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Abstract

In this work we give new density estimators by averaging classical density estima-
tors such as the histogram, the frequency polygon and the kernel density estimators
obtained over different bootstrap samples of the original data. We prove the L2-
consistency of these new estimators and compare them to several similar approaches
by simulations. Based on them, we give also a way to construct non parametric point-
wise confidence intervals for the target density.
keywords: density estimation aggregation bagging histogram polygon frequency ker-
nel density estimator.

1 Introduction

Ubiquitous in data analysis, density estimation techniques are certainly the most used
unsupervised learning technique on low dimension. Whether for studying asymmetry,
normality, residual diagnostic or bump hunting among others, one usually relies on a
visual inspection of a plot of the density to take a primary decision, mostly in one or two
dimensions.

The general aim is to gather basic information about the unobserved data generation
mechanism out of a sample of n observations say x1, . . . , xn. One usually supposes that
the observations are realizations of a random variable X that admits a probability density
function f (i.e. f is non negative and integrates 1). Then, the learning task is to estimate
f as accurately as possible. First, by obtaining a point wise estimate f̂(x) of f(x) for
all x ∈ Rd, and second, by assessing the uncertainty of the point wise estimate through
the construction of a confidence interval for f . Of course both problems implies different
difficulties and involves specific techniques. In what follows, we focus on nonparametric
approaches for the first objective and give a possible way to construct a pointwise confi-
dence interval for the true density. In particular we center our attention on three classes
of base or individual estimators for the density: histograms, frequency polygons and the
kernel density estimator. We postpone the formal definition up to the next section but we
provide a discussion guided by intuitive descriptions here.

Histograms are undoubtedly the most popular construction for density estimation.
They rely on the best constant-wise approximation of f given by the data using a binning
argument. The power of this simple construction combined with the ease of its inter-
pretation makes them accessible to non technical users. Besides, theoretical properties
can be derived showing that histograms are consistent estimators. Some of the lacks of
the histograms are inherent to the constant level for at each partition, on one hand their
discontinuities and on the other hand they have null derivative everywhere. Frequency
polygons are constructed on top of histograms (and so take profit of the binning advan-
tages) providing a linear piecewise estimator. Although the added regularity was once
pointed out as a flaw (see [8]) it is now well known that it increases the quality of the
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estimator. Theoretically this is shown by a faster rate of convergence (cf. section 2). Fur-
ther regularity can be gained using kernel density estimators. Essentially one first picks
a kernel function with the desired degree of regularity for the final estimate. Then, the
empirical measure is convolved to produce the kernel density estimation of f . It has been
proved in [17] that the rates of convergence of the frequency polygon are similar to the
kernel density estimator.All the three approaches are exhaustively studied both from on
practice and theory as individual estimators and a general reference for the subject is [18].
However, a reasonable question is to ask whether further improvement can be achieved
from these construction by means of aggregation schemes.

Ensemble learning or aggregation methods are increasingly used in the supervised
framework: these methods combine intermediate predictors to obtain an aggregated model
with the aim to obtain a better estimator. Bagging [4] (Bootstrap and AGGregatING),
Boosting [9], Stacking [23], and Random Forests [5] have been broadly studied in the case of
classification (principally binary classification) or regression from the theoretical viewpoint
and have very high performances when tested over tens of various datasets selected from
the machine learning benchmark. Several extensions are still under study: multivariate
regression, multiclass classification, and adaptation to functional data or time series. Very
few developments exist for ensemble learning for unsupervised techniques such as clustering
analysis and density estimation. Only on few works several authors look at the adaptation
of the aggregation procedure to estimate a density under somehow restrictive conditions.
One of the first is the mean of the most simplest density estimator, the histograms, each one
constructed over several different deterministic grids in Average Shifted Histograms, ASH
[16]. With a combination of several kernel density estimators with different bandwidths,
often in a normal context, and varying the form of the aggregation we can cite [13], [10],
[21], [15], [20] and [14].

Another kind of aggregation can be obtained by introducing randomness in the in-
dividual estimators. In [1] the authors include randomness in the construction of the
intermediate histograms using then different aggregation schemes: AggregHist, using sim-
ple aggregation, BagHist using Bagging or StackHist using Stacking. Mathematically well
sound, these approaches were explored thorough empirical simulation without theoretical
framework. The Random Average Shifted Histogram, RASH [2] is constructed as the
mean average of different histograms, each one constructed over a random translated grid
of the initial breakpoints of the initial histogram. RASH is show to be consistent and
perform well in comparison to the precedent aggregation schemes.

In this work, we explore the contribution of Bagging to the density estimation task (like
for BagHist) where the intermediate estimators are either histograms, frequency polygons
or kernel density estimators. This article is organized as follow. Section 2 introduces
notation and reviews the framework context we need about density estimators. In Section
3 we present our three methods: BagHist, BagFP and BagKDE and establish a theoretical
result about their consistency. The results of comprehensive simulations are the object of
Section 4. For this, we use several target densities available on literature to evaluate the
performance of our estimators and comparing them to classical density estimators. We
also explore the construction of pointwise confidence intervals as an approximation of a
confidence band using the bootstrap procedure. The work concludes with a discussion in
Section 5.
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2 Some density estimators

We look at the principal results using different density estimators. While for the histogram
and the kernel density estimator these results are quite popular we give some detail in order
to fix notation. For a detailed exposition see [18].

In all cases, the starting point is an independent and identically distributed sample
x1, . . . , xn of a real random variable with density f .

• Histogram. Let Bj = [jh, (j + 1)h] be a set of intervals defined over the support of
f , and h→ 0 as n→ +∞.

The ordinary histogram is defined as:

f̂hn (x) =
1

nh

n∑
i=1

∑
j∈Z

1Bj (xi)1Bj (x) =
νj
nh

(1)

where νj ∼ Bin(n, pj), with pj =
∫
Bj
f(t)dt, is the number of observations of the

sample that fall in bin Bj . If x ∈ Bj , we have that:

E
(
f̂hn (x)

)
=

1

nh

n∑
i=1

∑
j∈Z

P(xi ∈ Bj)1Bj (x) =
1

nh
nP(xi ∈ Bj) =

pj
h

= f(ξj)

Var
(
f̂hn (x)

)
=

1

n2h2
Var(νj) =

pj(1− pj)
nh2

≤ pj
nh2

=
f(ξj)

nh

for some ξj ∈ Bj . For a x ∈ Bj a fixed point, when h→ 0, n→∞ and nh→∞, we
get the classical properties for the histogram:

E
(
f̂hn (x)

)
→ f(x), Var

(
f̂hn (x)

)
→ 0.

and, moreover, if f is locally Lipschitz the histogram is mean square consistent, i.e

MSE
(
f̂hn (x)

)
= Bias2

(
f̂hn (x)

)
+ Var

(
f̂hn (x)

)
→ 0.

It is widely used in many fields, because of its computational simplicity. The his-
togram depends on two parameters: the bin width h and an origin x0 to fix the
grid. There is a huge literature that proposes several optimal choices for h using
different criteria. If we suppose that the underlying density f is Gaussian, it can
be shown (see [19]) that an optimal choice for h is of order n−1/3. With this value
the histogram has a rate of convergence of order n−2/3 with respect to the Mean
Integrated Squared Error (MISE).

• Frequency Polygon. Frequency polygons are constructed on top of histograms con-
necting with straight lines the midpoint of two consecutive bin values. The expression
of the frequency polygon for an x ∈ Bj = [(j − 1/2)h, (j + 1/2)h] is

f̂fpn (x) =

(
1

2
+ j − x

h

)
νj
nh

+

(
1

2
− j +

x

h

)
νj+1

nh
(2)

The frequency polygon was deeply studied in [17]. With respect to the histogram, it
presents the the advantages of being continuous and smooth. Under weak conditions,
an optimal choice for h is of order n−1/5 and it achieves a rate of convergence of
order order n−4/5 with respect to the MISE ([17]).

3



• Kernel Density Estimators. A Kernel Density Estimator, KDE, is a function defined
by

f̂kden (x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(3)

for all x ∈ R where K is a kernel function, i.e a non-negative, symmetric and
unimodal function such that

∫
K(u) du = 1. Parameter h is called the bandwidth of

the estimator f̂kden , who inherits all the mathematical properties of K. The function
K indicates the weight that observation xi has in the estimation of x: observations
close to x are weighted more important. It can be shown that

E
(
f̂kden (x)

)
= f(x) +

f ′′(x)

2
µ2(K)h2 + o(h2)

Var
(
f̂kden (x)

)
=
||K||22f(x)

nh
+ o

(
1

nh

)
where µr(K) =

∫
urK(u) du. When h → 0 and nh → ∞, we get the classical

properties as for the histogram:

E
(
f̂kden (x)

)
→ f(x), Var

(
f̂kden (x)

)
→ 0.

As for the histogram, if h is large the variance decreases but the bias is large. On
the other hand, if h is small, the bias is small but the variance is large. The optimal
rate of convergence of KDE is of order n−4/5 as for the frequency polygon.

3 Bagging of estimators

The bootstrap method was introduced in [6] and have the purpose of doing statistical
inference using resamples of the original set of data. More precisely, if we have a data set
L = {x1, x2, . . . , xn} with distribution F , the non parametric bootstrap procedure consists
to draw, with replacement, a new sample L∗ = {x∗1, x∗2, . . . , x∗n} from L of the same size.
Then, the sample L∗ has a distribution Fn, the empirical distribution of L. The main idea
is that the sample L∗ is to the original sample L what the sample L is to the population, so
the method treats the empirical of a distribution of sample data as the true distribution.

Reiterating this procedure several times and obtaining many bootstrap samples is a
cornerstone to the construction of several bootstrap based approaches.

The bootstrap has three big applications: bias correction, construction of confidence
interval and hypothesis testing [7].

However, the use of bootstrap in nonparametric density estimation requires some cau-
tion, particularly concerning the bias of the estimators. In our setting, let f̂ be a non-
parametric density estimator for f obtained from the sample L.

Now we draw a bootstrap sample L∗ of L.
In the case of the kernel density estimator, the estimation over L∗ is without bias,

E
(
f̂∗(x)|L

)
=

1

nh

n∑
i=1

E

(
K

(
x− x∗i
h

))
=

1

h
E

(
K

(
x− x∗i
h

))
=

1

h

∑
y∈Rx∗

i

K

(
x− y
h

)
P(x∗i = y)

=
1

h

n∑
j=1

K

(
x− xj
h

)
1

n
=

1

nh

n∑
j=1

K

(
x− xj
h

)
= f̂(x).
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This simple results holds also for the histogram and for the frequency polygon too (see
demonstration of theorem 1), that is E(f̂∗(x)|L) = f̂ . The fact is treated in [11] in this
terms: “far from accurately estimating the substantial bias of f , the bootstrap sets the
bias of this kind of density estimator equal to zero”.

In supervised learning, the main application of bootstrap is definitely the Bagging. It
is a parallel aggregation method of individual entities that at each step b draw a bootstrap
sample L∗b of the original sample L and compute an estimator (a classifier in classification
or a predictor in regression) over L∗b . For an input x, the output of the Bagging method is
the average in regression or the majority rule in classification of the intermediate estimators
at x. We follow this aggregation strategy to construct new density estimators of a density
function f . Our procedures run as follows (Figure 1):

Let L = {x1, . . . , xn} be a sample with unknown distribution F admitting a
density f . Also, considerer f̂n a density estimator evaluated in L.
For b ∈ 1, . . . , B:

1. obtain L∗b = {x∗1, . . . , x∗n} a bootstrap sample from L;

2. construct f̂∗b the density estimator obtained over this bootstrap sample. In
particular the bandwidth h is calculated over L∗b

Output: The final estimator is the simple pointwise average of the individual
estimators i.e.

f̂∗(x) =
1

B

B∑
b=1

f̂∗b (x)

Figure 1: Bagging of density estimators

To obtain the bagged histogram (BagHist) estimator f̂baghistn we simply use at each
step b, histograms f̂hn defined in (1) as f∗b . Analogously for bagged frequency polygons

(BagFP) f̂bagfpn and bagged kernel density estimators (BagKDE) f̂bagkden , we replace f∗b
with frequency polygon estimator f̂fpn (cf. Eq. (2)) or kernel density estimator f̂kden (cf.
Eq. (3)) respectively.

3.1 L2 consistency of the Bagging of estimators

Here we prove L2 consistency, for three estimators BagHist, BagFP and BagKDE which
correspond to bagging of histograms, bagging of polygon frequencies and bagging of kernel
density estimators proving that, since h → 0, n → +∞ and nh → +∞, for all x in bin
Bj (in case of histogram or frequency polygon) or for all x ∈ R (in case of kernel density
estimator):

E[(f̂baghistn (x)− f(x))2]→ 0, E[(f̂bagfpn (x)− f(x))2]→ 0,

E[(f̂bagkden (x)− f(x))2]→ 0.

Theorem 1 BagHist, BagFP and BagKDE are L2-consistent.

Proof 1 We will give a global proof, inspired by [11] and [18] to encompass the different
methods, because the demonstration for all these estimators follows the same steps. We
have to compute:
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(1) for the expectation E(f̂(x)) = E
(
E[f̂(x)|L]

)
(2) and to calculate the variance we use the decomposition

Var(f̂(x)) = E(Var(f̂(x)|L))︸ ︷︷ ︸
(A)

+ Var(E(f̂(x)|L))︸ ︷︷ ︸
(B)

Without loss of generality, in some calculation for histogram or frequency polygon, and
with the aim to simplify notations, we will assume that x ∈ B0.

(1) • BagHist. If x ∈ Bj = [jh, (j + 1)h] , then we have

E[f̂baghistn (x)|L] =E

[
1

B

B∑
b=1

f̂∗b (x)|L

]
= E

[
f̂∗b (x)|L

]
= E

[
ν∗j
nh

]
=
νj
nh

= f̂hn (x)

and if f is locally Lipschitz∣∣∣E(E[f̂(x)|L])− f(x)
∣∣∣ =
∣∣∣pj
h
− f(x)

∣∣∣ =

∣∣∣∣hf(ξj)

h
− f(x)

∣∣∣∣
≤γj |ξj − x| ≤ γjh→ 0

• BagFP. If x ∈ Bj =
[
(j − 1

2)h, (j + 1
2)h
]
, then we have

E[f̂bagfpn (x)|L] =E

[
1

B

B∑
b=1

f̂∗b (x)|L

]
= E

[
f̂∗b (x)|L

]
=E

[(
1

2
+ j − x

h

)
ν∗j
nh

+

(
1

2
− j +

x

h

)
ν∗j+1

nh
|L
]

=

(
1

2
+ j − x

h

)
νj
nh

+

(
1

2
− j +

x

h

)
νj+1

nh
= f̂fpn (x)

and, if f has second derivative, if x ∈ B0:∣∣∣E(E[f̂bagfpn (x)|L]
)
− f(x)

∣∣∣ ≈ ∣∣f ′′(ξ0)(h2 − 3x2)
∣∣ ≤ 4h2f ′′(ξ0)→ 0

• BagKDE. For BagKDE we have:

E[f̂bagkden (x)|L] =E

[
1

B

B∑
b=1

f̂∗b (x)|L

]
= E

[
f̂∗b (x)|L

]
=E

[
1

nh

n∑
i=1

K

(
x− x∗i
h

)]
= f̂kden

and this is well known that∣∣∣E(E[f̂bagkden (x)|L]
)
− f(x)

∣∣∣→ 0

(2) For variance we use the well known formula defined above.
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• BagHist.

(A) Because of the independence and identical distribution of the bootstrap sam-
ples, if x ∈ B0:

Var[f̂baghistn (x)|L] =Var

[
1

B

B∑
b=1

f̂∗b (x)|L

]
=

1

B
Var

[
f̂∗b (x)|L

]
=

1

B

np∗0(1− p∗0)
(nh)2

where p∗0 is equal to ν0
n . Taking expectation over L we have

1

Bnh2
E (p∗0(1− p∗0)) =

1

Bnh2

[
E
(ν0
n

)
−Var

(ν0
n

)
−
[
E
(ν0
n

)]2]
=

1

Bnh2

(
p0 −

1

n
p0 −

1

n
p20 − p20

)
=

1

Bnh2

(
hf(ξ0)−

h

n
f(ξ0)−

h2

n
f(ξ0)

2 − h2f(ξ0)
2

)
=

1

Bnh
f(ξ0)−

1

Bn2h
f(ξ0)−

1

Bn2
f(ξ0)

2 − 1

Bn
f(ξ0)

2

which tends to 0 as n→∞, nh→∞ and h→ 0.

(B) Var
[
E(f̂baghistn (x)|L)

]
= Var(f̂hn (x)) ≤ p0

nh2
= f(ξ0)

nh → 0

• BagFP.

(A) Because of the independence and identical distribution of the bootstrap sam-
ples:

Var[f̂bagfpn (x)|L] = Var

[
1

B

B∑
b=1

f̂∗b (x)|L

]
=

1

B
Var

[
f̂∗b (x)|L

]
=

1

B

{(
1

2
− x

h

)
Var(f̂∗0 ) +

(
1

2
+
x

h

)
Var(f̂∗1 )

}
+

2

B

{(
1

4
− x2

h2

)
Cov(f̂∗0 , f̂

∗
1 )

}
where f̂∗0 and f̂∗1 are the histogram estimations over [−h, 0] and [0, h] re-

spectively. As Var(f̂∗0 ) = np∗o(1−p∗o)
n2h2

, then taking expectation:

E(Var(f̂∗0 )) =E
(
nν0n (1− ν0

n )

n2h2

)
=

1

n2h2
E
(
ν0

(
1− ν0

n

))
=

1

n2h2

(
E(ν0)−

1

n
E(ν20)

)
=

1

n2h2

(
E(ν0)−

1

n
(Var(ν0) + [E(ν0)]

2)

)
=

1

n2h2

[
np0 −

1

n
(np0(1− p0) + (np0)

2)

]
=
nhf(ξ0)

n2h2
− hf(ξ0)

n2h2
+
h2f(ξ0)

2

n2h2
− nh2f(ξ0)

2

n2h2
→ 0
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In the same way E(Var(f̂∗1 )) → 0. As Cov(f̂∗0 , f̂
∗
1 ) =

−np∗0p∗1
n2h2

, then taking
expectation we have:

E
(

Cov(f̂∗0 , f̂
∗
1 )
)

=
1

nh2
E
(ν0
n

ν1
n

)
≤ 1

n3h2
E(ν20)E(ν21)

=
1

n3h2
[np0(1− p0) + p20][np1(1− p1) + p21]

=
1

n3h2
(nhf(ξ0)− nh2f(ξ0)

2 + h2f(ξ0)
2)(nhf(ξ1)− nh2f(ξ1)

2 + h2f(ξ1)
2)

=
1

n3h2
(n2h2f(ξ0)f(ξ1)− n2h3f(ξ0)f(ξ1)

2 + nh3f(ξ0)f(ξ1)
2

+
1

n3h2
(n2h4f(ξ0)

2f(ξ1)
2 − n2h3f(ξ0)

2f(ξ1)− nh4f(ξ0)
2f(ξ1)

2)

+
1

n3h2
(nh3f(ξ0)

2f(ξ1)− nh4f(ξ0)
2f(ξ1)

2 + h4f(ξ0)
2f(ξ1)

2)

=
1

n
f(ξ0)f(ξ1)−

h

n
f(ξ0)f(ξ1)

2 +
h

n2
f(ξ0)f(ξ1)

2

+
h2

n
f(ξ0)

2f(ξ1)
2 − h

n
f(ξ0)

2f(ξ1)−
h2

n2
f(ξ0)

2f(ξ1)
2

+
h

n2
f(ξ0)

2f(ξ1)−
h2

n2
f(ξ0)

2f(ξ1)
2 +

h2

n3
f(ξ0)

2f(ξ1)
2 → 0

So we conclude that E
(

Var[f̂bagfpn (x)|L]
)
→ 0

(B) We recall from [18] pag. 103 that

Var(E(f̂bagfpn (x)|L)) = Var(f̂fpn (x)) =

(
2x2

nh3
+

1

2nh

)
f(ξ0)−

f(ξ0)
2

n
+o

(
1

n

)
Then if nh→∞ and n→ +∞:

|Var(E(f̂bagfpn (x)|L))| → 0

• BagKDE.

(A) Because of the independence and identical distribution of the bootstrap sam-
ples:

Var[f̂bagkden (x)|L] = Var

[
1

B

B∑
b=1

f̂∗b (x)|L

]
=

1

B
Var

[
f̂∗b (x)|L

]

So we compute Var
[
f̂∗b (x)|L

]
:

Var
[
f̂∗b (x)|L

]
=

1

n

[
n∑
i=1

1

(nh)2
K2

(
x− x∗i
h

)]
︸ ︷︷ ︸

(a)

− 1

n2

{
1

nh

n∑
i=1

K

(
x− x∗i
h

)}2

︸ ︷︷ ︸
(b)

and therefore
∣∣∣Var

[
f̂∗b (x)|L

]∣∣∣ ≤ (a) + (b). Taking expectation:
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(a)

E

(
1

n3h2

n∑
i=1

K2

(
x− x∗i
h

))
=

1

n3h2

n∑
i=1

E
(
K2

(
x− x∗i
h

))

=
1

n2h2

n∑
j=1

K2

(
x− xij
h

)
P(x∗i = xij)

=
1

n3h2

n∑
j=1

K2

(
x− xij
h

)
≤ 1

n3h2

n∑
j=1

C̃

=
C̃

(nh)2
→ 0

because since K is bounded, K2 also.

(b)

E

 1

n2

(
1

nh

n∑
i=1

K

(
x− x∗i
h

))2
 =

1

n4h2
E

(
n∑
i=1

K

(
x− x∗i
h

))2

=
1

n4h2

n∑
j=1

(
n∑
i=1

K

(
x− x∗i
h

))2

P(x∗i = xij)

≤ 1

n5(nh)2

n∑
j=1

(
n∑
i=1

C

)2

=
C2

n2(nh)2
→ 0

So we conclude that E
(

Var[f̂bagkden (x)|L]
)
→ 0

(B) It is a well known result that Var
(
E[f̂bagkden (x)|L]

)
= Var(f̂kden )→ 0

So, with the usual assumption of n→∞, h→ 0, nh→∞ this implies L2 convergence for
f̂baghistn , f̂bagfpn and f̂bagkden .

4 Experiments

We describe in this section a series of numerical experiments aiming to show the practical
performance of the bagged versions of the classical density estimators. First, we obtain a
numerical estimate of the MISE on simulated data sets created following baseline densities.
The impact of the aggregation is analyzed. We also use the bootstrapped version of the
density estimators to construct a confidence interval for it and study its performance.

4.1 Simulations

Among the numerous possibilities of univariate densities, we choose eight simulation mod-
els partially following the work of [2]. This choice presents a different degree of difficulty
related to the number of modes, asymmetry, tail behavior and regularity. We denote them
by M1 to M8. Their definition is the object of Table 1 and Figure 2 shows a graphical
display of the densities. The notation N (µ, σ2) is used to refer to a normal distribution
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with mean equal to µ and variance equal to σ2, U [a, b] is the uniform density over the
support [a, b], and χ2

ν is a Chi squared density with ν degrees of freedom. Models 3, 4, 7
and 8 are mixtures of densities. Models 2 and 7 are asymmetrical.

Model Description

(M1) : Normal Standard Standard Gaussian density N (0, 1)
(M2) : Chi 10 Chi-square density χ2

10

(M3) : Mix1 0.5N (−1, 0.3) + 0.5N (1, 0.3)
(M4) : Claw the Claw Density [12]
(M5) : Triangular Symmetric triangular density with support on [0,2]
(M6) : Uniform 0-1 Uniform density U [0, 1]

(M7) : Mix2 0.5N (0, 1) + 0.5
10∑
i=1

1( 2(i−1)
10

, 2i−1
10

] [14]

(M8) : Mix3 Mixture of uniforms 0.5U [−2,−1] + 0.5U [1, 2]

Table 1: Simulated univariate densities.

At each replication we draw two datasets following each density. The first one is used
for estimation purposes while the second one is left-out for evaluation (either MISE or
empirical covering). All the simulations are done with the R software ([? ]).

0.0

0.1

0.2

0.3

0.4

−6 −3 0 3 6

x

y

Normal

0.000

0.025

0.050

0.075

0.100

0 10 20 30

x

y

Chi 10

0.0

0.2

0.4

0.6

−2 0 2

x

y

Mix 1

0.0

0.2

0.4

0.6

−2 0 2

x

y

Claw

0.00

0.25

0.50

0.75

1.00

−1 0 1 2 3

x

y

Triangular

0.00

0.25

0.50

0.75

1.00

−1 0 1 2

x

y

Uniforme 0−1

0.0

0.2

0.4

0.6

−2 0 2

x

y

Mix 2

0.0

0.1

0.2

0.3

0.4

0.5

−2 0 2

x

y

Mix 3

Figure 2: Densities used for the simulations.
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4.2 Quality of the estimation

We compare density estimators of different nature. On one hand side we use three indi-
vidual estimators: histograms (H), frequency polygons (FP) and kernel density estima-
tors (KDE), on the other hand, their bagged versions, respectively BagHist, BagFP and
BagKDE. Also we include the RASH estimator. We use cross validation to calibrate the
bandwidth h at each step of all the intermediate estimation methods. An alternative
would be to use maximum likelihood as in [2]. In our framework cross validation has,
in general, a better computation behavior. Also it is more general and may be used for
example with dependent data as in time series.
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Figure 3: MISE by estimation method for the six simulation data sets in scale log.

Figure 3 represents the dependence of MISE on the sample size n for the different
combinations of densities and estimators. Each point represents the average of M =
100 times the MISE×100 of the method using B = 200 intermediate estimators for the
aggregating methods. Notice that these plots are in log-log scale which is useful to highlight
the convergence behaviour.Individual values of these plots are presented in Appendix A.

Let us comment these plots. First, the adjusted lines are of relative good quality
since the points corresponding to each combination density-estimator are almost aligned.
Remember that each point is the mean average of M = 100 replicates and so the inner
replicate variability is reduced even for a few points determining each line. However,
in some few cases the quality of the fit is quite poor. Now, for each panel most of the
adjusted lines are almost parallels which means the methods share a similar convergence
behavior. Comparing the four simple densities (leftmost panels) and the four mixtures
(rightmost panels) a difference in the behaviour seems to appear, at least if one looks at
some bagged version as for instance the BagFP. Second, if one compares each individual
estimator (H, FP and KDE) with their bagged versions, the latter success to reduce the
MISE in most of the situations. An important exception if BagHist which produces almost
always worst results than the intermediate estimator, i.e. the histogram. However, the
asymptotic behaviour is such that with large sample sizes it is able to catch the quality of
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the histogram and even overwhelm it on the four mixtures. On regular targets, KDE (or
at least its bagged version) shows a very competitive performance. However, in presence
of multi-modality they loss relative competitiveness with large sample sizes. The fact that
the results are not entirely satisfactory for the bagged version of KDE may be because
KDE it is already a good and stable density estimator (more stable in any case than
histogram) and, according with [4], bagging kernel density estimators may be degrade the
performance of this stable procedure.

4.3 Reduction of MISE due to aggregation

We concentrate now on aggregating methods. A natural matter to look at is the quality
of the aggregation as the number of bootstrap samples increases. For this, we examine
the MISE of the bagged versions for a range of increasing bootstrap samples. We replicate
M = 100 times each combination of density simulation to construct the different curves.
The result of experiments are presented in Figure 4 in a log-log scale with n = 500
observations.

Globally we observe that MISE decreases monotonically with increasing values of B
until some point between 20 and 50 bootstrap samples after which more samples does not
produce further enhancement.
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Figure 4: MISE error vs number of aggregates, n=500, M=100, B=200 in log-log scale.

4.4 Variability bands

A natural by-product of bootstrap samples is the construction of confidence bands. For
some level α, one wants to estimate the quantities l̂n(x) and ûn(x) that verify

P{l̂n(x) ≤ f(x) ≤ ûn(x)} ≥ 1− α, ∀x

12



that is, the quantities are the borders of an interval that covers at the true density f(x)
at some confidence level (1 − α) × 100%. We tackle here its construction for the density
estimator. Generally, a confidence band for f is centered over an estimator f̂n of f and
has the form f̂n(x) ± cσ̂n(x) for all x, with c > 0. However, since nonparametric density
estimators are biased, the usual construction does not yields on a really a confidence band

for f . Indeed, for a fixed x, due to the bias E
(
f̂n(x)

)
− f(x), it is not easy to derive

a confidence interval using the pivotal quantity f̂n(x)−f(x)
σ̂(x) . So, the interval is usually

centered at fn(x) = E
(
f̂n(x)

)
instead of being around f(x). For this reason, these

confidence bands are often called variability bands.
We describe two popular constructions to compare with our procedure.

1. Variability Band for histograms. Under mild conditions [22] the histogram estimator
f̂hn (x) is approximately unbiased for the target density f(x). But the approximate
variance is f(x)/(nh) where h = 1/m is the inverse of the number of bins m. Its
dependence on the unknown target is an obstacle. To circumvent it, [18] looks at

Var

[√
f̂hn (x)

]
which is approximately 1/(4nh) and thus independent of f(x). We

define f̄hn = E[f̂hn (x)] as the target and as we say before the confidence band will not
take account of the bias but only of the variability of the estimator. Then, using a
normal approximation it is easy to show that [22, p. 130]:

ln(x) =

(
max

{√
f̂hn (x)− c, 0

})2

, un(x) =

(√
f̂hn (x) + c

)2

where c =
zα/(2m)

2

√
m
n give an approximate variability band for f̄hn at (1−α)×100%

of confidence.

2. Variability Band for KDE. As we have shown with the histogram, since the variance
of f̂kden (x) also involves the true density f , it is more suitable to use the square root

(see [3]). In the case of the kernel density estimator Var

(√
f̂kden (x)

)
≈ ||K||

2
2

4nhn
and

again does not depend on the true unknown density f . On this square root scale,
for a fixed point x we consider the interval that back to the original scale is given by

ln(x) =

(
f̂kden (x)− ||K||2√

4nhn

)2

, un(x) =

(
f̂kden (x) +

||K||2√
4nhn

)2

.

As we said before this is not a confidence band for the true density f , because of the
bias so we will talk about a variability band.

3. Bootstrap based confidence interval and resulting tube The bootstrapped sample in-
duces a distribution that can be used to asses the variability of the estimator. Indeed,
the simple superposition of the individual estimators (histogram, frequency polygon,
kernel density estimator) gives a coarse idea of the uncertainty around the aggregate
estimator. More the scatter of individual individual density estimators is dispersed,
higher is the variance of the estimator. For the concrete construction of the confi-
dence band we first fix the abscissa x ∈ R. Then we consider the set of bootstrapped
density estimators evaluated at that point, i.e. {f̂∗1 (x), . . . , f̂∗B(x)}. This set is a
collection of B univariate measures. Note that the bagged estimation is the mean
average of this collection. Then, a (1−α)×100% confidence interval can be obtained
by considering the empirical quantiles at α/2 and 1− α/2 of this ensemble.
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Figure 5: Variability bands for the estimation of a standard normal target (red) based
on Histograms (left), Frequency polygons (middle) and KDE (right). Confidence intervals
are either constructed for individual estimators (in blue) when available or constructed
using bootstrap sampling (in green).

In Figure 5 we show the different constructions generated by these methods for a
standard normal target. Each panel correspond to one of the three intermediate density
estimators (Histogram, frequency polygons and KDE). At each time, the bootstraped
construction for the confidence interval is represented. For the histogram and KDE we
also draw the constructions detailed above. The confidence interval for the histogram
succeeds to cover the true density but produces an arguably too large band. For KDE the
confidence for the intermediate estimator is very good, and the one obtained by bootstrap
sampling presents a relatively high variability.

We compare the alternative constructions of the confidence band using two metrics.
The aim is to obtain the narrowest band that warranties a given nominal coverage. For
this, we consider the empirical coverage of the bands and its mean width. Let us call
l̂n(ti) and ûn(ti) the lower and upper bounds of the confidence bands, evaluated at points
ti, i = 1, 2, . . . , N . Then, we call the empirical mean coverage of the target f(x) the
quantity

1

N

N∑
i=1

I{l̂n(ti)≤f(ti)≤ûn(ti)},

where IA is the indicator function of the set A. The mean width of the interval is defined
by

1

N

N∑
i=1

{
ûn(ti)− l̂n(ti)

}
.

In this experiment we set the confidence level at 95% to construct the variability
bands. We give as reference the variability band constructed through the kernel density
estimator as explained before (we denote this method as KDE-sm). The construction for
the individual histograms produces too larges bands which always cover the true density.
For this reason they are not presented in Table 2.
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In general, the bands cover reasonably well the simplest densities (on the top rows)
having more difficulties with the more exotic density models (on the bottom rows). Par-
ticularly, the last three densities in the table are too difficult targets producing very low
empirical coverings. If we look at the methods, the construction using bootstraped his-
tograms is the best one among the boostrap based ones, and give a fair competitor to
KDE-sm.

Coverage Mean width
Density Hist FP KDE KDE-sm Hist FP KDE KDE-sm

Normal 95.45 92.54 92.83 96.54 0.24 0.18 0.19 0.09
Chi10 95.75 92.88 92.96 94.79 0.06 0.04 0.04 0.02
Mix1 95.55 93.11 90.34 95.27 0.40 0.30 0.25 0.19
Claw 95.05 89.79 87.07 91.33 0.30 0.22 0.25 0.22
Triangular 95.79 92.74 92.69 94.94 0.66 0.51 0.45 0.23
Uniform 0-1 92.20 89.40 88.61 90.56 1.06 0.84 0.73 0.52
Mix2 77.78 41.00 63.14 47.73 0.36 0.26 0.26 0.21
Mix3 88.86 85.59 83.41 89.84 0.37 0.29 0.22 0.27

Table 2: Mean empirical coverage and mean interval widths for the densities and estimators
considered.

5 Conclusions

In this work we present three univariate density estimators obtained by aggregation such
as in Bagging. For each method, the intermediate estimators are histograms, frequency
polygons or kernel density estimators. We prove the L2 consistency of the three estimators
and do several simulations over densities with different characteristics. Also, we bring a
way to compute a kind of confidence band, which is more close to a point wise variability
band in the sense that the authors who studied on this subject give. This construction
needs a deeper study to be able to draw more conclusive conclusions about it. Another
clue for future work is to investigate the natural extension of considering the bagged
construction over multivariate densities.
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A Additional results

Quality of the estimation

For sake of completeness we present in this appendix the individual values of Figure 3. In
the following tables (Tables 3 to 7), values are 100×MISE obtained as mean average over
100 replicates. At each line, best results are shown in blue.

Hist FP KDE BagHist BagFP BagKDE RASH

Normal 1.1447 0.6171 0.3181 10.3243 0.2487 1.5195 0.6025
Chi10 0.0696 0.0374 0.0254 0.5635 0.0181 0.0919 0.0334
Mix1 3.8260 2.1742 1.3801 27.4794 1.8937 3.0423 1.9464
Claw 4.9526 3.6531 2.7909 17.8066 2.2902 4.1301 3.4380

Triangular 7.1220 4.4168 2.2008 60.1150 1.7936 8.6147 4.0222
Uniform 0-1 17.2112 11.4841 6.8795 175.0100 6.9725 21.2978 8.5623

Mix2 6.2811 6.0856 6.3647 16.3470 5.8546 5.7913 5.9907
Mix3 4.9186 3.0408 1.8700 22.3239 2.0799 2.5847 2.3357

Table 3: MISE for sample size n = 50

Hist FP KDE BagHist BagFP BagKDE RASH

Normal 0.7098 0.4016 0.2665 4.9699 0.1665 0.9510 0.3908
Chi10 0.0422 0.0215 0.0144 0.2689 0.0089 0.0549 0.0198
Mix1 2.5451 1.3417 0.8085 12.7401 2.5901 1.9115 1.1964
Claw 2.6535 1.9604 1.6735 8.1400 2.1407 2.3149 1.8267

Triangular 5.0242 3.1358 1.2952 33.9450 0.8356 5.8185 2.8512
Uniform 0-1 7.9732 5.2470 5.2962 87.8440 3.8460 14.8139 4.1718

Mix2 5.8523 5.5056 6.0074 8.9022 5.9432 4.5841 5.2529
Mix3 2.4888 1.6908 1.4754 11.2250 2.1891 1.8702 1.1925

Table 4: MISE for sample size n = 100

Hist FP KDE BagHist BagFP BagKDE RASH

Normal 0.4077 0.2059 0.1394 2.4724 0.0827 0.5840 0.1937
Chi10 0.0242 0.0121 0.0084 0.1246 0.0075 0.0305 0.0111
Mix1 1.6231 0.8703 0.5597 6.1511 3.2618 1.2028 0.8753
Claw 1.7414 1.1899 0.9338 3.7563 2.0185 1.4601 1.0360

Triangular 2.4070 1.4362 0.7807 16.6818 0.5730 3.4612 1.3875
Uniform 0-1 3.7493 2.5354 3.9036 44.4120 2.7891 10.1004 2.1922

Mix2 4.2920 3.2531 5.7958 4.3796 5.9281 3.5878 2.6659
Mix3 1.6959 1.2517 1.0518 5.5502 2.3213 1.2049 0.8032

Table 5: MISE for sample size n = 200

17



Hist FP KDE BagHist BagFP BagKDE RASH

Normal 0.2254 0.1236 0.0663 0.8958 0.0500 0.2977 0.1203
Chi10 0.0116 0.0057 0.0038 0.0470 0.0031 0.0151 0.0056
Mix1 0.7855 0.3997 0.2542 2.3672 3.0443 0.5857 0.4018
Claw 0.9964 0.6338 0.4747 1.3815 1.8236 0.7305 0.5522

Triangular 1.2801 0.7536 0.3709 6.6334 0.3338 1.7276 0.7614
Uniform 0-1 1.5125 0.9942 2.4329 18.6821 1.6281 5.5846 1.1093

Mix2 2.9831 2.2515 3.3141 1.9641 5.6468 2.0181 1.7904
Mix3 1.2756 1.0160 0.7029 2.3993 1.1044 0.7520 0.6518

Table 6: MISE for sample size n = 500

Hist FP KDE BagHist BagFP BagKDE RASH

Normal 0.1220 0.0599 0.0360 0.4380 0.0249 0.1804 0.0591
Chi10 0.0068 0.0031 0.0020 0.0218 0.0016 0.0088 0.0031
Mix1 0.4877 0.2512 0.1465 1.1433 2.0536 0.3230 0.2569
Claw 0.6064 0.3468 0.2559 0.6452 1.6762 0.3832 0.3082

Triangular 0.8526 0.5124 0.2713 3.4204 0.2305 1.1284 0.5016
Uniform 0-1 0.7052 0.4630 1.7129 9.6299 1.2285 3.5032 0.7965

Mix2 2.3140 1.8291 1.5237 1.2728 5.4538 1.5519 1.4157
Mix3 1.2970 1.0580 0.4948 1.1314 0.6291 0.5210 0.6376

Table 7: MISE for sample size n = 1000
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