perpendicular to the wall

as seen in FIG. 1.

Contrary to other classical pulsed jets devices, Murata

micro-blowers only need a power supply of 5 to 20 Volts. The

mean jet velocity (ujet) provided by each micro-blower is ex-

pected to range between 0 m/s to 30 m/s and is proportional to

the voltage command up to 100Hz.The jet velocity can be com-

manded over a wide range of frequencies with large accuracy,

avoiding, for instance, dynamic overshoots

citeCHO16. As an example FIG. 2(b) shows the actuator re-
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sponse to a complex input voltage signal. These actuators have

unique advantages for closed-loop flow control applications.

Pressure Measurements
Recirculation length reduction is highly correlated with the

pressure from which the control performance can be quantified.

A set of 25 static pressure taps were distributed downstream of

the back-facing step in the freestream direction. The pressure

tabs were mounted starting at 25mm with an interval between

each other of 50 mm (xi/H = 0.6), as shown in FIG. 1. In ad-

dition, a second set of 25 sub-miniature piezo-resistive Kulite

XCQ-062 sensors with a nominal measurement range of 35 kPa.

Flush-mounted Kulite transducers were placed in parallel and at

the same xi location as the static ones. Thus, the 25 unsteady and

static pressure sensor arrays extents up to 14.75H in the stream-

wise direction.

Velocity measurements

Velocity measurements were performed downstream of the

step by the use of standard two-component TSI particle image

velocimetry (PIV). The PIV field is of view is about 7.3H×1.8H

on the x−y plane passing through center of the backward facing

step. This large field spans the whole wake containing entirely

the recirculating flow domain. The flow is seeded with oil parti-

cles using a jet atomizer upstream the stagnation chamber. The

atomizer location allows homogenous dispersion of the particles

throughout the test section.

The system consists of a double-pulse laser system and two

cameras (2000×2000 pixels charge-coupled-device Powerview

with a 50 mm optical lens). The frequency-doubled laser (Q-

switched Nd:YAG operating at 532 nm; dual-head BigSky) emits

laser pulses with a maximum energy of 200 mJ. The resolution

is 19.2 pixels/mm for the employed cameras. The dynamic range

is approximately 30 pixels and the velocity vectors are processed

with an interrogation window 16 × 16 pixels with an overlap

of 50%. For every flow/actuation configurations, 2000 double-

frame pictures are recorded to ensure the velocity fields statistics

convergence. The PIV time-uncorrelated snapshots are recorded

with a repetition rate of 7 Hz. The velocity measurements are

sampled at 10kHz and latter filtered at 3kHz.

GENETIC PROGRAMMING CONTROL
Duriez et al. [16] formulated a generic, model-free, ap-

proach to open- and closed-loop control of nonlinear systems

called Machine learning control (MLC) . The control design is

formulated as a regression problem: find the control law which

optimizes a given cost function. An initial population of control

law candidates (b
(1)
i (s j)), called individuals, is generated ran-

domly by combining user-defined functions, constants and sen-

sors s j (or signals); like in a Monte-Carlo method. Each individ-

ual is graded in the experiment (inner loop) and a cost function

J
(1)
1 is attributed to them. Each generation is made of 100 in-

dividuals to assure variability. A new population of individuals

b
(2)
i is then evolved from the previously evaluated one by ge-

netic operators , leading to new cost functions J
(2)
i . Without loss

of generality, the control laws of the n-generation are ordered

J
(n)
1 ≤ J

(n)
2 ≤ . . . ≤ J

(n)
100 . This learning process will continue until

some stopping criterion is met. In the present study a the number

of generations was set to 12, which was the minimum amount

of generations required to converge toward the best individual.

The targeted optimal control law is the best individual of the last

generation. This individual is taken as MLC law. This marks the

end of the learning phase. This process is summarized in FIG. 3.

Three different approaches for control laws are considered.

First, multi-frequency control b = k(h j) generalizes periodic

forcing using three sine signals at 14Hz, 15Hz and 16Hz; StH
of 0.211, 0.226 and 0.241, as inputs. These frequencies corre-

spond to the best periodic forcing frequencies obtained in previ-

ous experiences. Second, in sensor-based control b = k(Pj), the

pressure probes are used to generate the control laws. Finally,

multi-frequency forcing and sensor-based feedback is general-

ized in the non-autonomous law b = k(Pj,h j), i.e., a combination

of harmonic and sensor-based inputs is taken.

As the main goal is to reduce the external separation point

(Lr), The cost function J =LE
r +λ < b>was based on an estimated

LE
r from a quadratic fit of the spatial pressure fluctuation distribu-

tion Cprms. This was achieved using four pressure probes (P7, P8,

P10 & P13) with an evaluation time of Te =15s. The penalization

parameter prioritize either the separation length reduction (λ < 1)

or the actuation cost (λ > 1). A penalization λ = 0.1 was set based

on the low energy consumption of the row of micro-blower.

RESULTS AND DISCUSSION

To obtain the external and internal reattachment lengths and

consequently the recirculation area, Simpsons et al. estimates

the points where the backward flow probability (BFP) reaches a

value of 50% [17]. To actively control the flow of the backward-

facing step, experiments were carried out varying the frequency

( f ) of the periodic actuation commands (b = U jetSin(2pi f t)),
where U jet is the velocity actuation amplitude set constant at

25m/s (see FIG. 5(h)). Both internal (Xr) and external (Lr)

separation points and the separation area (Ar) as a function

of the Strouhal Number StH = f ∗H/U0 are shown in Fig. 4.

The reattachment lengths and area are normalized by those of

the unperturbed experiment. Xr increases while Lr and Ar de-

creased with increasing StH reaching positive and negative peaks

at StH = 0.226, respectively. From results, the best forcing fre-

quency was observed at f = 15Hz, StH = 0.226 and is associated

with the shedding phenomena. Xr increases up to 38.4% while

Lr and Ar decrease to 4.8% and 19.0%, respectively. The results
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FIGURE 3. GENETIC PORGRAMMING CONTROL LOOP
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FIGURE 4. RECIRCULATION PARAMETERS AS A FUNC-

TION OF THE STROUHAL NUMBER.◇ INTERNAL SEPARATION

POINT Xr, ◇ EXTERNAL SEPARATION POINT Lr, ◆ RECIRCU-

LATION AREA Ar. VARIATIONS ARE IN %

of the present study are consistent with those obtained in previ-

ous experiments [5,6,9,18]. PIV measurements were performed

at the optimal frequency, the BFP obtained is shown in FIG. 5(d).

This corroborates the effectiveness of pulsing jet injection with

forcing frequency to reduce the separation length [19].

MLC studies were carried out to discover new and more

effective closed-loop separation control laws. Three cases

were studied: multi-frequency open-loop, sensor-based and non-

autonomous control laws. After 12 generations with 100 indi-

viduals, PIV measurements were carried out for the optimal con-

trol; represented in FIG. 5(g),(i) and (j) for sensor-based, multi-

frequency open-loop and non-autonomous, respectively. The

BFP values extracted at the vicinity of the wall (y/H = 0.07) are

plotted in FIG. 5(a) for: unforced (dot-dashed gray line), peri-

odic forcing (solid gray line), multi-frequency open-loop (dashed

black line), sensor-based (dashed gray line) and non-autonomous

control (solid black line). The increase of the internal sepa-

ration length and the decrease of the external separation point

are clearly seen from the unforced flow (dot-dashed gray line)

to the non-autonomous control (solid black line). It is interest-

ing to note that multi-frequency open-loop (dashed black line)

out-performs the periodic forcing, but the sensor-based (dashed

gray line) control law is the least efficient. Moreover, to bet-

ter understand the effects of the different control laws over the

flow, the BFP fields for all cases are presented in FIG. 5(b-

f). Periodic forcing BFP field is seen in FIG. 5(d). For the

multi-frequency open-loop case (Fig. 5(e)), a higher reduction

of the external separation point (Lr = 5.18H), compared to the

best forcing frequency, is observed and an increase in the inter-

nal separation point Xr = 1.42H can be seen. On the contrary,

for the sensor-based case (FIG. 5(c)), the internal and exter-

nal separation point did not change significantly. We obtained

Lr = 5.55H and Xr = 0.95H. As expected, the best case com-

bines sensor-based feedback and open-loop forcing. The result-

ing non-autonomous feedback (FIG. 5(f)) gave a strong reduction

of the external separation point up to 8.6% (Lr = 5.13H) and an

increase of 70.6% of the internal separation point Xr = 1.48H.

Same results are seen for the recirculation area, where the best

control law is the MLC non-autonomous reducing this region up

to 40.7%. The current study shows that a generalization of multi-

frequency forcing and sensor feedback control law significantly

reduces the turbulent recirculation zone. A summary of all the

results is presented in FIG. 6. The key enabler is MLC for opti-

mizing the control laws. The study indicates that MLC can effec-

tively explore and optimize new feedback actuation mechanisms

in numerous experimental applications.

CONCLUSION

Experimental flow control in a separated shear layer using

micro-pulsed jets was done. The control target was to modify

key turbulent flow parameters such as: internal separation point,

external separation point and recirculation area, more specifi-

cally increase the first parameter and reduce the others. Pe-

riodic forcing, open- and closed-loop machine learning con-

trol strategies were used in order to compare and obtain the

best control law. Periodic forcing was able to significantly de-

crease the external separation point and the recirculation area,

and to move up the internal separation point. Machine learn-

ing control was employed to search for new and more effective

closed-loop control laws. Three MLC cases were studied: multi-

frequency open-loop, sensor-based and non-autonomous. Only

twelve generations with 100 individuals were needed to converge

towards a control law which outperforms periodic forcing. Non-
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FIGURE 5. BACKWARD FLOW PROBABILITY. (a) BFP PRO-

FILE EXTRACTED AT y/H=0.07, FLOW PROBABILITY FIELD:

(b) UNFORCED FLOW: DOT-DASHED GRAY LINE IN FIG.(a), (c)

MLC SENSOR-BASED: DASHED GRAY LINE IN FIG.(a), (d) OP-

TIMAL PERIODIC FORCING: SOLID GRAY LINE IN FIG.(a), (e)

MLC MULTI-FREQUENCY: DASHED BLACK LINE IN FIG.(a), (f)

MLC NON-AUTONOMOUS: SOLID BLACK LINE IN FIG.(a), (g)

CONTROL LAW SIGNAL MLC SENSOR-BASED, (h)CONTROL

LAW SIGNAL OPTIMAL PERIODIC FORCING, (i) CONTROL

LAW SIGNAL MLC MULTI-FREQUENCY,(j) CONTROL LAW SIG-

NAL MLC NON-AUTONOMOUS.

autonomous control showed to be the best control law strongly

modifying all analyzed parameters. The resulting flows were in-

vestigated with real-time PIV. The study suggests that MLC can

effectively explore and optimize new feedback actuation mecha-

nisms and we anticipate MLC to be a game changer in turbulence

control.
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