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Introduction

Given a Riemannian manifold (M n , g) and a form ω on M of degree p, the Laplacian ∆ of ω is related to the curvature operator on M through the Bochner-Weitzenböck formula, namely ∆ω = ∇ * ∇ω + B [p] ω, where B [p] , usually called the Bochner operator, is the symmetric endomorphism of the bundle of p-forms Λ p (M ) given by B [p] = n i,j=1 e j ∧(e i R M (e j , e i )). Here R M is the curvature operator on M defined by convention

R M (X, Y ) = ∇ M [X,Y ] -[∇ M X , ∇ M Y ]
and {e i } i=1,••• ,n denotes a local orthonormal frame of T M. In all the paper, we identify vector fields with their corresponding 1-forms through the usual musical isomorphisms.

It is clear that the Bochner-Weitzenböck formula is a useful tool to estimate the eigenvalues of the Laplacian (M is assumed to be compact and connected in this case), since any lower bound of the Bochner operator provides a lower bound of the eigenvalues. For example, when p = 1, A. Lichnerowicz [START_REF] Lichnerowicz | Géométrie des groupes de transformations[END_REF] proved that if B [1] (which corresponds to the Ricci tensor of the manifold) is greater than some positive number k, the first positive eigenvalue is greater than k n n-1 . This inequality was later characterized by M. Obata in [START_REF] Obata | Certain conditions for a Riemannian manifold to be isometric with a sphere[END_REF] who states that equality occurs if and only if the manifold is isometric to a round sphere.

Another estimate of the Bochner operator were obtained by Gallot and Meyer in [START_REF] Gallot | Opérateur de courbure et laplacien des formes différentielles d'une variété riemanienne[END_REF] when p = 1, • • • , n -1. Indeed, they showed that if the curvature operator of M has a lower bound k, then B [p] is always greater than p(n -p)k. This inequality has led to the following rigidity result [6, Prop. 2.9]: when the lower bound k is strictly positive, then all the cohomology groups H p (M ) vanish which mainly means that the manifold M has the same cohomology as the round sphere. Moreover, based on the same inequality, they proved the following estimates for the first eigenvalue of the Laplacian restricted to closed forms λ ′ 1,p and to co-closed forms λ ′′ 1,p , namely λ ′ 1,p ≥ kp(n -p + 1) and λ ′′ 1,p ≥ k(p + 1)(n -p).

(
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Here k is assumed to be strictly positive. Besides the round sphere of curvature k, the authors provided examples of hypersurfaces in the complex projective space where the equality in ( 1) is attained [START_REF] Gallot | Opérateur de courbure et laplacien des formes différentielles d'une variété riemanienne[END_REF]Prop. 8.1].

In [START_REF] Savo | The Bochner formula for isometric immersions[END_REF], the author used a new technique to bound the Bochner operator on submanifolds. In fact, on a given Riemannian manifold M of dimension n and a submanifold Σ, he expressed the curvature operator on Σ in terms of the one on M and the second fundamental form of the immersion through the Gauss formula. Namely, he showed that the term B [p] , acting on p-forms of Σ, can be splitted into two parts: the restriction part B

[p]

res that mainly depends on the ambient manifold M and the exterior part B [p] ext that is determined by the Weingarten tensor S [21, Thm. 1]. The proof is based on the expression of the Bochner operator B [p] in terms of the curvature of the underlying manifold Σ through the Clifford multiplication used in [START_REF] Petersen | Riemannian Geometry[END_REF]. More precisely, for hypersurfaces, he proved that the following inequality B [p] ≥ p(n -p)(γ M + β p (Σ)), holds, where γ M is a lower bound of the curvature operator of M and β p (Σ) is the lowest eigenvalue of the operator T [p] = (tr S)S [p] -S [p] • S [p] . The operator S [p] is some canonical extension of S to p-forms on Σ. After estimating the eigenvalues of the tensor T [p] in terms of different geometric quantities on Σ such as the mean curvature and the norm of the Weingarten tensor, he deduced several rigidity results, among them the de Rham cohomology groups of Σ, certain Clifford torus and immersions of Kähler manifolds... In the same spirit and with the use of the Bochner-Weitzenböck formula, he found a sharp estimate for the eigenvalues of the Laplacian on Σ that involves geometric data of the immersion. We note that this eigenvalue estimate has been later generalized to all codimensions in [START_REF] Cui | A sharp lower bounds of eigenvalues for differential forms and homology sphere theorems[END_REF].

In this paper, we study the Bochner operator for Riemannian flows (see Section 2 for the definition). These are the global geometric aspects of Riemannian submersions. Roughly speaking, a Riemannian flow on a given Riemannian manifold (M, g) is determined by a unit vector field ξ on M such that the Lie derivative of the metric g vanishes along ξ when one restricts to vector fields orthogonal to ξ. Examples of Riemannian flows are provided by Killing vector fields, Sasakian manifolds...We notice here that the integral curves of ξ, called the leaves, are the fibers of local Riemannian submersions that map to a Riemannian manifold which detects the transverse geometry of the flow. When looking to the structure of the normal bundle Q = ξ ⊥ of the flow, we require objects to be basic which means that they just depend on the transverse variables. In this spirit, a transverse Bochner-Weitzenböck formula carries over for the basic Laplacian (see Equation ( 2)); this allows to study the geometric and analytic properties of the flow, such as the basic cohomology groups.

Following the approach of A. Savo in [START_REF] Savo | The Bochner formula for isometric immersions[END_REF], we consider in this work the Bochner operator in the transverse Bochner-Weitzenböck formula and we aim to express it in terms of the geometric data of the flow. We prove with the help of the O'Neill formulas [START_REF] O'neill | The fundamental equations of a submersion[END_REF] that, as for submanifolds, the Bochner operator splits into a restriction part and an exterior part (see Equation ( 7)) where the first part depends on the geometry of the ambient manifold while the second part involves the O'Neill tensor. Using this expression, we deduce a lower bound of this operator in Corollary 4.3 which allows to get vanishing results on the basic cohomology groups (see Corollary 4.4). Also in Theorem 4.6, we establish a sharp estimate for the first eigenvalue λ 1,p of the basic Laplacian restricted to p-forms

(1 ≤ p ≤ [ q 2 ]
with q is the codimension of the flow). Namely, we show

λ 1,p ≥ p(q -p + 1)(γ M + β 1 M ),
where γ M is a lower bound of the curvature operator on M restricted to Q and β 1 M is the lowest eigenvalue of the symmetric tensor h 2 (h denotes the O'Neill tensor). When equality occurs in the above estimate, we show that the O'Neill tensor vanishes and the manifold M is then isometric to the quotient of R × Σ by some subgroup Γ, where Σ is a compact simply connected manifold of positive curvature.

The paper is organized as follows. In Section 2, we review the definitions of foliations and the basic Laplacian. We also state an eigenvalue estimate for the basic Laplacian that involves a lower bound of the Bochner operator (see Proposition 2.1). In Section 3, we adapt the way of writing the Bochner operator in terms of Clifford multiplication used in [START_REF] Petersen | Riemannian Geometry[END_REF] to the set-up of foliations. We then prove a rigidity result of the basic cohomology groups stating that they all vanish when the transverse curvature operator is positive (see Proposition 3.3). The main results are stated and proven in Section 4 where the case of Riemannian flow is considered. The last section is devoted to a well-known general results on foliations that we use in our study.

Preliminaries

In this section, we recall the main definitions on Riemannian foliations and some known results that can be found in [START_REF] Ph | Geometry of Foliations[END_REF].

Let (M n , g, F) be a Riemannian manifold of dimension n endowed with a Riemannian foliation F of codimension q. We assume, throughout this paper, that the metric g is bundle-like [START_REF] Ph | Geometry of Foliations[END_REF]. That means, F is given by an integrable subbundle L of T M and the metric g satisfies the condition L X g| Q = 0 on the normal vector bundle Q = T M/L, for all X ∈ Γ(L). Here L denotes the Lie derivative. In this case, the tangent bundle of M decomposes orthogonally into L and Q. We equip the normal bundle Q with the transverse Levi-Civita connection ∇ [START_REF] Ph | Geometry of Foliations[END_REF]. It is a standard fact that the curvature associated to ∇ vanishes along the leaves and therefore curvature data on Q are defined along orthogonal directions. Recall also that a basic form ω is a differential form on M that does uniquely depend on the transverse variables, in other words, ω satisfies X ω = 0 and X dω = 0, for all X ∈ Γ(L). These 

∆ b = ∇ * ∇ + B [p] + 1 4 |κ b | 2 , (2) 
where ∇ * ∇ := -q i=1 ∇ e i ,e i + ∇ κ b and B

[p] = q i,j=1 e j ∧ (e i R(e j , e i )) with R(X, Y ) = ∇ [X,Y ] - [∇ X , ∇ Y ] is the transversal curvature operator, {e i } i=1,••• ,q is a local orthonormal frame of Q.
Here the basic component of the mean curvature κ b is assumed to be a harmonic 1-form. As the spectrum of ∆ b (as well as the dimensions of H b (F)) remains invariant for any choice of the bundle-like metric [START_REF] Habib | Modified differentials and basic cohomology for Riemannian foliations[END_REF], one can state the following, as in [START_REF] Savo | The Bochner formula for isometric immersions[END_REF]Prop. 3], Proposition 2.1 Let (M, g, F) be a compact Riemannian manifold endowed with a Riemannian foliation F of codimension q and a bundle-like metric g. Let p be an integer number such that 1 ≤ p ≤ q.

1) If B [p] ≥ 0 and κ b is a basic-harmonic one form, then any basic harmonic p-form is transversally parallel. If the strict inequality B [p] > 0 holds, then H p b (F) = 0.

2) If the foliation is minimal and B [p] ≥ p(q -p)Λ for some Λ > 0, then the first eigenvalue λ 1,p of the basic Laplacian satisfies λ 1,p ≥ p(q -p + 1)Λ,

where p is chosen such that

1 ≤ p ≤ q 2 .
Proof. The proof of the point 1) is a direct consequence of the Bochner-Weitzenböck formula. Indeed, take any basic harmonic p-form ω, that is

d b ω = δ b ω = 0, one can easily see that | d b ω| 2 + | δ b ω| 2 = 1 4 |κ b | 2 |ω| 2 .
Hence, applying Equation ( 2) to ω and taking the scalar product the same form, one gets after integrating over M

1 4 M |κ| 2 |ω| 2 dv g = M |∇ω| 2 dv g + M B [p] ω, ω dv g + 1 4 M |κ| 2 |ω| 2 dv g ≥ 1 4 M |κ| 2 |ω| 2 dv g ,
which allows to deduce the first statement. Now, if B [p] > 0 then it is clear that any basic harmonic pform vanishes. By [START_REF] Domínguez | A tenseness theorem for Riemannian foliations[END_REF] and [START_REF] Mason | An application of stochastic flows of Riemannian foliations[END_REF]Thm 6.2], one can always change the bundle-like metric into another bundle-like metric (with the same transverse metric) so that the basic component of the mean curvature κ b is a basic harmonic 1-form with respect to the new metric. Therefore, we can work with such a metric keeping the same condition on B [p] . Hence the assumption on the mean curvature can be dropped off and we deduce the statement 2) as the basic cohomology is independent of the choice of the bundle-like metric. The proof of the point 2) follows the same way as in [START_REF] Gallot | Opérateur de courbure et laplacien des formes différentielles d'une variété riemanienne[END_REF] by proving that M |∇ω| 2 dv g ≥ λ 1,p q-p+1 M |ω| 2 dv g , which finishes the proof. Remark. We point out that when the equality case in (3) is attained, the associated eigenform is a basic conformal Killing form [START_REF] Semmelmann | On conformal Killing tensor in a Riemannian space[END_REF][START_REF] Jung | Transversal conformal Killing forms and a Gallot-Meyer theorem for foliations[END_REF] which is either closed or of degree p = q 2 (that is, q should be even). Recall here that a basic conformal Killing form ω is a basic form that satisfies, for all X ∈ Γ(Q), the equation

∇ X ω = 1 p + 1 X dω - 1 q -p + 1 X ∧ δ T ω, where δ T = δ b -κ b .

Clifford multiplication on basic forms

In this section, we will review the approach of [START_REF] Petersen | Riemannian Geometry[END_REF]Sect. 4] to write the curvature term in the Bochner-Weitzenböck formula in terms of the Clifford multiplication. We also refer to [START_REF] Savo | The Bochner formula for isometric immersions[END_REF] for more details.

Let (M, g, F) be a Riemannian manifold endowed with a Riemannian foliation F and let Q be the normal bundle of codimension q. For X ∈ Γ(Q) and ω a p-form on Q, the Clifford multiplication of X with ω is defined as

X • ω = X ∧ ω -X ω and ω • X = (-1) p (X ∧ ω + X ω). (4) 
A direct consequence of the definitions says that for any two sections X and Y on Q, the following relation

X • Y + Y • X = -2g(X, Y )
holds. Given any two forms ω 1 and ω 2 , one can extend the definition (4) to the Clifford multiplication between ω 1 and ω 2 as follows: write locally

ω 1 = i 1 ≤•••≤ip α i 1 •••ip e i 1 ∧ • • • ∧ e ip in any orthonormal frame {e 1 , • • • , e q } of Q and define ω 1 • ω 2 = i 1 ≤•••≤ip α i 1 •••ip e i 1 • • • • e ip • ω 2 .
The Lie bracket is then defined as

[ω 1 , ω 2 ] = ω 1 • ω 2 -ω 2 • ω 1 .
For a 2-form Ψ and a p-form ω, the Lie bracket between Ψ and ω can be expressed explicitly as Lemma 3.1 Let Ψ be a 2-form and let ω be a p-form. One has

[Ψ, ω] = 2 q i=1 (e i ψ) ∧ (e i ω),
where {e 1 , • • • , e q } is an orthonormal frame of Q. In particular the degree of [Ψ, ω] is the same as the form ω.

Proof. The proof relies mainly on the use of Equations ( 4) and the fact that

X • ω = (-1) p ω • X - 2X ω. Indeed, if we write Ψ = i<j Ψ ij e i ∧ e j , we compute Ψ • ω = i<j Ψ ij e i • e j • ω = i<j Ψ ij e i • ((-1) p ω • e j -2e j ω) = i<j Ψ ij (ω • e i • e j -2(-1) p (e i ω) • e j -2e i • (e j ω)) = ω • Ψ -2(-1) p i<j Ψ ij (e i ω) • e j -2(-1) p-1 i<j Ψ ij (e j ω) • e i + 4 i<j Ψ ij e i (e j ω) = ω • Ψ -2(-1) p i,j Ψ ij (e i ω) • e j + 2 i,j
Ψ ij e i (e j ω)

= ω • Ψ + 2 i,j
Ψ ij (e j ∧ (e i ω) + e j (e i ω)) + 2 i,j

Ψ ij e i (e j ω).

Finally, we deduce that [Ψ, ω] = 2 i,j Ψ ij e j ∧ (e i ω) which finishes the proof of the lemma.

Another useful property of the Lie bracket that will be used later in this paper.

Lemma 3.2 Let Ψ be a 2-form and let ω be a p-form. Then we have

[Ψ, X ∧ ω] = X • [Ψ, ω] + 2(X Ψ) • ω + [Ψ, X ω],
for any X ∈ Γ(Q).

Proof. Using the definition of the Lie bracket, we write

[Ψ, X ∧ ω] = Ψ • (X ∧ ω) -(X ∧ ω) • Ψ = Ψ • (X • ω + X ω) -(X • ω + X ω) • Ψ = X • Ψ • ω + 2(X Ψ) • ω + Ψ • (X ω) -X • ω • Ψ -(X ω) • Ψ = X • [Ψ, ω] + 2(X Ψ) • ω + [Ψ, X ω].
The proof of the lemma is then finished.

Next, we recall the definition of the basic Dirac operator restricted to basic forms [START_REF] Glazebrook | Transversal Dirac families in Riemannian foliations[END_REF]. Given any orthonormal frame {e i } i=1,••• ,q of Γ(Q), the basic Dirac operator is defined as

D b = q i=1 e i • ∇ e i - 1 2 κ b •,
where κ b is as usual the projection of the mean curvature. It is easy to see that

D b = d b + δ b and that D 2 b = ∆ b .
As in [START_REF] Petersen | Riemannian Geometry[END_REF]Thm. 50], one can show that (see also [START_REF] Habib | Energy-Momentum tensor on foliations[END_REF]Prop. 1.3.5])

D 2 b ω = ∇ * ∇ω - 1 2 q i,j=1 e i • e j • R(e i , e j )ω + 1 4 |κ b | 2 ω, and 
D 2 b ω = ∇ * ∇ω + 1 2 q i,j=1
R(e i , e j )ω

• e i • e j + 1 4 |κ b | 2 ω.
Now by adding these two equations and dividing by 2, we deduce after comparing with Equation (2) that

B [p] ω = 1 4 [R(e i , e j )ω, e i • e j ].
Following the same lines of the proof of [21, Thm. 17], one can say that

B [p] ω, ϕ = 1 4 ( q 2 ) r,s=1 Rψ r , ψ s [ ψr , ω], [ ψs , ϕ] , (5) 
where {ψ r } r=1,...,( q 2 ) is any orthonormal frame of ∧ 2 Q and that { ψr } r=1,...,( q 2 ) its dual basis. Here the curvature R :

Λ 2 Q → Λ 2 Q is viewed as a symmetric operator by R(X ∧ Y ), Z ∧ W = g(R(X, Y )Z, W ) for all X, Y, Z, W ∈ Γ(Q).
As in [START_REF] Petersen | Riemannian Geometry[END_REF]Thm. 51], we deduce the following result (see also [START_REF] Min-Oo | Vanishing theorems for the basic cohomology of Riemannian foliations[END_REF]Cor. D] for a different proof) Proposition 3.3 Let (M, g, F) be a compact Riemannian manifold endowed with a Riemannian foliation of codimension q.

1. If the transversal curvature operator is nonnegative and κ b is basic-harmonic, then any basic harmonic form is transversally parallel.

2. If the transversal curvature operator is positive, then H p b (F) = 0 for all p ∈ {1, • • • , q -1}.

Riemannian flows

In this section, we will consider a Riemannian flow, that is a Riemannian foliation of 1-dimensional leaves given by a unit vector field. As mentioned in the introduction, we will prove throughout this section that the curvature operator of the normal bundle splits into two parts. The first part, that we call restriction part, depends mainly on the curvature operator of the underlying manifold and the second part, that we call exterior part, is expressed in terms of the O'Neill tensor of the flow.

Let (M, g, ξ) be a Riemannian manifold endowed with a Riemannian flow given by a unit vector field ξ. Recall the condition on the metric that L ξ g| ξ ⊥ = 0 which means that the tensor h = ∇ M ξ, called the O'Neill tensor, is a skew-symmetric endomorphism on Γ(Q). From the relation g(h(X), Y ) = -1 2 g([X, Y ], ξ), one can characterize the integrability of the normal bundle of a Riemannian flow by the vanishing of the O'Neill tensor [START_REF] O'neill | The fundamental equations of a submersion[END_REF]. Moreover, when the O'Neill tensor and the mean curvature κ := ∇ M ξ ξ both vanish, the manifold M is isometric to a local product. Also, one can easily check by a straightforward computation that when the mean curvature κ is a basic one form, the endomorphism h is a basic tensor, that is, ∇ ξ h = 0. Recall here that ∇ is the transversal Levi-Civita connection extended to tensors. Based on this fact, the curvature R M restricted to sections of the form ξ ∧ X for X ∈ Γ(Q) can be expressed as follows Lemma 4.1 On a Riemannian manifold (M n , g, ξ) endowed with a Riemannian flow with basic mean curvature κ, we have that

R M (ξ, X)ξ = -h 2 (X) + g(κ, h(X))ξ + ∇ M X κ -g(κ, X)κ,
for any X ∈ Γ(Q). In particular, for minimal Riemannian flow, the matrix of R M in the orthonormal frame {ξ ∧ e i } i=1,••• ,n-1 is the same as -h 2 .

Proof. Let X be any foliated vector field, that is ∇ ξ X = 0. The curvature R M applied to ξ and X is equal to

R M (ξ, X)ξ = -∇ M ξ ∇ M X ξ + ∇ M X κ + ∇ M [ξ,X] ξ = -∇ M ξ h(X) + ∇ M X κ -g(κ, X)κ.
The last equality comes from the fact that [ξ, X] = g([ξ, X], ξ)ξ = -g(κ, X)ξ, as X is foliated. Now using the O'Neill formula for Riemannian flows [9, Eq. 4.4]

∇ M ξ Y = ∇ ξ Y + h(Y ) -g(κ, Y )ξ,
for all Y ∈ Γ(Q) and the fact that the tensor h is a basic tensor as mentioned before, the curvature reduces to R M (ξ, X)ξ = -h 2 (X) + g(κ, h(X))ξ + ∇ M X κ -g(κ, X)κ. This finishes the proof of the lemma.

At a point x ∈ M, let us denote by γ M 0 (x) and γ M 1 (x) the smallest and largest eigenvalues of the symmetric tensor

R M : Λ 2 (Q) → Λ 2 (Q) defined by g(R M (X ∧ Y ), Z ∧ W ) := R M
XY ZW for X, Y, Z, W ∈ Γ(Q). Again using the O'Neill formulas in [START_REF] O'neill | The fundamental equations of a submersion[END_REF], this curvature term is related to the one on the normal bundle Q by the following relation: for all sections X, Y, Z, W of Q, we have

R M XY ZW = R XY ZW -2g(h(X), Y )g(h(Z), W ) + g(h(Y ), Z)g(h(X), W ) + g(h(Z), X)g(h(Y ), W ). (6) 
Therefore according to Equation ( 6), the curvature of Q splits into R ext and R res , where we set

g(R ext (X ∧ Y ), Z ∧ W ) = 2g(h(X), Y )g(h(Z), W )-g(h(Y ), Z)g(h(X), W )-g(h(Z), X)g(h(Y ), W ) and g(R res (X ∧ Y ), Z ∧ W ) = R M XY ZW .
Hence, Equation ( 5) can be written in the following way

B [p] = B [p] ext + B [p] res , (7) 
where

B [p]
ext ω, ϕ = 1 4

( q 2 ) r,s=1 R ext ψ r , ψ s [ ψr , ω], [ ψs , ϕ] (8) 
and

B [p]
res ω, ϕ = 1 4

( q 2 ) r,s=1 R res ψ r , ψ s [ ψr , ω], [ ψs , ϕ] .
Choosing an orthonormal basis of eigenvectors of R res , we get the pointwise estimate

p(q -p)γ M 0 (x) ≤ B [p] res ≤ p(q -p)γ M 1 (x). (9) 
Here, we use the fact that for any form ω ∈ Λ p (Q), one has the formula 1 4

( q 2 ) r=1 |[ ψr , ω]| 2 = p(q -p)|ω| 2 (10) 
which follows from [START_REF] Savo | The Bochner formula for isometric immersions[END_REF]Lem. 18].

In order to find a lower bound of the term

B [p]
ext ω, ω , we will compute the eigenvalues of R ext in terms of the eigenvalues of the tensor h.

Computation of the eigenvalues of the tensor R ext : Let us first check the case where q is even, say q = 2m. Since the tensor h is skew-symmetric and a basic form, we can always find a local basic orthonormal frame {e i } i=1,...,q of Q such that the matrix of h in this basis can be written as

                  0 -b 1 b 1 0 0 . . . 0 0 0 -b 2 b 2 0 . . . . . . . . . . . . . . . 0 0 . . . 0 0 -b m b m 0                   where b 1 , • • • , b m are smooth basic functions on M chosen in a way such that |b 1 | ≤ |b 2 | ≤ • • • ≤ |b m |.
That is, h(e 2i-1 ) = b i e 2i and h(e 2i ) = -b i e 2i-1 for all i = 1, • • • , m. Depending on the different choices of indices, we will now compute R ext . For all i, j, k, l ∈ {1, . . . , q}, we have

             g(R ext (e 2i-1 ∧ e 2i ), e 2i-1 ∧ e 2i ) = 3b 2 i g(R ext (e 2i-1 ∧ e 2j-1 ), e 2k-1 ∧ e 2k ) = 2b i b k for k = i g(R ext (e 2i-1 ∧ e 2j-1 ), e 2k ∧ e 2l ) = -b i b j δ jk δ il + b i b j δ ik δ jl g(R ext (e 2i-1 ∧ e 2j ), e 2k-1 ∧ e 2l ) = 2b i b k δ ij δ kl + b i b j δ jk δ il .
The other terms are all equal to zero. Therefore, in the basis {e i ∧ e j } 1≤i<j≤2m , arranged as follows

{e 2i-1 ∧ e 2i } 1≤i≤m , {e 2i-1 ∧ e 2j-1 , e 2i ∧ e 2j } 1≤i<j≤m , {e 2i-1 ∧ e 2j , e 2i ∧ e 2j-1 } 1≤i<j≤m
the tensor R ext is a block diagonal matrix having diagonal blocks matrices D, D i,j , -D i,j , for 1 ≤ i < j ≤ m where:

• D is the matrix representation of the restriction of R ext to the subspace generated by {e 2i-1 ∧ e 2i } 1≤i≤m and is given by

D =      3b 2 1 2b 1 b 2 . . . 2b 1 b m 2b 1 b 2 3b 2 2 . . . 2b 2 b m . . . . . . 2b 1 b m 2b 2 b m . . . 3b 2 m      .
• D i,j is the matrix representation of the restriction of R ext to the subspace generated by {e 2i-1 ∧ e 2j-1 , e 2i ∧ e 2j } which is given by

0 b i b j b i b j 0 .
• The last block -D i,j is the matrix representation of the restriction of R ext to the subspace generated by {e 2i-1 ∧ e 2j , e 2i ∧ e 2j-1 }.

We notice that by a straightforward computation one can prove that the choice of the basis does not change the orientation of the normal bundle.

One can easily check that the eigenvalues of the matrices D i,j are ±b i b j with unit eigenvectors

θ ± ij = 1 √ 2 (e 2i-1 ∧ e 2j-1 ± e 2i ∧ e 2j )
. Also the eigenvalues of the matrices -D i,j are ±b i b j with unit eigenvectors given by ρ

∓ ij = 1 √ 2 (e 2i-1 ∧ e 2j ∓ e 2i ∧ e 2j-1
). The eigenvalues of the matrix D are not easy to compute but we know that they are all nonnegative since DX, X = m i=1 b 2 i X 2 i + 2( m i=1 b i X i ) 2 ≥ 0 for any vector X. In conclusion, the eigenvalues {λ r } r=1,••• ,( q 2 ) of the tensor R ext consist of three families (q is even):

• Type I : The eigenvalues are ±b i b j (i < j) with unit eigenvectors

θ ± ij = -1 √ 2 (e 2i-1 ∧ e 2j-1 ± e 2i ∧ e 2j )
• Type II : The eigenvalues are ±b i b j (i < j) with unit eigenvectors given by ρ ∓ ij = 1 √ 2 (e 2i-1 ∧ e 2j ∓ e 2i ∧ e 2j-1 ).

• Type III : The eigenvalues are those of the matrix D which are all nonnegative and the eigenvectors are in the subspace generated by

{e 2i-1 ∧ e 2i } i=1••• ,m .
The case where q is odd can be treated in a similar way as the even case but an additional direction e 0 is involved corresponding to the eigenvalue 0 of h. Since g(R ext (e 0 ∧ X), Y ∧ Z) = 0 for every X, Y, Z ∈ Γ(Q), we deduce that the eigenvalues of R ext consist of families of type I, II, III (the same as defined above) and IV, where in the last family 0 is an eigenvalue and the corresponding eigenvector is in the subspace generated by {e 0 ∧ e i } i=1,••• ,2m .

Lower bound of the term B

[p]

ext ω, ω : Let us denote by λr (1 ≤ r ≤ m) the eigenvalues of the matrix D and let { θr } be an orthonormal family of eigenvectors associated with the eigenvalues λr . Then we have the estimate, The proof of this corollary uses the first statement of Proposition 2.1. Another direct consequence of Corollary 4.3 that characterizes minimal Riemannian flow on round spheres is the following (see [START_REF] Gromoll | One dimensional metric foliations in constant curvature space[END_REF]) Corollary 4.5 Let S n be the round sphere of constant sectionnal curvature 1 and assume that it is endowed with a minimal Riemannian flow. Then, the O'Neill tensor is transversally parallel and the flow defines a Sasakian structure on S n .

Proof of Corollary 4.5: As the curvature on the sphere S n is given for all vector fields X, Y, Z by

R M (X, Y )Z = g(X, Z)Y -g(Y, Z)X, one deduces directly from Lemma 4.1 that h 2 (X) = -X for all X ∈ Γ(Q), that is |b 1 | = • • • = |b m | = 1.
In the same way, using the fact that for X, Y, Z ∈ Γ(Q), we have [START_REF] O'neill | The fundamental equations of a submersion[END_REF] g

(R M (X, Y )ξ, Z) = g(-(∇ X h)Y + (∇ Y h)X, Z), one can also get that (∇ X h)Y = (∇ Y h)X.
Recall here that ∇ is the transversal Levi-Civita connection extended to forms. Therefore, the divergence of h (with respect to the normal bundle) vanishes since

(δh)(X) = - n-1 i=1 (∇ e i h)(e i , X) = n-1 i=1 (∇ e i h)(X, e i ) = n-1 i=1 (∇ X h)(e i , e i ) = 0.
Hence, the basic 2-form Ω := -1 2 dξ = g(h•, •) is closed and coclosed and thus a basic-harmonic. Now, Corollary 4.4 allows to deduce that it is transversally parallel. This ends the proof.

Using the second statement in Proposition 2.1, one can deduce the following estimate Theorem 4.6 Let (M, g) be a compact Riemannian manifold endowed with a minimal Riemannian flow given by a unit vector field ξ of codimension q. Let p be any integer number such that

1 ≤ p ≤ m with m = [ q 2 ].
Then the first eigenvalue of the basic Laplacian acting on basic p-forms satisfies

λ 1,p ≥ p(q -p + 1)(γ M + β 1 M ),
where γ M = inf M (γ M 0 ) is a lower bound of the curvature operator on M restricted to Q and

β 1 M = inf M (-b 2 m )
is the lowest eigenvalue of the symmetric tensor h 2 . If moreover the equality is attained, then M is isometric to the quotient of R × Σ by some fixed-point-free cocompact discrete subgroup Γ ⊂ R × SO q+1 , where Σ is a compact simply connected manifold of positive curvature.

Remarks.

1. In the equality case of the estimate in Theorem 4.6, the O'Neill tensor vanishes. Therefore, the basic Laplacian on M restricts to the usual Laplacian on the manifold Σ and thus the first eigenvalue on Σ satisfies the equality case in the Gallot-Meyer estimate [START_REF] Gallot | Opérateur de courbure et laplacien des formes différentielles d'une variété riemanienne[END_REF]Thm. 6.13].

In view of the remark after Theorem 2.1 and if p is chosen such that p < q 2 , we deduce that dω = 0 where ω is an eigenform associated with the first eigenvalue. If p = 2 and q > 4, the form α = δω is a coclosed 1-form which is still an eigenform of the Laplacian (the form α does not vanish since this would imply that ω vanishes). Hence, by a result of S. Tachibana [START_REF] Tachibana | On Killing tensors in Riemannian manifolds with positive curvature operator[END_REF]Thm. 3.3] the manifold Σ is either isometric to a Sasakian manifold or to a round sphere with constant curvature. [START_REF] Böhm | Manifolds with positive curvature operators are space forms[END_REF], the manifold Σ is a spherical space form. In case Σ is isometric to a round sphere, the group Γ = π 1 (M ) preserves the orthogonal splitting T (t,x) M = R ⊕ T x S q (the vertical distribution R is the kernel of the Ricci tensor), as it is acting by isometries on the universal cover M . Therefore the fundamental group is embedded in the product Isom + (R) × Isom + (S q ) where Isom + is the group of isometries that preserve the orientation of the corresponding manifold. For q even, we deduce that Γ ≃ Z and that it acts as (t, x) → (t + a, A(x)) for some (a, A) ∈ R * × SO(q + 1). For q odd, the group Γ is not necessarily isomorphic to Z, since one might consider the group Γ = Z × Γ 2 where Γ 2 is a finite subgroup of SO(q + 1) consisting of rotations in orthogonal 2-planes in R q+1 .

By the result in

Let us now proceed with the proofs of the equality case of Theorems 4.2 and 4.6.

Proof of Theorem 4.2: First, we discuss the case where q = 2m > 2. If the equality is attained in [START_REF] Lichnerowicz | Géométrie des groupes de transformations[END_REF], then two cases may occur: Either for all (i, j) one of the Lie bracket coefficients of b i b j in the first line of [START_REF] Lichnerowicz | Géométrie des groupes de transformations[END_REF] does not vanish and in this case we get

|b 1 | = • • • = |b m |
or there exist i and j with i < j and such that all the coefficients vanish, that is

[θ ± ij , ω] = [ρ ± ij , ω] = 0. ( 12 
)
Let us check that the second case gives also the statement of the theorem. First, we get a description of the form ω that we put it in the following lemma:

Lemma 4.7 Assume that there exist i, j such that Equalities (12) hold. Then, there exist basic forms ω 1 and ω 2 such that

ω = e 2i-1 ∧ e 2i ∧ e 2j-1 ∧ e 2j ∧ ω 1 + ω 2 , with e 2i-1 ω 1 = e 2i ω 1 = 0 e 2j-1 ω 1 = e 2j ω 1 = 0,
The same equalities hold for ω 2 .

Proof. By adding (and substracting) the brackets [θ + ij , ω] and [θ - ij , ω] together, as well as [ρ + ij , ω] and [ρ - ij , ω], we deduce the following equations

[e 2i-1 ∧ e 2j-1 , ω] = [e 2i ∧ e 2j , ω] = [e 2i-1 ∧ e 2j , ω] = [e 2i ∧ e 2j-1
, ω] = 0. Now, using Lemma 3.1 for each of the above brackets, the previous equations reduce to the following system

                   e 2j-1 ∧ (e 2i-1 ω) = e 2i-1 ∧ (e 2j-1 ω) e 2j ∧ (e 2i ω) = e 2i ∧ (e 2j ω) e 2j ∧ (e 2i-1 ω) = e 2i-1 ∧ (e 2j ω) e 2j-1 ∧ (e 2i ω) = e 2i ∧ (e 2j-1 ω).
In order to solve this system, we take the interior product of the first equation with e 2i-1 (resp. with e 2j-1 ) to get that

e 2i-1 ω = e 2j-1 ∧ β 0 and e 2j-1 ω = e 2i-1 ∧ β 1 ,
where β 0 (resp. β 1 ) is a form that does not contain neither e 2i-1 nor e 2j-1 . The same can be done for the third equation with respect to e 2i-1 and e 2j to obtain e 2i-1 ω = e 2j ∧ β 3 and e 2j ω = e 2i-1 ∧ β 4 , for some β 3 , β 4 . Comparing the above equations and using the fact that the general solution of an equation of type X ∧ α = Y ∧ β where X and Y are orthogonal and X α = Y β = 0 is given by α = Y ∧ (X β), we conclude that β 0 should be of the form e 2j ∧ β 5 for some form β 5 . The same technique can be used for the second and forth equations in the system. This allows to finish the proof of the lemma by using the fact that the general solution of an equation of the form X ω = α is ω = X ∧ α + β where X β = 0.

We now proceed with the proof of Theorem 4.2. According to Lemmas 4.7, 3.2 and to Equality (8), we set Φ := e 2i ∧ e 2j-1 ∧ e 2j ∧ ω 1 and we write

B [p] ext ω, ω = B [p] ext (e 2i-1 ∧ Φ), e 2i-1 ∧ Φ + 2 B [p] ext (e 2i-1 ∧ Φ), ω 2 + B [p] ext ω 2 , ω 2 = 1 4 ( q 2 ) r=1 λ r |[ θr , e 2i-1 ∧ Φ]| 2 + 1 2 ( q 2 ) r=1 λ r [ θr , e 2i-1 ∧ Φ], [ θr , ω 2 ] + B [p] ext ω 2 , ω 2 = 1 4 ( q 2 ) r=1 λ r |[ θr , Φ]| 2 + ( q 2 ) r=1 λ r |e 2i-1 θr | 2 |Φ| 2 + ( q 2 ) r=1 λ r e 2i-1 • [ θr , Φ], (e 2i-1 θr ) • Φ + 1 2 ( q 2 ) r=1 λ r e 2i-1 • [ θr , Φ], [ θr , ω 2 ] + ( q 2 ) r=1 λ r (e 2i-1 θr ) • Φ, [ θr , ω 2 ] + B [p] ext ω 2 , ω 2 = B [p-1] ext Φ, Φ + ( q 2 ) r=1 λ r |e 2i-1 θr | 2 |Φ| 2 - ( q 2 ) r=1 λ r [ θr , Φ], e 2i-1 • (e 2i-1 θr ) • Φ + 1 2 ( q 2 ) r=1 λ r e 2i-1 ∧ [ θr , Φ], [ θr , ω 2 ] + ( q 2 ) r=1 λ r (e 2i-1 θr ) ∧ Φ, [ θr , ω 2 ] + B [p] ext ω 2 , ω 2 . (13) 
Here, we recall that {λ r } are the eigenvalues of the tensor R ext and { θr } are the corresponding dual eigenvectors found previously. In the following, we will compute each sum separately with respect to each family of eigenvalues of type (I), (II) and (III) that we already find. For this, we denote by S 1 , S 2 , S 3 and S 4 the respective sums.

Type I : In the following, we shall prove that S 1 , S 2 , S 3 and S 4 all vanish with respect to an orthonormal basis of type I. In fact, as we have that

e s θ ± kl = -1 √ 2 (δ s2k-1 e 2l-1 -δ s2l-1 e 2k-1 ± δ s2k e 2l ∓ δ s2l e 2k ), (14) 
we first deduce that |e 2i-1 θ ± kl | 2 = 1 2 if i = k or i = l and thus S 1 is zero (the sum of all the eigenvalues). Second, from Lemma 3.1, we have that

[θ ± kl , Θ] = -2 √ 2 (e 2l-1 ∧ (e 2k-1 Θ) -e 2k-1 ∧ (e 2l-1 Θ) ± e 2l ∧ (e 2k Θ) ∓ e 2k ∧ (e 2l Θ)) , (15) 
for any form Θ. Therefore, we get that

(e 2i-1 θ ± kl ) [θ ± kl , ω 2 ] =    ±e 2i ∧ (e 2k-1 e 2k ω 2 ) for i = l ±e 2i ∧ (e 2l-1 e 2l ω 2 ) for i = k (up to a factor -1 √
2 ) which, by taking the scalar product with Φ, gives that S 4 = 0. Here we used the fact that ω 2 does not contain any factor in e i and e j . For the sum S 3 , we first compute

e 2i-1 [θ ± kl , ω 2 ] = -2 √ 2 (δ il e 2k-1 ω 2 -δ ik e 2l-1 ω 2 ) .
Hence, the term (up to the factor -2 √

2 )

[θ ± kl , Φ], e 2i-1 [θ ± kl , ω 2 ] =    [θ ± ki , Φ], e 2k-1 ω 2 for i = l -[θ ± il , Φ], e 2l-1 ω 2 for i = k
also vanishes by Equation ( 15) (replace Θ by Φ and l or k by i). Hence S 3 = 0. Now, we are left with the sum S 2 that we shall prove that it vanishes as well. Indeed, we write

S 2 = k<l b k b l [θ + kl , Φ], e 2i-1 • (e 2i-1 θ + kl ) • Φ - k<l b k b l [θ - kl , Φ], e 2i-1 • (e 2i-1 θ - kl ) • Φ (14) = i<l b i b l [θ + il -θ - il , Φ], e 2i-1 • e 2l-1 • Φ - k<i b k b i [θ + ki -θ - ki , Φ], e 2i-1 • e 2k-1 • Φ .
Now from the expression of the vector fields θ + kl and θ - kl and using again Lemma 3.2, we have that

[θ + il -θ - il , Φ], e 2i-1 • e 2l-1 • Φ = -2 √ 2 [e 2i ∧ e 2l , Φ], e 2i-1 • e 2l-1 • Φ = -4 √ 2 e 2l ∧ (e 2i Φ) -e 2i ∧ (e 2l Φ), e 2i-1 • e 2l-1 • Φ = -4 √ 2 e 2l ∧ (e 2i Φ), e 2l-1 (e 2i-1 ∧ Φ) = -4 √ 2 e 2l-1 ∧ e 2l ∧ (e 2i Φ), e 2i-1 ∧ Φ = 0,
which means that the first sum vanishes. By interchanging the roles of i and l, we also deduce that the second sum S 2 is zero.

Type II : The computation can be done in the same way as for type I and shows that all of the sums vanish.

Type III : Recall that in this case, the eigenvectors of R ext are in the subspace generated by {e 2k-1 ∧ e 2k } k=1••• ,m . Hence any eigenvector θr (1 ≤ r ≤ m) can be written as θr = m k=1 α k r e 2k-1 ∧ e 2k for some functions α k r . Thus, we have e 2i-1 θr = α i r e 2i .

The first sum S 1 is then equal to m r=1 λr (α i r ) 2 |Φ| 2 , where λr are the eigenvalues of the matrix D defined before. Next, we shall prove that S 3 and S 4 are equal to zero. Indeed, using [START_REF] Min-Oo | Vanishing theorems for the basic cohomology of Riemannian foliations[END_REF], one can easily see that (e 2i-1 θr ) ∧ Φ = 0 which gives that S 4 = 0. Now using Lemma 3.2, one has

[ θr , Θ] = m k=1 α k r [e 2k-1 ∧ e 2k , Θ] = 2 m k=1 α k r (e 2k ∧ (e 2k-1 Θ) -e 2k-1 ∧ (e 2k Θ)),
for any form Θ. This gives that e 2i-1 [ θr , ω 2 ] = 0 and thus S 3 = 0. Here, we used the fact that ω 2 does not contain any factor in e i . The term S 2 is now equal to

S 2 = m r=1 λ r α i r [ θr , Φ], e 2i-1 • e 2i • Φ = 2 m k,r=1 λ r α i r α k r (e 2k ∧ (e 2k-1 Φ) -e 2k-1 ∧ (e 2k Φ), e 2i-1 ∧ (e 2i Φ) = -2 m k,r=1 λ r α i r α k r e 2k-1 ∧ (e 2k Φ), e 2i-1 ∧ (e 2i Φ) = -2 m k,r=1 λ r α i r α k r δ ik |e 2i Φ| 2 = -2 m r=1 λ r (α i r ) 2 |Φ| 2 .
Now replacing all the computations above in Equation ( 13), we deduce that

-p(q -p)b 2 m |ω| 2 = B [p] ext ω, ω = B [p-1] ext Φ, Φ + 3 m r=1 λ r (α i r ) 2 |Φ| 2 + B [p] ext ω 2 , ω 2 (11) ≥ -(p -1)(q -p + 1)b 2 m |Φ| 2 -p(q -p)b 2 m |ω 2 | 2 .
Here, we use the fact that all the eigenvalues λ r are nonnegative. As |ω| 2 = |Φ| 2 + |ω 2 | 2 , the last inequality implies that either b m = 0 or that Φ = 0. Recall here that the integer p is chosen such that 1 ≤ p ≤ m. The fact that the b i 's are chosen in a way that

|b 1 | ≤ • • • ≤ |b m |, then b m = 0
implies the statement of Theorem 4.2. We are now left with the case when Φ = 0, which means by Lemma 4.7 that ω = ω 2 with e 2i-1 ω = e 2i ω = e 2j-1 ω = e 2j ω = 0. But recall that i and j are chosen in a way that all the Lie bracket coefficients of b i b j in Equation ( 11) are equal to zero. Therefore the same choice holds for i = 1 and 1 ≤ j ≤ m, since otherwise we would get

|b 1 | = • • • = |b m |.
Hence by varying j, we arrive at X ω = 0 for any X, which leads to ω = 0; that is a contradiction. This finishes the proof for m > 1. Now, we discuss the equality when q is odd, say q = 2m + 1. In this case, we have [e 0 ∧ e l , ω] = 0 for all l = 1, • • • , 2m. Recall here that e 0 is the eigenvector of h that corresponds to the eigenvalue 0. As in the even case, either for all (i, j) one of the Lie bracket coefficients of b i b j in [START_REF] Lichnerowicz | Géométrie des groupes de transformations[END_REF] does not vanish and we get

|b 1 | = • • • = |b m |
or there exist i and j with i < j and such that all the coefficients vanish. In the second case, Equations ( 12) still hold and we get the same description as in Lemma 4.7. That means, we write ω = e 2i-1 ∧ e 2i ∧ e 2j-1 ∧ e 2j ∧ ω 1 + ω 2 . From the one hand, we take l = 2i -1 in the equation [e 0 ∧ e l , ω] = 0 and make the interior product of this last identity with e 2i-1 to get after using Lemma 3.1 e 0 ω 2 = 0 and e 0 ∧ ω 1 = 0.

From the other hand, we take l / ∈ {2i -1, 2i, 2j -1, 2j} and make the interior product of the same equation with e 2i-1 ∧ e 2i ∧ e 2j-1 ∧ e 2j to find that e l ∧ (e 0 ω 1 ) = 0 and e 0 ∧ (e l ω 2 ) = 0.

Now, the interior product of the first equation in [START_REF] Obata | Certain conditions for a Riemannian manifold to be isometric with a sphere[END_REF] with e l and the second equation in [START_REF] O'neill | The fundamental equations of a submersion[END_REF] allow to deduce that ω 2 = 0. Therefore, we deduce that ω = e 2i-1 ∧ Φ. The rest of the proof carries on the same way as in the even case. We notice that the family IV of eigenvalues does not contribute to Equation [START_REF] Jammes | Effondrement, spectre et propriétés diophantiennes des flots riemanniens[END_REF], since in this case all the eigenvalues are equal to zero.

We are now left with the case when m = 1. As from the first line of Equation ( 11) the term B [START_REF] Boyer | On positive Sasakian Geometry[END_REF] ext ω, ω is nonnegative, we then deduce that the equality in Theorem 4.2 is attained if b 1 = 0. This ends the proof.

Proof of Theorem 4.6: Assume that the estimate is realized, then the inequality in Corollary 4.3 is also attained and therefore |b 1 | = • • • = |b m | = cst for m > 1 and b 1 = 0 for m = 1. In the following, we will prove that the constant should also be zero. Indeed, as λ 1,p = p(q -p + 1)(γ M -cst) > 0 we deduce that γ M > cst > 0. Therefore from Corollary 4.4, we get that H 2 b (F) = 0. On the other hand, using Lemma 4.1, the Ricci curvature on M is equal to Ric M (ξ, ξ) = q i=1 R M (ξ, e i , ξ, e i ) = -q i=1 g(h 2 e i , e i ) = |h| 2 = 2mcst > 0, and Ric M (X, X) = q i=1 R M (X, e i , X, e i ) + R M (X, ξ, X, ξ) ≥ γ M q i=1

|X ∧ e i | 2 + |hX| 2 > cst ′ |X| 2 > 0, for all X ∈ Γ(Q) which means that H 1 (M ) = 0. Using the first result in the Appendix, we find a contradiction. Thus, we deduce that |b 1 | = • • • = |b m | = 0 which means that the normal bundle is integrable. In this case, the universal cover of M is isometric to the Riemannian product of R × Σ where Σ is a simply connected compact manifold with positive curvature. This ends the proof.

Appendix

The following results are partially contained in [13, Rem. 2.14], [1, Prop. 1.8] and [START_REF] Kacimi | Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications[END_REF] but we include them here for completeness. Let us denote by b s (M ) = dim H s (M ) (resp. b s (F) = dim H s b (F)) the betti numbers (resp. basic betti numbers).

Proposition 5.1 Let (M, g, ξ) be a compact Riemannian manifold endowed with a Riemannian flow of codimension q with basic mean curvature κ. Assume that the first cohomology group H 1 (M ) = {0}. Then we have that b 2 (F) = 1 + b 2 (M ).

Proof. We use the long exact sequence of cohomologies stated in [START_REF] Prieto | The Gysin sequence for Riemannian flows[END_REF]Thm. 3.2] 

0 → H 1 b (F) → H 1 (M ) j → H q b (F) i 1 → H 2 b (F) i 2 → H 2 (M ) → H q-1 b (F),
where i 1 = ∧[Ω] and i 2 is the inclusion map. Since H 1 (M ) = 0, we have that H q b (F) ≃ R and H q-1 b (F) ≃ H 1 b (F) = {0} (see [START_REF] Ph | Geometry of Foliations[END_REF]). From the fact that the map i 1 is injective, i 2 is surjective and Im i 1 = Ker i 2 , we find that Ker i 2 ≃ R and Im i 2 = H 2 (M ). Therefore, we deduce the statement of the proposition. Proof. Take an orthonormal frame {e i } i=1,••• ,q in Γ(Q) and consider Y = Z = e i in the formula g(R M (X, Y )ξ, Z) = g(-(∇ X h)Y + (∇ Y h)X, Z). After tracing over i, we get that Ric M (ξ, X) = (δh)(X) for all X ∈ Γ(Q). The assumption Ric M (ξ) = λξ gives that the basic 2-form Ω := -1 2 dξ = g(h•, •) is co-closed. As Ω is also a closed form, it then becomes a basic-harmonic form. But the choice of λ = |h| 2 to be strictly positive implies that the form Ω does not vanish. This shows the first part. To prove the second part, we use again the Gysin sequence as in the previous proposition and the fact that H q b (F) ≃ R (recall the flow is minimal) to get that i 1 is injective and thus b 2 (F) = 1 + dim Im i 2 . Also, we get that j = 0 and therefore H 1 b (F) ≃ H 1 (M ). This finishes the proof.

  basic forms are preserved by the exterior derivative and are used to define the basic Laplacian ∆ b = d b δ b + δ b d b where d b is the restriction of the exterior differential d to basic forms and δ b is its L 2 -adjoint. The basic Laplacian yields the basic Hodge theory that can be used to compute the basic cohomology groups H p b (F) = ker dp image d p-1 . In the study of the basic Poincaré duality (which fails to hold for the basic Laplacian), the authors in [10] introduce a new cohomology H b (F) that uses the twisted exterior derivative d b := d b -1 2 κ b ∧, where κ b is the basic component of the mean curvature field κ of the foliation [12]. They prove that the associated twisted Laplacian ∆ b := d b δ b + δ b d b commutes with the basic Hodge operator and therefore the Poincaré duality carries on for those twisted cohomology groups. Also, they state a Bochner-Weitzenböck formula for ∆ b which allows to generalize several rigidity results on the usual basic cohomology.Namely, on basic p-forms, the formula is[START_REF] Habib | Modified differentials and basic cohomology for Riemannian foliations[END_REF] Prop. 6.7] 

Proposition 5 . 2

 52 Let (M, g, ξ) be a compact Riemannian manifold endowed with a minimal Riemannian flow of codimension q. Assume that Ric M (ξ) = λξ with λ > 0. Then the Euler class [dξ] is a non-zero cohomology class in H 2 b (F). Moreover, we have that b 1 (F) = b 1 (M ) and 1 ≤ b 2 (F) ≤ 1 + b 2 (M ).
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Hence, we arrive at the following result:

Theorem 4.2 Let (M 2m+1 , g) be a Riemannian manifold endowed with a Riemannian flow given by a unit vector field ξ of codimension q. For any number p such that 1 ≤ p ≤ q -1 and a basic p-form ω, we have

Before proving the theorem, let us give some direct consequences.

Corollary 4.3 Let (M, g) be a Riemannian manifold endowed with a Riemannian flow given by a unit vector field ξ of codimension q. For any number p such that 1 ≤ p ≤ q -1 and any basic p-form ω, we have The inequality in Corollary 4.3 is obtained by adding the estimate in Theorem 4.2 to the l.h.s. of Inequality [START_REF] Habib | Energy-Momentum tensor on foliations[END_REF]. One can easily check that for the Hopf fibration S 2m+1 → CP m for m > 1, the Kähler form Ω on CP m , which is a parallel basic 2-form, satisfies the equality of the above theorem (here γ M 0 = b 2 m = 1). Also on the Riemmanian product S 1 × S 2m+1 for m > 1, when one considers the flow defined by the unit vector field ξ := 1 √ 2 (ξ 1 + ξ 2 ) where ξ 1 is the unit parallel vector field on S 1 and ξ 2 is the unit Killing vector field that defines the Hopf fibration, the Kähler form on CP m is transversally parallel. In this case, the equality is attained since γ M 0 = b 2 m = 1 2 . We point out that the converse of Corollary 4.3 does not hold in general. Indeed, consider the Riemannian fibration S 1 × S 2m+1 → S 1 × CP m and let Ω be again the Kähler form on CP m . Here

and γ M 0 = 0 which gives the strict inequality. When the term in the lower bound of Corollary 4.3 is positive, we get the following rigidity result: Corollary 4.4 Let (M, g) be a compact Riemannian manifold endowed with a Riemannian flow given by a unit vector field ξ of codimension q. If γ M 0 ≥ b 2 m and κ is basic-harmonic, then every harmonic basic p-form is transversally parallel. If the strict inequality holds, then H s b (F) = {0} for any s ∈ {1, • • • , q -1}.