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Abstract

In this work we give new density estimators by averaging classical density estimators such as the

histogram, the frequency polygon and the kernel density estimators obtained over different bootstrap

samples of the original data. We prove the L2-consistency of these new estimators and compare them

to several similar approaches by extensive simulations. Based on them, we give also a way to construct

non parametric pointwise confidence intervals for the target density.

Keywords: density estimation; aggregation; bagging; histogram; polygon frequency; kernel density

estimator.

1. Introduction

Ubiquitous in data analysis, density estimation techniques are certainly the most used unsupervised

learning technique on low dimension. Whether for studying asymmetry, normality, residual diagnostic

or bump hunting among others, one usually relies on a visual inspection of a plot of the density to

take a primary decision, mostly in one or two dimensions.

The general aim is to gather basic information about the unobserved data generation mechanism

out of a sample of n observations say x1, . . . , xn. One usually supposes that the observations are

realizations of a random variable X that admits a probability density function f (i.e. f is non negative

and integrates 1). Then, the learning task is to estimate f as accurately as possible. First, by obtaining

a point wise estimate f̂(x) of f(x) for all x ∈ Rd, and second, by assessing the uncertainty of the point

wise estimate through the construction of a confidence interval for f . Of course both problems implies

different difficulties and involves specific techniques. In what follows, we focus on nonparametric

approaches for the first objective and give a possible way to construct a pointwise confidence interval

for the true density. In particular we center our attention on three classes of base or individual

estimators for the density: histograms, frequency polygons and the kernel density estimator. We

postpone the formal definition up to the next section but we provide a discussion guided by intuitive
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descriptions here.

Histograms are undoubtedly the most popular construction for density estimation. They rely on the

best constant-wise approximation of f given by the data using a binning argument. The power of this

simple construction combined with the ease of its interpretation makes them accessible to non technical

users. Besides, theoretical properties can be derived showing that histograms are consistent estimators.

Some of the lacks of the histograms are inherent to the constant level for at each partition, on one hand

their discontinuities and on the other hand they have null derivative everywhere. Frequency polygons

are constructed on top of histograms (and so take profit of the binning advantages) providing a linear

piecewise estimator. Although the added regularity was once pointed out as a flaw (see Fisher (1932))

it is now well known that it increases the quality of the estimator. Theoretically this is shown by

a faster rate of convergence (cf. section 2). Further regularity can be gained using kernel density

estimators. Essentially one first picks a kernel function with the desired degree of regularity for the

final estimate. Then, the empirical measure is convolved to produce the kernel density estimation of

f . It has been proved in Scott (1985a) that the rates of convergence of the frequency polygon are

similar to the kernel density estimator.All the three approaches are exhaustively studied both from on

practice and theory as individual estimators and a general reference for the subject is Scott (2015).

However, a reasonable question is to ask whether further improvement can be achieved from these

construction by means of aggregation schemes.

Ensemble learning or aggregation methods are increasingly used in the supervised framework:

these methods combine intermediate predictors to obtain an aggregated model with the aim to obtain

a better estimator. Bagging (Breiman, 1996) (Bootstrap and AGGregatING), Boosting (Freund and

Schapire, 1997), Stacking (Wolpert, 1992), and Random Forests (Breiman, 2001) have been broadly

studied in the case of classification (principally binary classification) or regression from the theoretical

viewpoint and have very high performances when tested over tens of various datasets selected from

the machine learning benchmark. Several extensions are still under study: multivariate regression,

multiclass classification, and adaptation to functional data or time series. Very few developments exist

for ensemble learning for unsupervised techniques such as clustering analysis and density estimation.

Only on few works several authors look at the adaptation of the aggregation procedure to estimate a

density under somehow restrictive conditions. One of the first is the mean of the most simplest density

estimator, the histograms, each one constructed over several different deterministic grids in Average

Shifted Histograms, ASH (Scott, 1985b). With a combination of several kernel density estimators

with different bandwidths, often in a normal context, and varying the form of the aggregation we can
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cite Ridgeway (2002), Glodek et al. (2013), Song et al. (2004), Rosset and Segal (2002), Smyth and

Wolpert (1999) and Rigollet and Tsybakov (2007).

Another kind of aggregation can be obtained by introducing randomness in the individual estima-

tors. In Bourel and Ghattas (2013) the authors include randomness in the construction of the inter-

mediate histograms using then different aggregation schemes: AggregHist, using simple aggregation,

BagHist using Bagging or StackHist using Stacking. Mathematically well sound, these approaches were

explored thorough empirical simulation without theoretical framework. The Random Average Shifted

Histogram, RASH (Bourel et al., 2014) is constructed as the mean average of different histograms,

each one constructed over a random translated grid of the initial breakpoints of the initial histogram.

RASH is show to be consistent and perform well in comparison to the precedent aggregation schemes.

In this work, we explore the contribution of Bagging to the density estimation task (like for

BagHist) where the intermediate estimators are either histograms, frequency polygons or kernel density

estimators. This article is organized as follow. Section 2 introduces notation and reviews the framework

context we need about density estimators. In Section 3 we present our three methods: BagHist, BagFP

and BagKde and establish a theoretical result about their consistency. The results of comprehensive

simulations are the object of Section 4. For this, we use several target densities available on literature

to evaluate the performance of our estimators and comparing them to classical density estimators.

We also explore the construction of pointwise confidence intervals as an approximation of a confidence

band using the bootstrap procedure. The work concludes with a discussion in Section 5.

2. Some density estimators

We look at the principal results using different density estimators. While for the histogram and the

kernel density estimator these results are quite popular we give some detail in order to fix notation.

For a detailed exposition see Scott (2015). In all cases, the starting point is an independent and

identically distributed sample x1, . . . , xn of a real random variable with density f .

• Histogram. Let Bj = [jh, (j + 1)h] be a set of intervals defined over the support of f , and h→ 0

as n→ +∞.

The ordinary histogram is defined as:

f̂hn (x) =
1

nh

n∑
i=1

∑
j∈Z

1Bj (xi)1Bj (x) =
νj
nh

(1)

where νj ∼ Bin(n, pj), with pj =
∫
Bj
f(t)dt, is the number of observations of the sample that

3



fall in bin Bj . If x ∈ Bj , we have that:

E
(
f̂hn (x)

)
=

1

nh

n∑
i=1

∑
j∈Z

P(xi ∈ Bj)1Bj (x) =
1

nh
nP(xi ∈ Bj) =

pj
h

= f(ξj)

Var
(
f̂hn (x)

)
=

1

n2h2
Var(νj) =

pj(1− pj)
nh2

≤ pj
nh2

=
f(ξj)

nh

for some ξj ∈ Bj . For a x ∈ Bj a fixed point, when h → 0, n → ∞ and nh → ∞, we get the

classical properties for the histogram:

E
(
f̂hn (x)

)
→ f(x), Var

(
f̂hn (x)

)
→ 0.

and, moreover, if f is locally Lipschitz the histogram is mean square consistent, i.e MSE
(
f̂hn (x)

)
=

Bias2
(
f̂hn (x)

)
+ Var

(
f̂hn (x)

)
→ 0.

It is widely used in many fields, because of its computational simplicity. The histogram depends

on two parameters: the bin width h and an origin x0 to fix the grid. There is a huge literature

that proposes several optimal choices for h using different criteria. If we suppose that the

underlying density f is Gaussian, it can be shown (see Scott (1979)) that an optimal choice for

h is of order n−1/3. With this value the histogram has a rate of convergence of order n−2/3 with

respect to the Mean Integrated Squared Error (MISE).

• Frequency Polygon. Frequency polygons are constructed on top of histograms connecting with

straight lines the midpoint of two consecutive bin values. The expression of the frequency

polygon for an x ∈ Bj = [(j − 1/2)h, (j + 1/2)h] is

f̂fpn (x) =

(
1

2
+ j − x

h

)
νj
nh

+

(
1

2
− j +

x

h

)
νj+1

nh
(2)

The frequency polygon was deeply studied in Scott (1985a). With respect to the histogram, it

presents the the advantages of being continuous and smooth. Under weak conditions, an optimal

choice for h is of order n−1/5 and it achieves a rate of convergence of order order n−4/5 with

respect to the MISE (Scott (1985a)).

• Kernel Density Estimators. A Kernel Density Estimator, KDE, is a function defined by

f̂kden (x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(3)

for all x ∈ R where K is a kernel function, i.e a non-negative, symmetric and unimodal function

such that
∫
K(u) du = 1. Parameter h is called the bandwidth of the estimator f̂kden , who inherits
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all the mathematical properties of K. The function K indicates the weight that observation xi

has in the estimation of x: observations close to x are weighted more important. It can be shown

that

E
(
f̂kden (x)

)
= f(x) +

f ′′(x)

2
µ2(K)h2 + o(h2)

Var
(
f̂kden (x)

)
=
||K||22f(x)

nh
+ o

(
1

nh

)
where µr(K) =

∫
urK(u) du. When h → 0 and nh → ∞, we get the classical properties as for

the histogram:

E
(
f̂kden (x)

)
→ f(x), Var

(
f̂kden (x)

)
→ 0.

As for the histogram, if h is large the variance decreases but the bias is large. On the other

hand, if h is small, the bias is small but the variance is large. The optimal rate of convergence

of KDE is of order n−4/5 as for the frequency polygon.

3. Bagging of estimators

The bootstrap method was introduced in Efron (1979) and have the purpose of doing statistical

inference using resamples of the original set of data. More precisely, if we have a data set L =

{x1, x2, . . . , xn} with distribution F , the non parametric bootstrap procedure consists to draw, with

replacement, a new sample L∗ = {x∗1, x∗2, . . . , x∗n} from L of the same size. Then, the sample L∗ has

a distribution Fn, the empirical distribution of L. The main idea is that the sample L∗ is to the

original sample L what the sample L is to the population, so the method treats the empirical of a

distribution of sample data as the true distribution. Reiterating this procedure several times and

obtaining many bootstrap samples is a cornerstone to the construction of several bootstrap based

approaches. The bootstrap has three big applications: bias correction, construction of confidence

interval and hypothesis testing (Efron and Tibshirani, 1993).

However, the use of bootstrap in nonparametric density estimation requires some caution, particu-

larly concerning the bias of the estimators. In our setting, let f̂ be a nonparametric density estimator

for f obtained from the sample L. Now we draw a bootstrap sample L∗ of L.
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In the case of the kernel density estimator, the estimation over L∗ is without bias,

E
(
f̂∗(x)|L

)
=

1

nh

n∑
i=1

E

(
K

(
x− x∗i
h

))
=

1

h
E

(
K

(
x− x∗i
h

))
=

1

h

∑
y∈Rx∗

i

K

(
x− y
h

)
P(x∗i = y)

=
1

h

n∑
j=1

K

(
x− xj
h

)
1

n
=

1

nh

n∑
j=1

K

(
x− xj
h

)
= f̂(x).

This simple results holds also for the histogram and for the frequency polygon too (see demonstration

of theorem 1), that is E(f̂∗(x)|L) = f̂ . The fact is treated in Hall (1997) in this terms: “far from

accurately estimating the substantial bias of f , the bootstrap sets the bias of this kind of density

estimator equal to zero”.

In supervised learning, the main application of bootstrap is definitely the Bagging. It is a parallel

aggregation method of individual entities that at each step b draw a bootstrap sample L∗b of the original

sample L and compute an estimator (a classifier in classification or a predictor in regression) over L∗b .

For an input x, the output of the Bagging method is the average in regression or the majority rule

in classification of the intermediate estimators at x. We follow this aggregation strategy to construct

new density estimators of a density function f . Our procedures run as follows (Figure 1):

Let L = {x1, . . . , xn} be a sample with unknown distribution F admitting a density f . Also,
considerer f̂n a density estimator evaluated in L.
For b ∈ 1, . . . , B:

1. obtain L∗b = {x∗1, . . . , x∗n} a bootstrap sample from L;

2. construct f̂∗b the density estimator obtained over this bootstrap sample. In particular
the bandwidth h is calculated over L∗b

Output: The final estimator is the simple pointwise average of the individual estimators
i.e.

f̂∗(x) =
1

B

B∑
b=1

f̂∗b (x)

Figure 1: Bagging of density estimators

To obtain the bagged histogram (BagHist) estimator f̂baghistn we simply use at each step b, his-

tograms f̂hn defined in (1) as f∗b . Analogously for bagged frequency polygons (BagFP) f̂bagfpn and

bagged kernel density estimators (BagKde) f̂bagkden , we replace f∗b with frequency polygon estimator

f̂fpn (cf. Eq. (2)) or kernel density estimator f̂kden (cf. Eq. (3)) respectively.
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3.1. L2 consistency of the Bagging of estimators

Here we prove L2 consistency, for three estimators BagHist, BagFP and BagKDE which correspond

to bagging of histograms, bagging of polygon frequencies and bagging of kernel density estimators

proving that, since h → 0, n → +∞ and nh → +∞, for all x in bin Bj (in case of histogram or

frequency polygon) or for all x ∈ R (in case of kernel density estimator):

E[(f̂baghistn (x)− f(x))2]→ 0, E[(f̂bagfpn (x)− f(x))2]→ 0, E[(f̂bagkden (x)− f(x))2]→ 0.

Theorem 1. BagHist, BagFP and BagKDE are L2-consistent.

Proof. We will give a global proof, inspired by Hall (1997) and Scott (2015) to encompass the different
methods, because the demonstration for all these estimators follows the same steps. We have to
compute:

(1) for the expectation E(f̂(x)) = E
(
E[f̂(x)|L]

)
(2) and to calculate the variance we use the decomposition

Var(f̂(x)) = E(Var(f̂(x)|L))︸ ︷︷ ︸
(A)

+ Var(E(f̂(x)|L))︸ ︷︷ ︸
(B)

Without loss of generality, in some calculation for histogram or frequency polygon, and with the aim
to simplify notations, we will assume that x ∈ B0.

(1) • BagHist. If x ∈ Bj = [jh, (j + 1)h] , then we have

E[f̂baghistn (x)|L] = E

[
1

B

B∑
b=1

f̂∗b (x)|L

]
= E

[
f̂∗b (x)|L

]
= E

[
ν∗j
nh

]
=

νj
nh

= f̂hn (x)

and if f is locally Lipschitz∣∣∣E(E[f̂(x)|L])− f(x)
∣∣∣ =

∣∣∣pj
h
− f(x)

∣∣∣ =

∣∣∣∣hf(ξj)

h
− f(x)

∣∣∣∣ ≤ γj |ξj − x| ≤ γjh→ 0

• BagFP. If x ∈ Bj =
[
(j − 1

2)h, (j + 1
2)h
]
, then we have

E[f̂bagfpn (x)|L] = E

[
1

B

B∑
b=1

f̂∗b (x)|L

]
= E

[
f̂∗b (x)|L

]
= E

[(
1

2
+ j − x

h

)
ν∗j
nh

+

(
1

2
− j +

x

h

)
ν∗j+1

nh
|L
]

=

(
1

2
+ j − x

h

)
νj
nh

+

(
1

2
− j +

x

h

)
νj+1

nh
= f̂fpn (x)

and, if f has second derivative, if x ∈ B0:∣∣∣E(E[f̂bagfpn (x)|L]
)
− f(x)

∣∣∣ ≈ ∣∣f ′′(ξ0)(h2 − 3x2)
∣∣ ≤ 4h2f ′′(ξ0)→ 0
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• BagKDE. For BagKDE we have:

E[f̂bagkden (x)|L] = E

[
1

B

B∑
b=1

f̂∗b (x)|L

]
= E

[
f̂∗b (x)|L

]
= E

[
1

nh

n∑
i=1

K

(
x− x∗i
h

)]
= f̂kden

and this is well known that ∣∣∣E(E[f̂bagkden (x)|L]
)
− f(x)

∣∣∣→ 0

(2) For variance we use the well known formula defined above.

• BagHist.

(A) Because of the independence and identical distribution of the bootstrap samples, if
x ∈ B0:

Var[f̂baghistn (x)|L] = Var

[
1

B

B∑
b=1

f̂∗b (x)|L

]
=

1

B
Var

[
f̂∗b (x)|L

]
=

1

B

np∗0(1− p∗0)
(nh)2

where p∗0 is equal to ν0
n . Taking expectation over L we have

1

Bnh2
E (p∗0(1− p∗0)) =

1

Bnh2

[
E
(ν0
n

)
−Var

(ν0
n

)
−
[
E
(ν0
n

)]2]
=

1

Bnh2

(
p0 −

1

n
p0 −

1

n
p20 − p20

)
=

1

Bnh2

(
hf(ξ0)−

h

n
f(ξ0)−

h2

n
f(ξ0)

2 − h2f(ξ0)
2

)
=

1

Bnh
f(ξ0)−

1

Bn2h
f(ξ0)−

1

Bn2
f(ξ0)

2 − 1

Bn
f(ξ0)

2 → 0

(B) Var
[
E(f̂baghistn (x)|L)

]
= Var(f̂hn (x)) ≤ p0

nh2
= f(ξ0)

nh → 0

• BagFP.

(A) Because of the independence and identical distribution of the bootstrap samples:

Var[f̂bagfpn (x)|L] = Var

[
1

B

B∑
b=1

f̂∗b (x)|L

]
=

1

B
Var

[
f̂∗b (x)|L

]
=

1

B

{(
1

2
− x

h

)
Var(f̂∗0 ) +

(
1

2
+
x

h

)
Var(f̂∗1 ) + 2

(
1

4
− x2

h2

)
Cov(f̂∗0 , f̂

∗
1 )

}
where f̂∗0 and f̂∗1 are the histogram estimations over [−h, 0] and [0, h] respectively. As

Var(f̂∗0 ) = np∗o(1−p∗o)
n2h2

, then taking expectation:
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E(Var(f̂∗0 )) =E
(
nν0n (1− ν0

n )

n2h2

)
=

1

n2h2
E
(
ν0

(
1− ν0

n

))
=

1

n2h2

(
E(ν0)−

1

n
E(ν20)

)
=

1

n2h2

(
E(ν0)−

1

n
(Var(ν0) + [E(ν0)]

2)

)
=

1

n2h2

[
np0 −

1

n
(np0(1− p0) + (np0)

2)

]
=
nhf(ξ0)

n2h2
− hf(ξ0)

n2h2
+
h2f(ξ0)

2

n2h2
− nh2f(ξ0)

2

n2h2
→ 0

In the same way E(Var(f̂∗1 ))→ 0.

As Cov(f̂∗0 , f̂
∗
1 ) =

−np∗0p∗1
n2h2

, then taking expectation we have

E
(

Cov(f̂∗0 , f̂
∗
1 )
)

=
1

nh2
E
(ν0
n

ν1
n

)
≤ 1

n3h2
E(ν20)E(ν21) =

1

n3h2
[np0(1− p0) + p20][np1(1− p1) + p21]

=
1

n3h2
(nhf(ξ0)− nh2f(ξ0)

2 + h2f(ξ0)
2)(nhf(ξ1)− nh2f(ξ1)

2 + h2f(ξ1)
2)

=
1

n3h2
(n2h2f(ξ0)f(ξ1)− n2h3f(ξ0)f(ξ1)

2 + nh3f(ξ0)f(ξ1)
2

+
1

n3h2
(n2h4f(ξ0)

2f(ξ1)
2 − n2h3f(ξ0)

2f(ξ1)− nh4f(ξ0)
2f(ξ1)

2)

+
1

n3h2
(nh3f(ξ0)

2f(ξ1)− nh4f(ξ0)
2f(ξ1)

2 + h4f(ξ0)
2f(ξ1)

2)

=
1

n
f(ξ0)f(ξ1)−

h

n
f(ξ0)f(ξ1)

2 +
h

n2
f(ξ0)f(ξ1)

2

+
h2

n
f(ξ0)

2f(ξ1)
2 − h

n
f(ξ0)

2f(ξ1)−
h2

n2
f(ξ0)

2f(ξ1)
2

+
h

n2
f(ξ0)

2f(ξ1)−
h2

n2
f(ξ0)

2f(ξ1)
2 +

h2

n3
f(ξ0)

2f(ξ1)
2 → 0

So we conclude that E
(

Var[f̂bagfpn (x)|L]
)
→ 0

(B) We recall from Scott (2015) pag. 103 that

Var(E(f̂bagfpn (x)|L)) = Var(f̂fpn (x)) =

(
2x2

nh3
+

1

2nh

)
f(ξ0)−

f(ξ0)
2

n
+ o

(
1

n

)
Then if nh→∞ and n→ +∞:

|Var(E(f̂bagfpn (x)|L))| → 0

• BagKDE.

(A) Because of the independence and identical distribution of the bootstrap samples:

Var[f̂bagkden (x)|L] = Var

[
1

B

B∑
b=1

f̂∗b (x)|L

]
=

1

B
Var

[
f̂∗b (x)|L

]
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So we compute Var
[
f̂∗b (x)|L

]
:

Var
[
f̂∗b (x)|L

]
=

1

n

[
n∑
i=1

1

(nh)2
K2

(
x− x∗i
h

)]
︸ ︷︷ ︸

(a)

− 1

n2

{
1

nh

n∑
i=1

K

(
x− x∗i
h

)}2

︸ ︷︷ ︸
(b)

and therefore
∣∣∣Var

[
f̂∗b (x)|L

]∣∣∣ ≤ (a) + (b). Taking expectation:

(a)

E

(
1

n3h2

n∑
i=1

K2

(
x− x∗i
h

))
=

1

n3h2

n∑
i=1

E
(
K2

(
x− x∗i
h

))

=
1

n2h2

n∑
j=1

K2

(
x− xij
h

)
P(x∗i = xij)

=
1

n3h2

n∑
j=1

K2

(
x− xij
h

)
≤ 1

n3h2

n∑
j=1

C̃

=
C̃

(nh)2
→ 0

because since K is bounded, K2 also.
(b)

E

 1

n2

(
1

nh

n∑
i=1

K

(
x− x∗i
h

))2
 =

1

n4h2
E

(
n∑
i=1

K

(
x− x∗i
h

))2

=
1

n4h2

n∑
j=1

(
n∑
i=1

K

(
x− x∗i
h

))2

P(x∗i = xij)

≤ 1

n5(nh)2

n∑
j=1

(
n∑
i=1

C

)2

=
C2

n2(nh)2
→ 0

So we conclude that E
(

Var[f̂bagkden (x)|L]
)
→ 0

(B) It is a well known result that Var
(
E[f̂bagkden (x)|L]

)
= Var(f̂kden )→ 0

So, with the usual assumption of n → ∞, h → 0, nh → ∞ this implies L2 convergence for
f̂baghistn , f̂bagfpn and f̂bagkden .

4. Experiments

We describe in this section a series of numerical experiments aiming to show the practical per-

formance of the bagged versions of the classical density estimators. First, we obtain a numerical
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estimate of the MISE on simulated data sets created following baseline densities. The impact of the

aggregation is analyzed. We also pay attention at the repartition between integrated variance (IV)

and integrated square bias (ISB). Finally, we use the bootstrapped version of the density estimator to

construct confidence interval. We study the empirical covering of these confidence bands that result.

4.1. Simulations

Among the numerous possibilities of univariate densities, we choose eight simulation models par-

tially following the work of Bourel et al. (2014). This choice presents a different degree of difficulty

related to the number of modes, asymmetry, tail behavior and regularity. We denote them by M1 to

M8. Their definition is the object of Table 1 and Figure 2 shows a graphical display of the densities.

Model Description

(M1) : Normal Standard Standard Gaussian density N (0, 1)
(M2) : Chi 10 Chi-square density χ2

10

(M3) : Mix1 0.5N (−1, 0.3) + 0.5N (1, 0.3)
(M4) : Claw the Claw Density (Marron and Wand, 1992)
(M5) : Triangular Symmetric triangular density with support on [0,2]
(M6) : Uniform 0-1 Uniform density U [0, 1]

(M7) : Mix2 0.5N (0, 1) + 0.5
10∑
i=1

1( 2(i−1)
10

, 2i−1
10

] (Rigollet and Tsybakov, 2007)

(M8) : Mix3 Mixture of uniforms 0.5U [−2,−1] + 0.5U [1, 2]

Table 1: Simulated univariate densities.

The notation N (µ, σ2) is used to refer to a normal distribution with mean equal to µ and variance

equal to σ2, U [a, b] is the uniform density over the support [a, b], and χ2
ν is a Chi squared density with

ν degrees of freedom. Models 3, 4, 7 and 8 are mixtures of normal densities or normal densities with

indicators. Models 5, 6 and 8 are asymmetrical.

At each replication we draw two datasets following each density. The first one is used for estimation

purposes while the second one is leaved for evaluation (either MISE or empirical covering).

All the simulations are done with the R software, and for modelsM4 we use the benchden package.

4.2. Quality of the estimation

We compare density estimators of different nature. On one hand side we use three individual esti-

mators: histograms (H), frequency polygons (FP) and kernel density estimators (KDE), on the other

hand, their bagged versions, respectively BagHist, BagFP and BagKDE. Also we include the RASH

estimator. We use cross validation to calibrate the bandwidth h at each step of all the intermediate

estimation methods. An alternative would be to use maximum likelihood as in Bourel et al. (2014). In

11
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Figure 2: Densities used for the simulations.

our framework cross validation has, in general, a better computation behavior. Also it is more general

and may be used for example with dependent data as in time series.

Figure 3 represents the dependence of MISE on the sample size n for the different combinations

of densities and estimators. Each point represents the average of M = 100 times the MISE×100 of

the method using B = 200 intermediate estimators for the aggregating methods. Notice that these

plots are in log-log scale which is useful to highlight the convergence rates as adjusted straight lines.

Individual values of these plots are presented in AppendixA.

Let us comment these plots. First, the adjusted lines are of relative good quality since the points

for each combination density-estimator are almost aligned. Remember that each point is the mean

12
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Figure 3: MISE by estimation method for the six simulation data sets in scale log.

average of M = 100 replicates and so the inner replicate variability is reduced even for a few points

determining each line. Now, for each panel most of the adjusted lines are almost parallels which means

the methods share a similar convergence behavior. The exception are KDE and BagKDE which seems

to have more difficulties than the other ones in some situations. If one compares each individual

estimator (H, FP and KDE) with their bagged versions, the latter success to reduce the MISE in most

of the situations. On unimodal targets, KDE (or at least its bagged version) shows a very competitive

performance. However, in presence of multi-modality they are competitive only for relatively small

sample sizes. The fact that the results are not entirely satisfactory for the bagged version of kde may

be because kde is a good and stable density estimator (more stable in any case than histogram) and,

according with Breiman (1996), bagging kernel density estimators may be degrade the performance

of this stable procedure.

4.3. Reduction of MISE due to aggregation

We concentrate now on aggregating methods. A natural matter to look at is the quality of the

aggregation as the number of bootstrap samples increases. For this, we examine the MISE of the

bagged versions for a range of increasing bootstrap samples. We replicate M = 100 times each

combination of density simulation to construct the different curves. The result of experiments are
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presented in Figure 4 in a log-log scale with n = 500 observations.

Globally we observe that MISE decreases with increases values of B until some point between 20

and 50 bootstrap samples after which more samples does not produce further enhancement. Similarly

to the precedent figure, bagging KDE produce less improvement than bagging H and FP when the

underlying target is multimodal.

4.4. Decomposition of MISE into ISB and ISV

Bagging succeeds in reducing MISE even for a modest number of bootstrap samples. We study now

how this reduction affects the two well known components of the MISE, that is the integrated squared

bias (ISB) and the integrate variance (IV). In mathematical terms, the decomposition is written as

MISE(f̂) =

∫
E
(
f̂(x)− f(x)

)2
dx =

∫ (
E
(
f̂(x)

)
− f(x)

)2
dx︸ ︷︷ ︸

ISQ

+

∫ (
f̂(x)− E

(
f̂(x)

))2
dx︸ ︷︷ ︸

IV

. (4)

The terms are estimated using Monte Carlo simulation. We replicate M times the simulation,

i.e estimation and prediction steps for each of the density models introduced before and the density

estimators. Then, the estimator of MISE can be written as

MISE(f̂) =
1

M

M∑
m=1

[
1

K

K∑
k=1

(
f̂ (k)(xm)− f(xm)

)2]
.

The empirical counterpart of (4) is then

M̂ISE(f̂) =
1

M

M∑
m=1

( 1

K

K∑
k=1

f̂ (k)(xm)− f(xm)

)2


︸ ︷︷ ︸
ÎSB

+
1

M

M∑
m=1

(f̂(xm)− 1

K

K∑
k=1

f̂ (k)(xm)

)2


︸ ︷︷ ︸
ÎV

where K is the number of replicate of the training sample and M is the number of train/test

divisions. We use n = 500 observations, B = 200 as the number of individual estimators in the

aggregation, K = 100 and M = 100.

Table 2 reports the mean variation (in percentage) of MISE, ISQ and IV for each estimator and

density. In all cases, MISE present reductions (negative variations). Both BagH and BagFP reduce

MISE by reducing square bias and variance, while for KDE there is as systematic an increment on

the variance of the estimator. However, the bias reduction is such that more than compensates the

variance increment and produce a reduction of the MISE.
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Histogram Frequency Polygon KDE
MISE Sq. Bias Var. MISE Sq. Bias Var. MISE Sq. Bias Var.

normal -34,5% -32,9% -37,3% -12,8% -20,1% -22,0% -37,8% -82,4% 189%
chi2 -34,8% -22,5% -35,7% -12,4% -6,8% -15,4% 113% -70,0% 141%
mezcla1 -32,7% -21,2% -24,8% -13,5% -8,5% -5,4% -62,0% -64,5% 101%
mezcla2 -37,9% -13,6% -40,7% -14,8% -6,4% -15,5% -60,9% -67,5% 84%
bart -34,4% -19,7% -22,6% -13,6% -17,3% 6,9% -16,5% -19,2% 108%
triangular -23,1% -19,4% -30,8% -11,9% -11,1% -22,4% -68,9% -79,4% 131%

Table 2: MISE, squared bias and variance reduction (in percentage) due to bagging for each estimator by density model.

4.5. Variability bands

A natural by-product of bootstrap samples is the construction of confidence bands. For some level

α, one wants to estimate the quantities l̂n(x) and ûn(x) that verify

P{l̂n(x) ≤ f(x) ≤ ûn(x)} ≥ 1− α, ∀x

that is, the quantities are the borders of an interval that covers at the true density f(x) at some

confidence level (1− α)× 100%. We tackle here its construction for the density estimator. Generally,

a confidence band for f is centered over an estimator f̂n of f and has the form f̂n(x)±cσ̂n(x) for all x,

with c > 0. However, since nonparametric density estimators are biased, the usual construction does

not yields on a really a confidence band for f . Indeed, for a fixed x, due to the bias E
(
f̂n(x)

)
− f(x),

it is not easy to derive a confidence interval using the pivotal quantity f̂n(x)−f(x)
σ̂(x) . So, the interval is

usually centered at fn(x) = E
(
f̂n(x)

)
instead of being around f(x). For this reason, these confidence

bands are often called variability bands. We describe two popular constructions to compare with our

procedure.

1. Variability Band for histograms. Under mild conditions (Wasserman, 2006) the histogram es-

timator f̂hn (x) is approximately unbiased for the target density f(x). But the approximate

variance is f(x)/(nh) where h = 1/m is the inverse of the number of bins m. Its dependence

on the unknown target is an obstacle. To circumvent it, Scott (2015) looks at Var

[√
f̂hn (x)

]
which is approximately 1/(4nh) and thus independent of f(x). We define f̄hn = E[f̂hn (x)] as the

target and as we say before the confidence band will not take account of the bias but only of

the variability of the estimator. Then, using a normal approximation it is easy to show that

(Wasserman, 2006, p. 130):

ln(x) =

(
max

{√
f̂hn (x)− c, 0

})2

, un(x) =

(√
f̂hn (x) + c

)2
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where c =
zα/(2m)

2

√
m
n give an approximate variability band for f̄hn at (1−α)×100% of confidence.

2. Variability Band for KDE. As we have shown with the histogram, since the variance of f̂kden (x)

also involves the true density f , it is more suitable to use the square root (see Bowman and

Azzalini (1997)). In the case of the kernel density estimator Var

(√
f̂kden (x)

)
≈ ||K||

2
2

4nhn
and again

does not depend on the true unknown density f . On this square root scale, for a fixed point x

we consider the interval that back to the original scale is given by

ln(x) =

(
f̂kden (x)− ||K||2√

4nhn

)2

, un(x) =

(
f̂kden (x) +

||K||2√
4nhn

)2

.

As we said before this is not a confidence band for the true density f , because of the bias so we

will talk about a variability band.

3. Bootstrap based confidence band The bootstrapped sample induces a distribution that can be

used to asses the variability of the estimator. Indeed, the simple superposition of the individual

estimators (histogram, frequency polygon, kernel density estimator) gives a coarse idea of the

uncertainty around the aggregate estimator. More the scatter of individual individual density

estimators is dispersed, higher is the variance of the estimator. For the concrete construction of

the confidence band we first fix the abscissa x ∈ Rd. Then we consider the set of bootstrapped

density estimators evaluated at that point, i.e. {f̂∗1 (x), . . . , f̂∗B(x)}. Note that the bagged esti-

mator is the “middle” of the tube generated. This set is a collection of B univariate measures.

Then, a (1−α)×100% confidence interval can be obtained by considering the empirical quantiles

at α/2 and 1− α/2 for this ensemble.

We compare the alternative constructions of the confidence band using two metrics. The aim is

to obtain the narrowest band that warranties a given nominal coverage. For this, we consider the

empirical coverage of the bands and its mean width. Let us call l̂n(ti) and ûn(ti) the lower and upper

bounds of the confidence bands, evaluated at points ti, i = 1, 2, . . . , N . Then, we call the empirical

mean coverage of the target f(x) the quantity

1

N

N∑
i=1

I{l̂n(ti)≤f(ti)≤ûn(ti)},

where IA is the indicator function of the set A. The mean width of the interval is defined by

1

N

N∑
i=1

{
ûn(ti)− l̂n(ti)

}
.
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We give as reference the variability band constructed through the kernel density estimator as

explained before (we denote this method as Kde-sm). The ones that we obtained for the histograms

are too large covering always the true density, for this reason they are not presented in Table 3.

Coverage Mean width
Density Hist FP Kde Kde-sm Hist FP Kde Kde-sm

Normal 95.45 92.54 92.83 96.54 0.24 0.18 0.19 0.09
Chi2 95.75 92.88 92.96 94.79 0.06 0.04 0.04 0.02
Mix1 95.55 93.11 90.34 95.27 0.40 0.30 0.25 0.19
Claw 95.05 89.79 87.07 91.33 0.30 0.22 0.25 0.22
Triangular 95.79 92.74 92.69 94.94 0.66 0.51 0.45 0.23
Uniform 92.20 89.40 88.61 90.56 1.06 0.84 0.73 0.52
Mix2 77.78 41.00 63.14 47.73 0.36 0.26 0.26 0.21
Mix3 88.86 85.59 83.41 89.84 0.37 0.29 0.22 0.27

Table 3: Mean empirical coverage and mean interval widths for the densities and estimators considered.

5. Conclusions

In this work we present three univariate density estimators obtained by aggregation such as in

Bagging. For each method, the intermediate estimators are histograms, frequency polygons or kernel

density estimators. We prove the L2 consistency of the three algorithms and do several simulations

over densities with different characteristics. In future work, these ideas and simulations should be

extended to the multivariate case. Also, we bring a way to compute a kind of confidence band, which

is more close to a point wise variability band in the sense that the authors who studied on this subject

give. This construction needs a deeper study to be able to draw more conclusive conclusions about it.
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AppendixA. Additional results

Quality of the estimation

For sake of completeness we present in this annexe the individual values of plot 3. In the following

tables, values are 100×MISE obtained as mean average over 100 replicates. At each line, best results

are shown in blue, while worst are shown in red.
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• n = 50

H FP Kde BagHist BagFP BagKde Rash

Normal 1.1447 0.6171 0.3181 10.3243 0.2487 1.5195 0.6025
Chi2 0.0696 0.0374 0.0254 0.5635 0.0181 0.0919 0.0334

Mixture 3.8260 2.1742 1.3801 27.4794 1.8937 3.0423 1.9464
Claw 4.9526 3.6531 2.7909 17.8066 2.2902 4.1301 3.4380

Triangular 7.1220 4.4168 2.2008 60.1150 1.7936 8.6147 4.0222
Uniform 17.2112 11.4841 6.8795 175.0100 6.9725 21.2978 8.5623

Tsybakov 6.2811 6.0856 6.3647 16.3470 5.8546 5.7913 5.9907
Uniform Mixt. 4.9186 3.0408 1.8700 22.3239 2.0799 2.5847 2.3357

• n = 100

H FP Kde BagHist BagFP BagKde Rash

Normal 0.7098 0.4016 0.2665 4.9699 0.1665 0.9510 0.3908
Chi2 0.0422 0.0215 0.0144 0.2689 0.0089 0.0549 0.0198

Mixture 2.5451 1.3417 0.8085 12.7401 2.5901 1.9115 1.1964
Claw 2.6535 1.9604 1.6735 8.1400 2.1407 2.3149 1.8267

Triangular 5.0242 3.1358 1.2952 33.9450 0.8356 5.8185 2.8512
Uniform 7.9732 5.2470 5.2962 87.8440 3.8460 14.8139 4.1718

Tsybakov 5.8523 5.5056 6.0074 8.9022 5.9432 4.5841 5.2529
Uniform Mixt. 2.4888 1.6908 1.4754 11.2250 2.1891 1.8702 1.1925

• n = 200

H FP Kde BagHist BagFP BagKde Rash

Normal 0.4077 0.2059 0.1394 2.4724 0.0827 0.5840 0.1937
Chi2 0.0242 0.0121 0.0084 0.1246 0.0075 0.0305 0.0111

Mixture 1.6231 0.8703 0.5597 6.1511 3.2618 1.2028 0.8753
Claw 1.7414 1.1899 0.9338 3.7563 2.0185 1.4601 1.0360

Triangular 2.4070 1.4362 0.7807 16.6818 0.5730 3.4612 1.3875
Uniform 3.7493 2.5354 3.9036 44.4120 2.7891 10.1004 2.1922

Tsybakov 4.2920 3.2531 5.7958 4.3796 5.9281 3.5878 2.6659
Uniform Mixt. 1.6959 1.2517 1.0518 5.5502 2.3213 1.2049 0.8032
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• n = 500

H FP Kde BagHist BagFP BagKde Rash

Normal 0.2254 0.1236 0.0663 0.8958 0.0500 0.2977 0.1203
Chi2 0.0116 0.0057 0.0038 0.0470 0.0031 0.0151 0.0056

Mixture 0.7855 0.3997 0.2542 2.3672 3.0443 0.5857 0.4018
Claw 0.9964 0.6338 0.4747 1.3815 1.8236 0.7305 0.5522

Triangular 1.2801 0.7536 0.3709 6.6334 0.3338 1.7276 0.7614
Uniform 1.5125 0.9942 2.4329 18.6821 1.6281 5.5846 1.1093

Tsybakov 2.9831 2.2515 3.3141 1.9641 5.6468 2.0181 1.7904
Uniform Mixt. 1.2756 1.0160 0.7029 2.3993 1.1044 0.7520 0.6518

• n = 1000

H FP Kde BagHist BagFP BagKde Rash

Normal 0.1220 0.0599 0.0360 0.4380 0.0249 0.1804 0.0591
Chi2 0.0068 0.0031 0.0020 0.0218 0.0016 0.0088 0.0031

Mixture 0.4877 0.2512 0.1465 1.1433 2.0536 0.3230 0.2569
Claw 0.6064 0.3468 0.2559 0.6452 1.6762 0.3832 0.3082

Triangular 0.8526 0.5124 0.2713 3.4204 0.2305 1.1284 0.5016
Uniform 0.7052 0.4630 1.7129 9.6299 1.2285 3.5032 0.7965

Tsybakov 2.3140 1.8291 1.5237 1.2728 5.4538 1.5519 1.4157
Uniform Mixt. 1.2970 1.0580 0.4948 1.1314 0.6291 0.5210 0.6376
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Figure 4: MISE error vs number of aggregates, n=500, M=100, B=200 in log-log scale

22



23


