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RANGES OF FUNCTORS IN ALGEBRA

FRIEDRICH WEHRUNG

Abstract. The problem of determining the range of a given functor arises in
various parts of mathematics. We present a sample of such problems, with
focus on various functors, arising in the contexts of nonstable K0-theory of
rings, congruence lattices of universal algebras, spectral spaces of ring-like
objects. We also sketch some of the ideas involved in the solutions of those
problems.

1. Introduction

The present short survey paper deals with the following kind of problem. We
are given classes A and B, together with a map Ψ: A → B. We would like to find a
way to recognize the members of the range Ψ[A] =

def
{Ψ(A) | A ∈ A} of Ψ. That is,

we would like to find simple criteria for a given B ∈ B to be Ψ(A) for some A ∈ A.
Our main line of argument is that in many situations, if there exists a solution A,

then there exists a “nice” solution Anice, where “nice” means that part of the
structure of B can be read on the construction of Anice.

In most of those situations, A and B are classes of structures : groups, rings,
modules, lattices (which are all particular instances of so-called universal algebras),
but also topological spaces. In all those instances, both A and B afford a notion of
isomorphism, which enables us to state that two structures, although not identical
in the set-theoretical sense, share all the properties that matter (e.g., isomorphic
groups, homeomorphic topological spaces).

The relevant context, for this kind of problem, is thus category theory. Now A

and B are both categories and Ψ is a functor from A to B. Moreover, instead of
asking for Ψ(A) = B, we only ask for Ψ(A) ∼= B (say that A lifts B with respect
to Ψ), and the “range” of Ψ is the class of all B that are isomorphic to Ψ(A) for
some object A of A: in formula,

Ψ[A] =
def

{B ∈ B | (∃A ∈ A)(Ψ(A) ∼= B)} . (1.1)

Observe right away that (1.1) already involves a quite common abuse of notation,
used there for simplicity’s sake: “B ∈ B” should be “B is an object of B”, and,
similarly, “A ∈ A” should be “A is an object of A”. Calling the right hand side
of (1.1) the “range” of Ψ is a similar abuse of terminology, as the Ψ[A] of (1.1)
usually properly contains the set-theoretical range of Ψ.
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2 F. WEHRUNG

“Niceness” of the solution A means that if B is obtained as a colimit of (usually
simpler) structures Bi , then A is also the colimit of suitably chosen structures Ai

with each Ψ(Ai) ∼= Bi . Thinking of the Bi as all the “finitely generated” substruc-
tures of B, we would like to lift (with respect to Ψ) not only the object B, but the
diagram formed by all the Bi and the inclusion maps between them. We are thus
trying to lift the slice category B ↓B of all arrows from some object of B to B.

Now it is often the case that we are only trying to lift a subdiagram of B ↓ B.
A “diagram” in B is, really, a functor Φ: I → B, for some category I. Our initial
problem can thus be recast as follows: we are given categories I, A, B together with
functors Φ: I → B and Ψ: A → B. We are asking whether there exists a functor
Γ: I → A such that the functors Φ and Ψ ◦Γ are isomorphic, in notation Φ ∼= Ψ ◦Γ
(two functors are isomorphic if there exists a natural transformation from one to
the other all of whose components are isomorphisms; the relation Φ ∼= Ψ ◦ Γ could
be paraphrased as “Φ = Ψ ◦ Γ up to isomorphism”).

The monograph Gillibert and Wehrung [12] deals extensively with this kind
of problem, in situations arising from algebra. It is articulated around a technical
statement called there the Condensate Lifting Lemma (CLL for short, Lemma 3.4.2
in [12]). This statement makes it possible, in many situations, to reduce the lifta-

bility of a diagram ~B of B to the liftability of a suitable object B of B, called a

condensate of ~B. Even for diagrams indexed by a finite partially ordered set (poset
for short) P , the construction of a condensate can be a difficult matter, relying on
objects called lifters of P and whose existence follows from statements of infinite
combinatorics based on Kuratowski’s Free Set Theorem (cf. Kuratowski [21], Erdős
et al. [10, Theorem 46.1]). The “size” (often defined as cardinality) of a condensate

may be (strictly) larger than the size of the diagram ~B: even in case ~B is a diagram
of finite structures, indexed by a finite poset P , the condensate B may have trans-
finite cardinality, often ℵn−1 where n is nothing else than the order-dimension of
the poset P (cf. Gillibert and Wehrung [13]). In addition, this construction works
if P is a finite lattice, but may fail for general finite posets.

Many readers would object that this is sounding a bit abstract. Hence, let us
now inch away from category theory and present some more specific situations.

2. Spectral spaces: Stone duality and Hochster’s Theorem

For more details and references about the present section, we refer the reader to
Grätzer [15, § 2.5], Hochster [17], Johnstone [18, § II.3 and Ch. V], Stone [27].

2.1. Hochster’s Theorem. The Zariski spectrum of a commutative unital ring A,
is a topological space, fundamental in algebraic geometry. Let us recall the defini-
tion of that space. An ideal P of A is prime if it is proper (i.e., P 6= A, equivalently
1 /∈ P ) and the quotient ring A/P is a domain (equivalently, xy ∈ P implies that
either x ∈ P or y ∈ P , whenever x, y ∈ A). We denote by SpecA the set of all
prime ideals of A, endowed with the topology whose closed sets are exactly those
of the form

Spec(A,X) =
def

{P ∈ SpecA | X ⊆ P} , (2.1)

for X ⊆ A. This is a so-called hull-kernel topology.
The assignment A 7→ SpecA can be extended to a (contravariant) functor, by

sending any homomorphism f : A → B of commutative unital rings to the map
Spec f : SpecB → SpecA, Q 7→ f−1[Q] =

def
{x ∈ A | f(x) ∈ Q}. This map is easily
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seen to be continuous (this is not the best possible guess, but it will do for now).
Hence, Spec defines a contravariant functor, from the category of all commutative
unital rings, with unital ring homomorphisms, to the category of all topological
spaces, with continuous maps.

What kind of topological space is SpecA? Easy examples show that it may not
be Hausdorff. However, other easy examples show that not every topological space
is the Zariski spectrum of a commutative unital ring, even in the finite case. Let
us now prepare for the definition of the relevant topological spaces.

Definition 2.1. A nonempty closed set F in a topological space X is irreducible if
F = A∪B implies that either F = A or F = B, for all closed sets A and B. We say
that X is sober if every irreducible closed set is the closure of a unique singleton1.

Definition 2.1 can be paraphrased by saying that a topological space is sober if
it has as few points as possible with respect to the lattice structure of its collection
of open sets.

For a topological space X , we shall denote by
◦

K(X) the set of all open and com-
pact2 subsets of X , partially ordered under set inclusion. In general, for arbitrary

U, V ∈
◦

K(X), the union U ∪ V always belongs to
◦

K(X). However, the intersection

U ∩ V may not belong to
◦

K(X).

Definition 2.2. A topological space X is spectral if it is sober and
◦

K(X) is a basis
of the topology of X , closed under finite intersection.

Defining the empty intersection as the whole space X , this shows that a spectral
space is always compact.

It is well know, and easy to verify, that the Zariski spectrum of any commutative
unital ring is a spectral space. The converse is given by the following theorem of
Hochster [17].

Theorem 2.3 (Hochster). Every spectral space is homeomorphic to the Zariski

spectrum of some commutative unital ring.

Hochster’s construction, that assigns, to any spectral topological space X , a
commutative unital ring AX such that X ∼= SpecAX , is functorial, from the cate-
gory of all commutative unital rings with unital ring embeddings, to spectral spaces
with spectral maps. By definition, for spectral spaces X and Y , a map ϕ : X → Y
is spectral if ϕ−1[V ] is compact open whenever V is a compact open subset of Y ;
every spectral map is continuous, but not every continuous map is spectral.

In particular, Hochster’s Theorem implies that the range of the Zariski spectrum
functor is completely described: it is the class of all spectral topological spaces.

2.2. Stone duality. The construction of the Zariski spectrum, for commutative
unital rings, can be extended to bounded distributive lattices, in the following
way. Recall that a lattice is a structure (L,∨,∧), where ∨ and ∧ are both binary
operations on a set L such that there is a partial ordering ≤ for which x ∨ y =
sup(x, y) (the join of {x, y}) and x ∧ y = inf(x, y) (the meet of {x, y}) whenever

1Due to the uniqueness, every sober space is T0 (not all references assume this).
2Throughout the paper, “compact” means what some other references call “quasicompact”

(i.e., every open cover has a finite subcover); in particular, it does not imply Hausdorff.
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x, y ∈ L. Necessarily, x ≤ y ⇔ x ∨ y = y ⇔ x ∧ y = x whenever x, y ∈ L, so the
partial ordering ≤ is uniquely determined by either ∨ or ∧. We say that L is

• distributive if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) whenever x, y, z ∈ L;
• bounded if ≤ has a smallest element (then denoted by 0) and a largest
element (then denoted by 1).

An ideal P , in a bounded distributive lattice D, is prime if it is proper (i.e.,
P 6= D, equivalently 1 /∈ P ) and x ∧ y ∈ P implies that either x ∈ P or y ∈ P ,
whenever x, y ∈ D.

The remainder of the definition of the spectrum, of a bounded distributive lattice,
follows the one for commutative unital rings. We denote by SpecD the set of all
prime ideals of D, endowed with the topology whose closed sets are exactly those
of the form

Spec(D,X) =
def

{P ∈ SpecD | X ⊆ P} ,
for X ⊆ D. It can be easily seen that SpecD is a spectral space.

The assignment D 7→ SpecD can be extended to a (contravariant) functor, by
sending any 0, 1-lattice homomorphism f : D → E to the map Spec f : SpecE →
SpecD, Q 7→ f−1[Q]. This map is easily seen to be continuous, and even spectral

(cf. Section 2.1). Hence, Spec defines a contravariant functor, from the category
of all bounded distributive lattices, with 0, 1-lattice homomorphisms, to spectral
spaces, with spectral maps.

Stone duality [27] is contained in the following theorem and the subsequent
comments.

Theorem 2.4 (Stone). The pair (Spec,
◦

K) induces a (categorical) duality, between
bounded distributive lattices with 0, 1-lattice homomorphisms and spectral spaces

with spectral maps.

The dual of a bounded distributive lattice D is its spectrum SpecD, and the

dual of a spectral space X is the lattice
◦

K(X) of all its compact open subsets.
The dual of a spectral map ϕ : X → Y , between spectral spaces, is the 0, 1-lattice

homomorphism
◦

K(ϕ) :
◦

K(Y ) →
◦

K(X), V 7→ ϕ−1[V ]. For a bounded distributive
lattice D, the assignment a 7→ {P ∈ SpecD | a /∈ P} defines a lattice isomorphism

εD : D →
◦

K(SpecD), and the assignment D 7→ εD defines a natural transformation

from the identity functor, on bounded distributive lattices, to the functor
◦

K◦Spec.
For a spectral space X , the assignment x 7→ {U ∈

◦

K(X) | x /∈ U} defines a

homeomorphism ηX : X → Spec
◦

K(X), and the assignment X 7→ ηX is a natural

transformation from the identity functor, on spectral spaces, to the functor Spec ◦
◦

K.
The duality described above restricts to the classical Stone duality between

Boolean algebras and zero-dimensional compact Hausdorff spaces. It can also be
extended, mutatis mutandis, to what should be called Stone duality between dis-
tributive lattices with zero, with cofinal3 zero-preserving lattice homomorphisms,
and so-called “generalized spectral spaces” with spectral maps (cf. Rump and Yang
[26, page 63], Johnstone [18, § II.3], Grätzer [15, § II.5]).

3For posets P and Q, a map f : P → Q is cofinal if for every q ∈ Q there exists p ∈ P such
that q ≤ f(p).
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While Stone’s Theorem and Hochster’s Theorem both characterize spectral spaces
as spectra of commutative rings and bounded distributive lattices, respectively, the
former result achieves one more feature: since we are dealing with a duality, every
spectral space is the spectrum of a unique (up to isomorphism) bounded distribu-
tive lattice, while a commutative unital ring is usually not determined by its Zariski
spectrum (e.g., the Zariski spectrum of any field is the one-point topological space).

Something can still be said about the interaction between Stone duality and
Hochster’s Theorem. For a subset X in a commutative unital ring A, the Zariski-
closed set Spec(A,X) introduced in (2.1) depends only on the ideal I generated
by X : namely, Spec(A,X) = Spec(A, I). This can be even made more precise, by

observing that Spec(A, I) = Spec(A,
√
I), where

√
I, the radical of I, is defined

as {x ∈ A | xn ∈ I for some positive integer n}. Now this is as precise as it can

get, as by Krull’s Theorem, every radical ideal (an ideal I is radical if I =
√
I) is

the intersection of all the prime ideals containing it. Building on that observation,
it is easy to verify that the Stone dual of SpecA is isomorphic to the (bounded,
distributive) lattice IdrcA of all radicals of finitely generated ideals4 (beware the
ambiguity about the “finitely generated radical ideal” terminology!) of A. Hence,
by applying Stone duality to Theorem 2.3, we obtain the following.

Corollary 2.5. Every bounded distributive lattice with zero is isomorphic to IdrcA
for some commutative unital ring A.

3. Congruence lattices

For more detail and references about this section, we refer the reader to Wehrung
[36, 37, 38].

3.1. The Congruence Lattice Problem. A congruence of a lattice (L,∨,∧) is
an equivalence relation θ on L such that x1 ≡θ y1 and x2 ≡θ y2 implies both
x1∨x2 ≡θ y1∨y2 and x1∧x2 ≡θ y1∧y2 , whenever x1, x2, y1, y2 ∈ L (we say that θ
is compatible with the operations ∨ and ∧). Here, x ≡θ y is short for (x, y) ∈ θ.

The set ConL of all congruences of a lattice L, partially ordered under ⊆, is a
complete lattice, in which

∧

i∈I

θi =
⋂

i∈I

θi ,

∨

i∈I

θi = congruence generated by
⋃

i∈I

θi ,

for every collection {θi | i ∈ I} of congruences of L.
A congruence θ is finitely generated if it is the least one such that x1 ≡θ y1 and

· · · and xn ≡θ yn, for some xi, yi ∈ L (1 ≤ i ≤ n). A congruence θ is finitely
generated iff it is a compact element of ConL, that is, whenever θ ⊆

∨

i∈I θi , there
exists a finite subset J of I such that θ ⊆

∨

i∈J θi .
The lattice ConL is algebraic, that is, it is complete and every congruence can

be written in the form
∨

i∈I θi with all θi compact.
Up to this point, there is nothing special about the structure of lattice and the

concept of congruence can be extended to any “universal algebra” (i.e., nonempty
set A with a [possibly infinite] collection of operations An → A for various n). For

4The letter “r” stands for “radical” while the letter “c” stands for “compact”, which is the
lattice-theoretical counterpart of “finitely generated”.
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example, the congruences of a group G are in one-to-one correspondence with the
normal subgroups of G. However, the congruences of a lattice L are, usually, not
in any natural one-to-one correspondence with subsets of L.

The congruence lattice of any universal algebra is an algebraic lattice. The
converse, stating that every algebraic lattice arises as the congruence lattice of
some universal algebra, is a deep theorem of Grätzer and Schmidt [16].

A large part of what makes lattices so special is the following fundamental result,
established in Funayama and Nakayama [11]. We show a proof for convenience.

Theorem 3.1 (Funayama and Nakayama). The congruence lattice of every lattice

is distributive.

Proof. Define the lower median operation on a lattice L by setting m(x, y, z) =
def

(x∧ y)∨ (x∧ z)∨ (y ∧ z), whenever x, y, z ∈ L. The map m is a majority operation,
that is, m(x, x, y) = m(x, y, x) = m(y, x, x) = x whenever x, y ∈ L. Now let
α, β, γ ∈ ConL and let (x, y) ∈ α ∩ (β ∨ γ). Since (x, y) belongs to β ∨ γ, which is
the transitive closure of β ∪γ, there exists a finite sequence (z0, . . . , zn) of elements
of L such that z0 = x, zn = y, and each (zi, zi+1) ∈ β∪γ. Since m is a composition
of the fundamental operations ∨ and ∧, every congruence of L is compatible withm.
Setting ti =

def
m(x, y, zi) for each i, it follows that each (ti, ti+1) ∈ β ∪ γ. Moreover,

sincem is a majority operation, t0 = x and tn = y. From x ≡α y it follows that each
ti ≡α m(x, x, zi) = x, thus each (ti, ti+1) ∈ α∩(β∪γ) = (α∩β)∪(α∩γ). Therefore,
(x, y) ∈ (α∩β)∨(α∩γ), thus completing the proof that α∩(β∨γ) ⊆ (α∩β)∨(α∩γ).
The converse containment is trivial. �

Theorem 3.1 is quite lattice-specific, in the sense that it does not extend to
groups, modules, rings. . . For example, usually A ∩ (B + C) 6= (A ∩ B) + (A ∩ C)
for submodules A, B, C of a given module.

In the 1940’s, Dilworth proved that conversely, every finite distributive lattice
is the congruence lattice of a (finite) lattice. Then he asked whether this could be
extended to the infinite case:

The Congruence Lattice Problem (CLP), ∼ 1940. Is every distributive alge-

braic lattice the congruence lattice of a lattice?

CLP initiated a considerable amount of work, leading to a host of positive results.
All those results are more conveniently stated in terms of the set Conc L of all
compact (i.e., finitely generated) congruences of L, partially ordered under set
inclusion. It should be noted that Conc L is not a lattice as a rule: for compact
congruences α and β, the join α ∨ β is compact, but the meet α ∩ β may not be
compact. Hence, Conc L is a (∨, 0)-semilattice5. It is distributive, that is, whenever
α ⊆ β1 ∨ β2 in Conc L, there are αi ⊆ βi in Conc L such that α = α1 ∨ α2 .
Moreover, one can go naturally from ConL to Conc L (the latter is the semilattice
of all compact elements of the former) and back (the former is isomorphic to the
ideal lattice of the latter), and this functorially. We thus reach the following

Semilattice formulation of CLP. Is every distributive (∨, 0)-semilattice repre-
sentable, that is, isomorphic to Conc L for some lattice L?

5Or, equivalently, a commutative, idempotent monoid, endowed with the partial ordering ≤

given by x ≤ y ⇔ x ∨ y = y.
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Some known positive instances of CLP are given by the following result:

Theorem 3.2. Let S be a distributive (∨, 0)-semilattice. In each of the following
cases, S is representable:

(i) S is countable (Bauer ∼ 1980);
(ii) cardS ≤ ℵ1 (Huhn 1989);
(iii) S is a lattice (Schmidt 1981);
(iv) S = lim−→n<ω

Sn, with all transition maps Sn → Sn+1 (∨, 0)-homomor-

phisms and all Sn distributive lattices (Wehrung 2003).

In any of those cases, a representing lattice L (such that Conc L ∼= S) can be
taken sectionally complemented (a lattice L with zero is sectionally complemented
if whenever a ≤ b in L, there exists x ∈ L such that a ∨ x = b and a ∧ x = 0). The
following result was established in Wehrung [30, 31].

Theorem 3.3. For every cardinal number κ ≥ ℵ2 , there exists a distributive

(∨, 0, 1)-semilattice Sκ , of cardinality κ, not isomorphic to Conc L for any sec-
tionally complemented lattice L.

The task of removing “sectionally complemented” from the statement of The-
orem 3.3 was completed nearly ten years later in Wehrung [32], thus yielding a
negative solution of CLP, using the class of counterexamples constructed for The-
orem 3.3 (with a far more elaborate proof):

Theorem 3.4. The distributive (∨, 0, 1)-semilattice Sℵω+1
is not representable.

The optimal cardinality bound was subsequently obtained by Růžička in [24]:

Theorem 3.5 (Růžička). The distributive (∨, 0, 1)-semilattice Sℵ2
is not repre-

sentable.

Those results, together with the proof of Theorem 3.1, shift the original Congru-
ence Lattice Problem to the following (still unsolved) problem: is every distributive

algebraic lattice the congruence lattice of a majority algebra? By definition, a ma-

jority algebra is a pair (A,m), where m : A3 → A is a majority operation. The
proof of Theorem 3.1 shows that the congruence lattice of any majority algebra is
distributive.

3.2. A heavy cube, and congruence-permutable algebras. Referring to the
terminology “lifting” (with respect to a functor) from Section 1, “heavy” is intended
to mean “hard to lift”.

We consider the diagram Dc of (∨, 0)-semilattices and (∨, 0)-homomorphisms
represented in Figure 3.1, where e(x) = (x, x), p(x, y) = x ∨ y, and s(x, y) = (y, x)
whenever x, y ∈ {0, 1}. This diagram is obviously commutative.

The following result was established in Tůma and Wehrung [28].

Theorem 3.6. The cube Dc cannot be lifted (with respect to the functor Conc), by
any cube of sectionally complemented lattices and lattice homomorphisms.

In fact, it turns out that Theorem 3.6 can be extended to a much broader alge-
braic context; in particular, it is not lattice-specific. For binary relations α and β on
a set A, we set α ◦ β =

def
{(x, y) ∈ A×A | (∃z ∈ A)((x, z) ∈ α and (z, y) ∈ β)}. We

say that an algebra A is congruence-permutable if α◦β = β◦α for all congruences α
and β of A. For example, groups, modules, rings are all congruence-permutable
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e
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e
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e

::✉✉✉✉✉✉✉✉✉

Figure 3.1. The heavy cube Dc

(e.g., HK = KH for normal subgroups in a group). However, not every lattice
is congruence-permutable (e.g., consider the three-element chain). The following
result was established in Růžička, Tůma, and Wehrung [25].

Theorem 3.7. The cube Dc cannot be lifted (with respect to the functor Conc), by
any cube of congruence-permutable (universal) algebras. In particular, it cannot

be lifted by groups, rings, or modules.

It is still unknown whether every diagram of finite Boolean (∨, 0)-semilattices
and (∨, 0)-homomorphisms, indexed by a finite lattice, can be lifted with respect
to the functor Conc on lattices.

The proof of Theorem 3.7 (i.e., non-liftability of Dc by congruence-permutable
algebras), yielded the construction of a distributive (∨, 0)-semilattice that cannot
be lifted by congruence-permutable algebras, in Růžička, Tůma, and Wehrung [25].

Theorem 3.8. For every cardinal number κ ≥ ℵ2 , the distributive (∨, 0, 1)-semi-
lattice Sκ is not isomorphic to Conc A for any congruence-permutable algebra A.
In particular, Sℵ2

is not isomorphic to ConcA whenever A is a sectionally comple-
mented lattice, a group, a module, or a ring. Moreover, in the case of sectionally

complemented lattices, groups, modules, rings, the cardinality bound ℵ2 is optimal.

Since congruences of a module are identified with submodules, it follows, for ex-
ample, that Sℵ2

is not isomorphic to the submodule lattice of any module. Similarly,
it is not isomorphic to the normal subgroup lattice of any group.

In all the results described in this section, the unliftability statements about
cubes (of order-dimension n = 3) always parallel unliftability statements about
objects of cardinality ℵn−1 = ℵ2 . General principles explaining this correspondence
are developed in the monograph Gillibert and Wehrung [12]. Nonetheless, the
constructions described in the present section predate the monograph.

4. Nonstable K0-theory

For further details and references about this section, see Ara [2], Goodearl [14],
Wehrung [33].

Two idempotent matrices a and b over a (not necessarily commutative or unital)
ring R are Murray - von Neumann equivalent, in symbol a ∼ b, if there are matri-
ces x and y such that a = xy and b = yx. For square matrices x and y over R,
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we set x ⊕ y =
def

(

x 0
0 y

)

. If x1 ∼ y1 and x2 ∼ y2 , then x1 ⊕ x2 ∼ y1 ⊕ y2 , for

all square matrices (not necessarily of the same dimension) x1 , x2 , y1 , y2 . Hence,
Murray - von Neumann equivalence classes [a] =

def
{x | a ∼ x}, for idempotent

matrices a over R, can be added, via the rule [a] + [b] =
def

[a ⊕ b]. The monoid

V(R) =
def

{[a] | a idempotent matrix on R} is commutative (x + y = y + x) and

conical (x+ y = 0 ⇒ x = y = 0). It encodes the nonstable K0-theory of R.
If R is unital, then V(R) is isomorphic to the monoid of isomorphism classes

of all finitely generated projective right (or, equivalently, left) R-modules, and the
enveloping group (also called Grothendieck group) of V(R) is the group usually
denoted by K0(R).

For example, if R is a field, or more generally a division ring, then the finitely
generated right R-modules are exactly the finite-dimensional right R-vector spaces,
which are classified by dimension. Hence, V(R) is isomorphic to the monoid N0 =

def

{0, 1, 2, . . .} of nonnegative integers.
The following result was established in Bergman [4], Bergman and Dicks [5]:

Theorem 4.1 (Bergman and Dicks). Every commutative conical monoid M is
isomorphic to V(RM ) for some ring RM .

To my knowledge, the functoriality of the assignment M 7→ RM has not yet been
studied.

Further restrictions on the ring R are usually met with restrictions on the non-
stable K0-theory. An important class of rings for which this occurs is the following.
It was introduced by Warfield [29] in the unital case, Ara [1] in the general case.

Definition 4.2. A ring R is an exchange ring if for all x ∈ R, there are an
idempotent e ∈ R and r, s ∈ R such that e = rx = x+ s− sx.

It can be established (and this is not trivial) that this condition is left-right
symmetric. Every von Neumann regular ring (i.e., satisfying (∀x)(∃y)(xyx = x))
is an exchange ring, and a C*-algebra is an exchange ring iff it has real rank zero

(Ara et al. [3], Ara [1]).
Extending earlier results about von Neumann regular rings and C*-algebras of

real rank zero, Ara established in [1] the following result, in full generality.

Theorem 4.3 (Ara). Let R be an exchange ring. Then V(R) is a refinement
monoid, that is, for all a0, a1, b0, b1 ∈ V(R) such that a0 + a1 = b0 + b1 , there are
ci,j ∈ V(R), for i, j ∈ {0, 1}, such that each ai = ci,0 + ci,1 and bi = c0,i + c1,i .

It is not known whether every conical refinement monoid M arises in this way,
that is, M ∼= V(R) for some exchange ring R. Nevertheless, it is known since
Wehrung [30] that the answer to that problem is negative for von Neumann regular
rings (with counterexamples of cardinality ℵ2), and it is known since Wehrung [33]
that the answer is negative for C*-algebras of real rank zero (with counterexamples
of cardinality ℵ3 , using the CLL tool from Gillibert and Wehrung [12]).

Say that a monoid is simplicial if it is isomorphic to a finite power of the additive
monoid N0 of all nonnegative integers. The following result was established in
Wehrung [33]:

Theorem 4.4. There is a commutative cube, of simplicial monoids and monoid

homomorphisms, that can be lifted, with respect to the functor V, by exchange rings



10 F. WEHRUNG

and by C*-algebras of real rank 1, but not by semiprimitive exchange rings, thus

neither by von Neumann regular rings nor by C*-algebras of real rank 0.

The cube of Theorem 4.4 is obtained from the one of Figure 3.1 by replacing {0, 1}
by N0 and setting e(x) = (x, x), p(x, y) = x + y, and s(x, y) = (y, x) whenever
x, y ∈ N0 .

Theorem 4.4 could be paraphrased by saying that at diagram level, the nonstable
K0-theory of exchange rings properly contains both the one of von Neumann regular
rings and the one of C*-algebras of real rank zero. By using again the tools of
Gillibert and Wehrung [12], this result is extended to objects in [33].

Theorem 4.5. There exists a unital exchange ring of cardinality ℵ3 (resp., an
ℵ3-separable unital C*-algebra of real rank 1) R such that V(R) is not isomorphic

to V(B) for any ring B which is either a C*-algebra of real rank 0 or a von Neumann

regular ring.

5. Back to spectral spaces

For more details and references about the present section, we refer the reader
to Delzell and Madden [8], Grätzer [15, § 2.5], Johnstone [18, § II.3 and Ch. V],
Keimel [20], Coste and Roy [6], Dickmann [9, Ch. 6], Wehrung [34, 35].

The Zariski spectrum construction can be extended to various contexts, such as
Abelian ℓ-groups (yielding the ℓ-spectrum) and partially ordered, commutative unital
rings (yielding the real spectrum). Tailoring the methods above (in particular, CLL)
to that new context, further results can be obtained on ℓ-spectra and real spectra.
Let us give a short summary of such results.

5.1. The ℓ-spectrum of an Abelian ℓ-group. An ℓ-group is a group G endowed
with a translation-invariant lattice ordering. An ℓ-ideal of G is an order-convex
normal subgroup of G, closed under the lattice operations. An ℓ-ideal P of an
Abelian ℓ-group G is prime if it is proper (i.e., P 6= G) and x ∧ y ∈ P implies that
either x ∈ P or y ∈ P , whenever x, y ∈ G. The ℓ-spectrum of G, denoted Specℓ G,
is the set of all prime ℓ-ideals of G, endowed with the topology whose closed sets
are exactly those of the form

Specℓ(G,X) =
def

{P ∈ Specℓ G | X ⊆ P} , (5.1)

for X ⊆ G. An order-unit of G is an element e of the positive cone G+ of G
such that every element of G+ lies below an integer multiple of e. To ease the
presentation, let us deal only with Abelian ℓ-groups with order-unit. For those
ℓ-groups, Specℓ G is a spectral space. (If G has no order-unit, then SpecℓG is only
a generalized spectral space.)

A spectral space X is completely normal if for all z ∈ X and all x, y in the
closure of {z}, either x belongs to the closure of {y} or y belongs to the closure
of {x}. It is known since Keimel [19] that the ℓ-spectrum of any Abelian ℓ-group
with unit is completely normal. The characterization problem of all ℓ-spectra of
Abelian ℓ-groups with unit has been open since then, sometimes under equivalent
names (mostly Mundici’s MV-spectrum problem, see [23]). The countable case was
recently solved in Wehrung [34]:

Theorem 5.1. Every second countable, completely normal spectral space is home-

omorphic to the ℓ-spectrum of an Abelian ℓ-group with order-unit.
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Due to a counterexample by Delzell and Madden [7], Theorem 5.1 cannot be
extended to spectral spaces that fail to be second countable. In fact, due to the
results of [34], the class of all Stone duals of ℓ-spectra of Abelian ℓ-groups with unit
cannot be characterized by any class of L∞,ω-formulas (thus, in particular, it is
not first-order).

5.2. The real spectrum of a commutative unital ring. Let A be a com-
mutative unital ring. A subset C of A is a cone if it is both an additive and a
multiplicative submonoid of A, containing all squares in A. A cone P of A is prime

if A = P ∪(−P ) and the support P ∩(−P ) is a prime ideal of A. For a prime cone P ,
−1 /∈ P (otherwise 1 ∈ P ∩ (−P ), thus P ∩ (−P ) = A, a contradiction). We denote
by Specr A the set of all prime cones of A, endowed with the topology generated by
all subsets of the form {P ∈ Specr A | a /∈ P}, for a ∈ A, and we call Specr A the
real spectrum of A. The real spectrum of A is always a completely normal spectral
space. Delzell and Madden [7] established that not every completely normal spec-
tral space arises in this way. Mellor and Tressl [22] extended that result by proving
that for any infinite cardinal number λ, the class of Stone duals of all real spectra

cannot be defined by any class of L∞,λ-formulas.
It is not known whether the result of Theorem 5.1 can be extended to real spectra:

is every second countable completely normal spectral space the real spectrum of some

commutative unital ring?
It is still possible to compare ℓ-spectra, real spectra, and their spectral subspaces,

with respect to inclusion. Let

CN =
def

{completely normal spectral spaces} ,

ℓ =
def

{ℓ-spectra of Abelian ℓ-groups with unit} ,

R =
def

{real spectra of commutative unital rings} ,

SX =
def

{spectral subspaces of members of X} ,

for any class X of spectral spaces. (By definition, a spectral space X is a spectral
subspace of a spectral space Y if X ⊆ Y and the inclusion map from X into Y is a
spectral map.) The following result was established in Wehrung [35].

Theorem 5.2. All containments and non-containments between the classes CN,
ℓ, Sℓ, R, SR can be read on the following diagram:

CN = SCN

Sℓ

SR

❱❱❱❱❱❱❱❱❱❱

ℓ

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠ R

◗◗◗◗◗◗

Moreover, the topological counterexamples proving the various non-containments in
that diagram all have bases of cardinality ℵ1 , except for the one proving Sℓ $ CN,

which has a basis of cardinality ℵ2 .

The Stone duals of the topological counterexamples proving the relations ℓ $ Sℓ,
R $ SR, R 6⊆ ℓ are all constructed as condensates of one-arrow diagrams. The
counterexample illustrating ℓ 6⊆ SR is obtained via a direct construction. The
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counterexample illustrating Sℓ $ CN is obtained via a “free construction” similar,
in spirit, to the one introduced in Wehrung [30].
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[10] Paul Erdős, András Hajnal, Attila Máté, and Richard Rado, Combinatorial Set Theory:

Partition Relations for Cardinals, Studies in Logic and the Foundations of Mathematics, vol.
106, North-Holland Publishing Co., Amsterdam, 1984. MR 795592

[11] Nenosuke Funayama and Tadasi Nakayama, On the distributivity of a lattice of lattice-

congruences, Proc. Imp. Acad. Tokyo 18 (1942), 553–554. MR 0014065
[12] Pierre Gillibert and Friedrich Wehrung, From Objects to Diagrams for Ranges of Func-

tors, Lecture Notes in Mathematics, vol. 2029, Springer, Heidelberg, 2011. MR 2828735
(2012i:18001)

[13] , An infinite combinatorial statement with a poset parameter, Combinatorica 31

(2011), no. 2, 183–200. MR 2848250
[14] Kenneth R. Goodearl, von Neumann regular rings and direct sum decomposition problems,

Abelian groups and modules (Padova, 1994), Math. Appl., vol. 343, Kluwer Acad. Publ.,
Dordrecht, 1995, pp. 249–255. MR 1378203

[15] George Grätzer, Lattice Theory: Foundation, Birkhäuser/Springer Basel AG, Basel, 2011.
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