
HAL Id: hal-01856213
https://hal.science/hal-01856213

Submitted on 10 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximation capability of two hidden layer
feedforward neural networks with fixed weights

Namig Guliyev, Vugar Ismailov

To cite this version:
Namig Guliyev, Vugar Ismailov. Approximation capability of two hidden layer feedforward neural
networks with fixed weights. Neurocomputing, 2018, 316, pp.262-269. �10.1016/j.neucom.2018.07.075�.
�hal-01856213�

https://hal.science/hal-01856213
https://hal.archives-ouvertes.fr


APPROXIMATION CAPABILITY OF TWO HIDDEN LAYER

FEEDFORWARD NEURAL NETWORKS WITH FIXED

WEIGHTS

NAMIG J. GULIYEV AND VUGAR E. ISMAILOV

Abstract. We algorithmically construct a two hidden layer feedforward neu-
ral network (TLFN) model with the weights fixed as the unit coordinate vec-

tors of the d-dimensional Euclidean space and having 3d+ 2 number of hidden
neurons in total, which can approximate any continuous d-variable function

with an arbitrary precision. This result, in particular, shows an advantage

of the TLFN model over the single hidden layer feedforward neural network
(SLFN) model, since SLFNs with fixed weights do not have the capability of

approximating multivariate functions.

1. Introduction

The topic of artificial neural networks is an important and vibrant area of re-
search in modern science. This is due to a large number of application areas.
Nowadays, neural networks are being successfully applied in areas as diverse as
computer science, finance, medicine, geology, engineering, physics, etc. Perhaps
the greatest advantage of neural networks is their ability to be used as an arbitrary
function approximation mechanism. In this paper, we are interested in questions of
density (or approximation with arbitrary accuracy) of the multilayer feedforward
neural network (MLFN) model. Approximation capabilities of this model have been
well studied for the past 30 years. Choosing various activation functions σ it was
shown in a great number of papers that MLFNs can approximate any continuous
function with an arbitrary precision. The most simple MLFN model is the single
hidden layer feedforward neural network (SLFN) model. This model evaluates a
multivariate function

k∑
i=1

ciσ(wi · x− θi) (1.1)

of the variable x = (x1, . . . , xd), d ≥ 1. Here the weights wi are vectors in Rd, the
thresholds θi and the coefficients ci are real numbers, and the activation function
σ is a univariate function. A multiple hidden layer network is defined by iterations
of the SLFN model. For example, the output of the two hidden layer feedforward
neural network (TLFN) model with k units in the first layer, m units in the second
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layer and the input x = (x1, . . . , xd) is

m∑
i=1

eiσ

 k∑
j=1

cijσ(wij · x− θij)− ζi

 .

Here di, cij , θij and γi are real numbers, wij are vectors of Rd, and σ is a fixed
univariate function.

In many applications, it is convenient to take an activation function σ as a
sigmoidal function, which is defined as

lim
t→−∞

σ(t) = 0 and lim
t→+∞

σ(t) = 1.

The literature on neural networks abounds with the use of such functions and their
superpositions.

The possibility of approximating a continuous function on a compact subset of
Rd, d ≥ 1, by SLFNs with a sigmoidal activation function has been tremendously
studied in many papers. To the best of our knowledge, Gallant and White [11]
were the first to prove the universal approximation property for the SLFN model
with a sigmoidal activation function. Their activation function, called the cosine
squasher, has the ability to generate any trigonometric series. As such, this func-
tion has the density property. Carroll and Dickinson [3] implemented the inverse
Radon transformation to approximate L2 functions, using any continuous sigmoidal
function as an activation function. Cybenko [8] proved that SLFNs with a contin-
uous sigmoidal activation function can approximate any continuous function with
arbitrary accuracy on compact subsets of Rd. Funahashi [10], independently of Cy-
benko, proved the density property for a continuous monotone sigmoidal function.
Hornik, Stinchcombe and White [17] proved density of SLFNs with a discontinuous
bounded sigmoidal function. Kůrková [28] showed that staircase-like functions of
any sigmoidal type has the capability of approximating continuous univariate func-
tions on any compact subset of R within arbitrarily small tolerance. This result
was substantially used in Kůrková’s further results, which showed that a continu-
ous multivariate function can be approximated arbitrarily well by TLFNs with a
sigmoidal activation function (see [27, 28]). Chen, Chen and Liu [4] generalized the
result of Cybenko by proving that any continuous function on a compact subset of
Rd can be approximated by SLFNs with a bounded (not necessarily continuous)
sigmoidal activation function. Almost the same result was independently obtained
by Jones [25]. Costarelli and Spigler [6] constructed special sums of the form (1.1),
using a given function f ∈ C[a, b]. They then proved that these sums approximate
f within any degree of accuracy. In their result, similar to [4], σ is any bounded
sigmoidal function. Chui and Li [5] proved that SLFNs with a continuous sig-
moidal activation function having integer weights and thresholds can approximate
continuous univariate functions on any compact subset of the real line.

In a number of subsequent papers, which considered the density problem for the
SLFN model, nonsigmoidal activation functions were allowed. Here we cite a few of
them. The papers by Stinchcombe and White [40], Cotter [7], Hornik [16], Mhaskar
and Micchelli [36] are among many others. It should be remarked that the more
general result in this direction belongs to Leshno, Lin, Pinkus and Schocken [29].
They proved that the necessary and sufficient condition for any continuous activa-
tion function to have the density property is that it not be a polynomial. For more
detailed discussion of the density problem, see the review paper by Pinkus [37].
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The above results show that SLFNs with various activation functions enjoy the
universal approximation property. In recent years, the theory of neural networks
has been developed further in this direction. For example, from the point of view
of practical applications, SLFNs with a restricted set of weights have gained a
special interest (see, e.g., [9, 18, 20, 21, 24, 30]). It was proved that SLFNs with
some restricted set of weights still possess the universal approximation property.
For example, Stinchcombe and White [40] showed that SLFNs with a polygonal,
polynomial spline or analytic activation function and a bounded set of weights
have the universal approximation property. Ito [22, 23] investigated this property of
networks using monotone sigmoidal functions, with only weights located on the unit
sphere. In [18, 20, 21], the second coauthor considered SLFNs with weights varying
on a restricted set of directions, and gave several necessary and sufficient conditions
for good approximation by such networks. For a set of weights consisting of two
directions, he showed that there is a geometrically explicit solution to the problem.
Hahm and Hong [15] went further in this direction, and showed that SLFNs with
fixed weights can approximate arbitrarily well any continuous univariate function.
Since fixed weights reduce the computational expense and training time, this result
is of particular interest. In a mathematical formulation, the result says that for a

bounded measurable sigmoidal function σ, networks of the form
∑k
i=1 ciσ(αx− θi)

are dense in C[a, b]. Cao and Xie [2] strengthened this result by specifying the
number of hidden neurons to realize ε-approximation to any continuous function.
By implementing modulus of continuity, they established Jackson-type upper bound
estimations for the approximation error.

Approximation capabilities of SLFNs with fixed weights were also analyzed in
Lin, Guo, Cao and Xu [32]. Taking the activation function σ as a continuous, even
and 2π-periodic function, the authors of [32] showed that neural networks of the
form

∑r
i=1 ciσ(x − xi) can approximate any continuous function on [−π, π] with

an arbitrary precision ε. Note that all the weights are fixed equal to 1, and conse-
quently do not depend on ε. To prove this, they first gave an integral representation
for trigonometric polynomials, and constructed explicitly a network with the weight
1 that approximates this integral representation. Finally, the obtained result for
trigonometric polynomials was used to prove a Jackson-type upper bound for the
approximation error.

Note that SLFNs with a fixed number of weights cannot approximate d-variable
functions if d > 1. That is, if in (1.1) we have n different weights wi (n is fixed),
then there exist a compact set Q ⊂ Rd and a function f ∈ C(Q), which cannot
be approximated arbitrarily well by the networks formed as (1.1). This follows
from a result of Lin and Pinkus on sums of n ridge functions (see [33, Theorem
5.1]). For details, see our recent paper [14]. Thus the above results of Hahm and
Hong [15], Cao and Xie [2], Lin, Guo, Cao and Xu [32] cannot be generalized to
the d-dimensional case if one allows only the SLFN model of neural networks.

It should be remarked that in all of the above-mentioned works the number of
neurons k in the hidden layer is not fixed. As such to achieve a desired precision
one may take an excessive number of hidden neurons. Unfortunately, practicality
decreases with the increase of the number of neurons in the hidden layer. In other
words, SLFNs are not always effective if the number of neurons in the hidden layer
is prescribed. More precisely, they are effective if and only if we consider univariate
functions. In [13], we consider constructive approximation on any finite interval of
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R by SLFNs with a fixed number of hidden neurons. We construct algorithmically a
smooth, sigmoidal, almost monotone activation function σ providing approximation
to an arbitrary univariate continuous function within any degree of accuracy. Note
that the result of [13] is not applicable to multivariate functions.

The first crucial step in investigating approximation capabilities of MLFNs with
a prescribed number of hidden neurons was made by Maiorov and Pinkus [35].
Their remarkable result revealed that TLFNs with 3d units in the first layer and
6d+3 units in the second layer can approximate an arbitrary continuous d-variable
function. Using a different activation function than in [35], the second coauthor [19]
showed that the number of neurons in hidden layers can be reduced to d and 2d+ 2
respectively. Note that the results of both papers carry a theoretical character,
as they indicate only the existence of the corresponding TLFNs, their activation
functions.

We see that in each result above at least one of the following general properties
is violated.

(1) the number of hidden neurons is fixed;
(2) the weights are fixed;
(3) the activation function is computable;
(4) the network has the capability of approximating d-variable functions in the

case d > 1.

In this paper, we construct a special TLFN model that satisfies all of the proper-
ties (1)–(4). In addition, we show that along with the number of hidden neurons
and weights, it is also possible to fix some dilation coefficients of the constructed
activation function.

2. The main result

In the sequel, we deal with an activation function, which is monotonic in the
weak sense. Here by weak monotonicity we understand behavior of a function
whose difference in absolute value from a monotonic function is a sufficiently small
number. In this regard we say that a real function f defined on a set X ⊆ R is
λ-increasing (respectively, λ-decreasing) if there exists an increasing (respectively,
decreasing) function u : X → R such that |f(x)−u(x)| ≤ λ for all x ∈ X. Clearly, 0-
monotonicity coincides with the usual concept of monotonicity and a λ1-increasing
function is λ2-increasing if λ1 ≤ λ2.

Our main result is the following theorem.

Theorem 2.1. Assume a closed interval [a, b] ⊂ R is given, s = b−a, and λ is any
sufficiently small positive real number. Then one can algorithmically construct a
computable, infinitely differentiable, sigmoidal activation function σ : R→ R which
is strictly increasing on (−∞, s), λ-strictly increasing on [s,+∞) and satisfies the
following property: For any continuous function f on the d-dimensional box [a, b]d

and ε > 0, there exist constants ep, cpq, θpq and ζp such that the inequality∣∣∣∣∣f(x)−
2d+2∑
p=1

epσ

(
d∑
q=1

cpqσ(wq · x− θpq)− ζp

)∣∣∣∣∣ < ε

holds for all x = (x1, . . . , xd) ∈ [a, b]d. Here the weights wq, q = 1, . . . , d, are fixed
as follows:

w1 = (1, 0, . . . , 0), w2 = (0, 1, . . . , 0), . . . , wd = (0, 0, . . . , 1).
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In addition, all the coefficients ep, except one, are equal.

Proof. We start with the algorithmic construction of σ mentioned in the theorem.
The algorithm consists of the following steps.

1. Consider the function

h(x) := 1− min{1/2, λ}
1 + log(x− s+ 1)

.

Obviously, this function is strictly increasing on the real line and satisfies the fol-
lowing properties:

(1) 0 < h(x) < 1 for all x ∈ [s,+∞);
(2) 1− h(s) ≤ λ;
(3) h(x)→ 1 as x→ +∞.

Our purpose is to construct σ satisfying the two-sided inequality

h(x) < σ(x) < 1 (2.1)

for x ∈ [s,+∞). Then our σ will approach 1 as x approaches +∞ and obey the
inequality

|σ(x)− h(x)| ≤ λ,
that is, it will be a λ-increasing function.

2. In this step, we enumerate the monic polynomials with rational coefficients.
Let qn be the Calkin–Wilf sequence (see [1]). We can enumerate all the rational
numbers by setting

r0 := 0, r2n := qn, r2n−1 := −qn, n = 1, 2, . . . .

Note that each monic polynomial with rational coefficients can uniquely be written
as rk0 + rk1x+ . . .+ rkl−1

xl−1 + xl, and each positive rational number determines
a unique finite continued fraction

[m0;m1, . . . ,ml] := m0 +
1

m1 +
1

m2 +
1

. . . +
1

ml

with m0 ≥ 0, m1, . . . ,ml−1 ≥ 1 and ml ≥ 2. We now construct a one-to-one map-
ping between the set of all monic polynomials with rational coefficients and the set
of all positive rational numbers as follows. To the only zeroth-degree monic poly-
nomial 1 we associate the rational number 1, to each first-degree monic polynomial
of the form rk0 + x we associate the rational number k0 + 2, to each second-degree
monic polynomial of the form rk0 + rk1x + x2 we associate the rational number
[k0; k1 + 2] = k0 + 1/(k1 + 2), and to each monic polynomial

rk0 + rk1x+ . . .+ rkl−2
xl−2 + rkl−1

xl−1 + xl

of degree l ≥ 3 we associate the rational number [k0; k1 + 1, . . . , kl−2 + 1, kl−1 + 2].
In other words, we define u1(x) := 1,

un(x) := rqn−2 + x

if qn ∈ Z,

un(x) := rm0
+ rm1−2x+ x2



6 NAMIG J. GULIYEV AND VUGAR E. ISMAILOV

if qn = [m0;m1], and

un(x) := rm0
+ rm1−1x+ . . .+ rml−2−1x

l−2 + rml−1−2x
l−1 + xl

if qn = [m0;m1, . . . ,ml−2,ml−1] with l ≥ 3. Hence the first few elements of this
sequence are defined as

1, x2, x, x2 − x, x2 − 1, x3, x− 1, x2 + x, . . . .

The sequence of monic polynomials will be used in the sequel.
3. First we construct σ on the intervals [(2n − 1)s, 2ns], n = 1, 2, . . .. For each

monic polynomial un(x) = ρ0 + ρ1x+ . . .+ ρl−1x
l−1 + xl with rational coefficients,

set

B1 := ρ0 +
ρ1 − |ρ1|

2
+ . . .+

ρl−1 − |ρl−1|
2

and

B2 := ρ0 +
ρ1 + |ρ1|

2
+ . . .+

ρl−1 + |ρl−1|
2

+ 1.

Note that the numbers B1 and B2 depend on n, but for simplicity we will omit this
in the notation.

Consider the sequence

Mn := h((2n+ 1)s), n = 1, 2, . . . .

Obviously, this sequence is strictly increasing and converges to 1.
Now we define σ as the function

σ(x) := an + bnun

(x
s
− 2n+ 1

)
, x ∈ [(2n− 1)s, 2ns]. (2.2)

Here

a1 :=
1

2
, b1 :=

h(3s)

2
, (2.3)

and

an :=
(1 + 2Mn)B2 − (2 +Mn)B1

3(B2 −B1)
, bn :=

1−Mn

3(B2 −B1)
, n = 2, 3, . . . .

(2.4)
It is not difficult to see that for n > 2 the numbers an, bn are the coefficients

of the linear function y = an + bnx mapping the closed interval [B1, B2] onto the
closed interval [(1+2Mn)/3, (2+Mn)/3]. In addition, for n = 1, i.e. on the interval
[s, 2s],

σ(x) =
1 +M1

2
.

Thus, we obtain that

h(x) < Mn <
1 + 2Mn

3
≤ σ(x) ≤ 2 +Mn

3
< 1, (2.5)

for all x ∈ [(2n− 1)s, 2ns], n = 1, 2, . . ..
4. In this step, we construct σ on the intervals [2ns, (2n+ 1)s], n = 1, 2, . . .. To

this end we use the smooth transition function

βa,b(x) :=
β̂(b− x)

β̂(b− x) + β̂(x− a)
,

where

β̂(x) :=

{
e−1/x, x > 0,

0, x ≤ 0.
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Clearly, βa,b(x) = 1 for x ≤ a, βa,b(x) = 0 for x ≥ b, and 0 < βa,b(x) < 1 for
a < x < b.

Consider the sequence

Kn :=
σ(2ns) + σ((2n+ 1)s)

2
, n = 1, 2, . . . .

Recall that the numbers σ(2ns) and σ((2n + 1)s) have already been defined in
the previous step. Since both the numbers σ(2ns) and σ((2n + 1)s) belong to the
interval (Mn, 1), it follows that Kn ∈ (Mn, 1).

First we extend σ smoothly to the interval [2ns, 2ns + s/2]. Take the number
ε := (1−Mn)/6 and select δ ≤ s/2 such that∣∣∣an + bnun

(x
s
− 2n+ 1

)
− (an + bnun(1))

∣∣∣ ≤ ε, x ∈ [2ns, 2ns+ δ]. (2.6)

One can select this δ as

δ := min

{
εs

bnC
,
s

2

}
,

where C > 0 is any number satisfying |u′n(x)| ≤ C for x ∈ (1, 1.5). For example,
if n = 1, then δ can be selected as s/2. Now define σ on the left-hand half of the
interval [2ns, (2n+ 1)s] as the function

σ(x) := Kn − β2ns,2ns+δ(x)

×
(
Kn − an − bnun

(x
s
− 2n+ 1

))
, x ∈

[
2ns, 2ns+

s

2

]
.

(2.7)

Let us prove that σ(x) satisfies the condition (2.1). Indeed, if 2ns + δ ≤ x ≤
2ns + s/2, then there is nothing to prove, since σ(x) = Kn ∈ (Mn, 1). If 2ns ≤
x < 2ns + δ, then 0 < β2ns,2ns+δ(x) ≤ 1 and hence from (2.7) we obtain that
for each x ∈ [2ns, 2ns + δ), σ(x) is between the numbers Kn and An(x) := an +
bnun

(
x
s − 2n+ 1

)
. On the other hand, from (2.6) it follows that

an + bnun(1)− ε ≤ An(x) ≤ an + bnun(1) + ε.

The last inequality together with (2.2) and the inequalities (2.5) yields that An(x) ∈[
1+2Mn

3 − ε, 2+Mn

3 + ε
]

for x ∈ [2ns, 2ns+ δ). Since ε = (1−Mn)/6, the inclusion
An(x) ∈ (Mn, 1) is valid. Now since both Kn and An(x) lie in the interval (Mn, 1),
we conclude that

h(x) < Mn < σ(x) < 1, for x ∈
[
2ns, 2ns+

s

2

]
.

We define σ on the right-hand half of the interval in a similar way:

σ(x) := Kn − (1− β(2n+1)s−δ,(2n+1)s(x))

×
(
Kn − an+1 − bn+1un+1

(x
s
− 2n− 1

))
, x ∈

[
2ns+

s

2
, (2n+ 1)s

]
,

where

δ := min

{
εs

bn+1C
,
s

2

}
, ε :=

1−Mn+1

6
, C ≥ sup

[−0.5,0]
|u′n+1(x)|.

It is not difficult to verify, as above, that the constructed σ(x) satisfies the condi-
tion (2.1) on [2ns+ s/2, 2ns+ s] and

σ
(

2ns+
s

2

)
= Kn, σ(i)

(
2ns+

s

2

)
= 0, i = 1, 2, . . . .

Steps 3 and 4 together construct σ on the interval [s,+∞).
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Figure 2.1. The graph of σ on [0, 50] (s = 3, λ = 1/2)

5. On the remaining interval (−∞, s), we define σ as

σ(x) :=
(

1− β̂(s− x)
) 1 +M1

2
, x ∈ (−∞, s).

Clearly, σ is a strictly increasing, smooth function on (−∞, s). In addition, σ(x)→
σ(s) = (1 + M1)/2, as x tends to s from the left and σ(i)(s) = 0 for i = 1, 2, . . ..
This final step completes the construction of σ on the whole real line. Note that
the constructed σ is sigmoidal, infinitely differentiable on R, strictly increasing on
(−∞, s) and λ-strictly increasing on [s,+∞).

It should be noted that the above algorithm allows one to compute σ at any
point of the real axis instantly. The code of this algorithm is available at https:

//sites.google.com/site/njguliyev/papers/tlfn. As a practical example, we
give here the graph of σ (see Figure 2.1) and a numerical table (see Table 2.1)
containing several computed values of this function on the interval [0, 50]. All
computations were done in SageMath [39]. Figure 2.2 shows how the graph of the
λ-increasing function σ changes on the interval [0, 100] as the parameter λ decreases.
Figure 2.3 displays variations in the graph of σ with respect to the length s of a
closed interval [a, b].

Now we show that in addition to its nice properties such as computability,
smoothness and weak monotonicity, our σ enjoys an important property of approx-
imating each continuous d-variable function as an activation function for TLFNs
with a fixed number of hidden neurons.

It follows from (2.2) that

σ(sx+ (2n− 1)s) = an + bnun(x), x ∈ [0, 1] (2.8)

for n = 1, 2, . . .. Here an and bn are computed by (2.3) and (2.4) for n = 1 and
n > 1 respectively. From (2.8) we obtain that each monic polynomial un, n = 1, 2,
. . ., can be represented in the form

un(x) =
1

bn
σ(sx+ (2n− 1)s)− an

bn
. (2.9)

https://sites.google.com/site/njguliyev/papers/tlfn
https://sites.google.com/site/njguliyev/papers/tlfn
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Table 2.1. Some computed values of σ (s = 3, λ = 1/2)

t σ t σ t σ t σ t σ
0 0.25941 10 0.91169 20 0.94932 30 0.96241 40 0.94166
1 0.36008 11 0.92728 21 0.94074 31 0.94506 41 0.95333
2 0.57848 12 0.95325 22 0.93635 32 0.94003 42 0.96499
3 0.91514 13 0.93437 23 0.93635 33 0.92771 43 0.95602
4 0.91514 14 0.92551 24 0.94074 34 0.92905 44 0.94295
5 0.91514 15 0.91549 25 0.93278 35 0.93842 45 0.93186
6 0.91514 16 0.92958 26 0.93177 36 0.96385 46 0.93943
7 0.91198 17 0.94366 27 0.92482 37 0.94692 47 0.95079
8 0.91105 18 0.95775 28 0.92900 38 0.93923 48 0.96593
9 0.90650 19 0.95532 29 0.94153 39 0.92999 49 0.95800

Figure 2.2. Changes in the graph of σ with respect to λ (s = 1)

Let now f be any continuous function on the box [a, b]d. By the Kolmogorov
superposition theorem [26] in the form given by Lorentz [34] and Sprecher [38],

there exist constants λq > 0, q = 1, . . ., d with
∑d
q=1 λq = 1 and nondecreasing

continuous functions φp : [a, b]→ [0, 1], p = 1, . . ., 2d+1 such that every continuous
function f : [a, b]d → R admits the representation

f(x1, . . . , xd) =

2d+1∑
p=1

g

(
d∑
q=1

λqφp(xq)

)
(2.10)

for some g ∈ C[0, 1] depending on f .
By the density of polynomials with the rational coefficients in the space of contin-

uous functions over any compact subset of R, for the exterior continuous univariate
function g in (2.10) and any ε > 0 there exists a polynomial p(x) of the mentioned
form such that

|g(x)− p(x)| < ε

2(2d+ 1)
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Figure 2.3. Changes in the graph of σ with respect to s (λ = 0.75)

for all x ∈ [0, 1]. Denote by p0 the leading coefficient of p. If p0 6= 0 (i.e., p 6≡ 0)
then we define un as un(x) := p(x)/p0, otherwise we just set un(x) := 1. In both
cases

|g(x)− p0un(x)| < ε

2(2d+ 1)
, x ∈ [0, 1].

This together with (2.9) means that

|g(x)− (α0σ(sx− β0)− γ0)| < ε

2(2d+ 1)
(2.11)

for some α0, β0, γ0 ∈ R and all x ∈ [0, 1]. Namely,

α0 =
p0
bn
, β0 = s− 2ns, γ0 =

p0an
bn

. (2.12)

Substituting (2.11) in (2.10) we obtain that∣∣∣∣∣f(x1, . . . , xd)−
2d+1∑
p=1

(
α0σ

(
s

d∑
q=1

λqφp(xq)− β0

)
− γ0

)∣∣∣∣∣ < ε

2
(2.13)

for all (x1, . . . , xd) ∈ [0, 1]d.
For each p = 1, . . ., 2d+ 1, the function φp in (2.10) is defined on [a, b]. For this

function, using the linear transformation x = (t− a)/s from [a, b] to [0, 1] and the
same procedure for the function g above, we can obtain the inequality

|φp(t)− (αpσ(t− βp)− γp)| < δ, (2.14)

for all t ∈ [a, b]. Here δ is any positive real number, and the parameters αp, βp
and γp depend on δ. Note that these parameters can be computed similarly as in
(2.12).

Since λq > 0 for q = 1, . . ., d, and
∑d
q=1 λq = 1, it follows from (2.14) that∣∣∣∣∣

d∑
q=1

λqφp(xq)−

(
d∑
q=1

λqαpσ(xq − βp)− γp

)∣∣∣∣∣ < δ, (2.15)

for all p = 1, . . ., 2d+ 1, and (x1, . . . , xd) ∈ [0, 1]d.
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Now since the function α0σ(sx − β0) is uniformly continuous on every closed
interval of the real line, we can choose δ as small as necessary and obtain from
(2.15) that∣∣∣∣∣

2d+1∑
p=1

α0σ

(
s

d∑
q=1

λqφp(xq)− β0

)

−
2d+1∑
p=1

α0σ

(
s

(
d∑
q=1

λqαpσ(xq − βp)− γp

)
− β0

)∣∣∣∣∣ < ε

2
.

This inequality may be rewritten in the form∣∣∣∣∣
2d+1∑
p=1

α0σ

(
s

d∑
q=1

λqφp(xq)− β0

)
−

2d+1∑
p=1

α0σ

(
d∑
q=1

cpqσ(wq · x− βp)− ζp

)∣∣∣∣∣ < ε

2
,

(2.16)
where cpq = sλqαp, ζp = sγp + β0, and wq is the q-th coordinate vector. From
(2.13) and (2.16) it follows that∣∣∣∣∣f(x)−

(
2d+1∑
p=1

α0σ

(
d∑
q=1

cpqσ(wq · x− βp)− ζp

)
− (2d+ 1)γ0

)∣∣∣∣∣ < ε, (2.17)

Clearly, the constant (2d+ 1)γ0 can be written in the form

(2d+ 1)γ0 = ασ

(
d∑
q=1

cqσ(wq · x− θq)− ζ

)
, (2.18)

for cq = 0, q = 1, . . ., d, and suitable coefficients α and ζ. Considering (2.18) in
(2.17) we finally obtain that∣∣∣∣∣f(x)−

(
2d+2∑
p=1

epσ

(
d∑
q=1

cpqσ(wq · x− θpq)− ζp

))∣∣∣∣∣ < ε,

where e1 = e2 = . . . = e2d+1. The last inequality completes the proof of the
theorem. �

Remark 2.1. Obviously, a compact subset Q of the space Rd can be embedded into
a box [−l, l]d, and by the Tietze extension theorem (see [41, Theorem 15.8]), any
continuous function f on Q can be extended to [−l, l]d. Hence Theorem 2.1 is valid
not only for boxes of the form [a, b]d but for any compact set Q ⊂ Rd, with the
proviso that s = 2l.

Remark 2.2. Theorem 2.1, in particular, shows that TLFNs are more powerful than
SLFNs, since SLFNs with a fixed number of hidden neurons and/or weights have
not the capability of approximating multivariate functions (see Introduction). We
refer the reader to [31] for interesting results and discussions around the comparison
of performances between MLFNs and SLFNs.

Remark 2.3. In [12], Gripenberg showed that the general approximation property
of feedforward multilayer perceptron networks can be achieved in networks where
the number of neurons in each layer is bounded, but the number of layers grows
to infinity. This is the case provided the activation function is twice continuously
differentiable and not linear. Taking an exceedingly large number of layers is an
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indispensable part of Gripenberg’s method. Can one develop a different method
which enables to use only a preliminarily prescribed number of layers for all ap-
proximated functions? To answer this question, we started with SLFNs. It turned
out that in this case the answer is “yes” if approximated functions are univariate
(see [13]). Moreover, one can fix the weights of constructed SLFNs. But SLFNs
with fixed weights or bounded number of neurons are proved not capable of ap-
proximating multivariate functions (see [14]). Then how many hidden layers with
bounded number of neurons are needed to approximate multivariate functions with
arbitrary precision? First of all, one may want to know if any such constrained
approximation is possible in practice. Theorem 2.1 shows that even two hidden
layers and a specifically constructed activation function are sufficient to solve this
problem affirmatively.
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