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S U M M A R Y
The ill-posed nature of earthquake source estimation derives from several factors including
the quality and quantity of available observations and the fidelity of our forward theory.
Observational errors are usually accounted for in the inversion process. Epistemic errors,
which stem from our simplified description of the forward problem, are rarely dealt with
despite their potential to bias the estimate of a source model. In this study, we explore the
impact of uncertainties related to the choice of a fault geometry in source inversion problems.
The geometry of a fault structure is generally reduced to a set of parameters, such as position,
strike and dip, for one or a few planar fault segments. While some of these parameters can be
solved for, more often they are fixed to an uncertain value. We propose a practical framework
to address this limitation by following a previously implemented method exploring the impact
of uncertainties on the elastic properties of our models. We develop a sensitivity analysis to
small perturbations of fault dip and position. The uncertainties of our fixed fault geometry
are included in the inverse problem under the formulation of the misfit covariance matrix
that combines both prediction and observation uncertainties. We validate this approach with
the simplified case of a fault that extends infinitely along strike, using both Bayesian and
optimization formulations of a static slip inversion. If epistemic errors are ignored, predictions
are overconfident in the data and slip parameters are not reliably estimated. In contrast,
inclusion of uncertainties in fault geometry allows us to infer a robust posterior slip model.
Epistemic uncertainties can be many orders of magnitude larger than observational errors
for great earthquakes (Mw > 8). Not accounting for uncertainties in fault geometry may
partly explain observed shallow slip deficits for continental earthquakes. Similarly, ignoring
the impact of epistemic errors can also bias estimates of near-surface slip and predictions of
tsunamis induced by megathrust earthquakes.

Key words: Inverse theory; Probability distributions; Earthquake source observations.

1 I N T RO D U C T I O N

Imaging earthquake sources is a crucial step towards developing
a better understanding of the physics of earthquake rupture. Such
images allow us to improve our models of regional tectonics and
potentially refine our assessment of seismic and tsunami hazards.
Inferred source images, thus, need to be as accurate as possible to
ensure a robust interpretation and should attempt to describe the
limits of our understanding as well as possible.

Published models of the distribution of coseismic subsurface
fault slip (a.k.a. slip models) for a given earthquake can be very
discrepant, even models for well-recorded events such as the 1999
Mw 7.6 Izmit earthquake (e.g. Duputel et al. 2014; Mai et al. 2016),
the 2009 Mw 6.3 l’Aquila earthquake (e.g. Yano et al. 2014; Volpe

et al. 2015) or the Mw 9.0, 2011, Tohoku-Oki earthquake (we refer
the reader to Razafindrakoto et al. 2015; Lay 2017, for an overview
of selected published models). This variability relates to the inher-
ently ill-posed nature of the inverse problem. The non-uniqueness
of the inverted source model is affected by numerous factors, in-
cluding data quality, quantity and processing (filtering, sampling,
etc.) that controls the level of information available to reduce the
uniqueness of the problem (e.g. Delouis et al. 2002; Lohman & Si-
mons 2005; Sladen et al. 2010). Other factors affecting estimates of
the source are related to our simplified description of the physics of
the problem, which is inherently more difficult to quantify. Source
parametrization and the inversion method will both affect our es-
timates of source characteristics. In particular, any simplification
including the possible linearization of the inverse problem, the level
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of complexity in the discretization of the source, smoothing and
other types of regularization will impact the solutions of the in-
verse problem (e.g. Du et al. 1992; Beresnev 2003). Our imperfect
forward problem can produce systematic errors and biases. Indeed,
Earth structure (i.e. rheology or elastic properties) and fault geom-
etry are always uncertain despite the fact that they are frequently
fixed a priori in fault slip models. The impact of this prior choice is
rarely investigated, yet, a small change can affect the Green’s func-
tions, which will, in turn, distort the link between the data space and
the parameters and lead to potentially very different source mod-
els (e.g. Simons et al. 2002; Beresnev 2003; Hartzell et al. 2007;
Razafindrakoto & Mai 2014; Gallovic et al. 2015; Diao et al. 2016).

While the quantity and quality of observations is ever-increasing,
numerous procedures have been developed to enhance the reliabil-
ity of inferred models or at least to investigate their variability.
Validation and comparison procedures (e.g. Tichelaar & Ruff 1989;
Gallovic̆ & Ampuero 2015; Mai et al. 2016), Bayesian formulations
(e.g. Minson et al. 2014) or posterior analysis (e.g. Piatanesi et al.
2007; Monelli & Mai 2008) allow for exploration of uncertainties.
The inclusion of observation uncertainties with covariance matri-
ces (e.g. Yagi & Fukahata 2008; Sudhaus & Jónsson 2009; Duputel
et al. 2012) improves the estimates of model-parameter uncertain-
ties. The most influential parameters on the forward problem are
the assumed Earth structure and fault geometry (Das & Suhadolc
1996; Beresnev 2003). The impact of Earth structure uncertainty
has previously been investigated by Duputel et al. (2014) and ap-
plied in Jolivet et al. (2014); Duputel et al. (2015); Jolivet et al.
(2015); Gombert et al. (2017). The statistical impact of uncertainty
of parameters describing fault geometry remains largely unexplored
and is the central focus of this study.

Field studies as well as modelling analyses have documented
faults complexity, with multiple segments that can only be well ob-
served when they reach the surface (e.g. Segall & Pollard 1980;
Okubo & Aki 1987; Peacock 1991; Walsh et al. 2003; Manighetti
et al. 2015). The complexity of the surface trace may be similar
at greater depths, as suggested by some observations (e.g. Aochi
& Fukuyama 2002; Aochi & Madariaga 2003; Jolivet et al. 2014;
Huang et al. 2017). Faults are generally non-planar, and the rough-
ness of rupture surfaces can be observed at different scales (e.g.
Power et al. 1987; Aochi & Madariaga 2003; Candela et al. 2012;
Perrin et al. 2016; Zielke et al. 2017). Bends, jogs, relay zones, cur-
vature and other complexities of fault structures clearly influence,
or even drive, earthquake rupture processes (King & Náblek 1985;
Zhang et al. 1991; Bouchon et al. 1998; Lee et al. 2006; Moreno
et al. 2009; Wei et al. 2011; Moreno et al. 2012; Bletery et al. 2016b;
Pizzi et al. 2017). Developing a realistic fault geometry is often a
challenging component of finite source modelling (e.g. Aochi &
Madariaga 2003).

Yet, even when incorporating increasingly complex structures in
inversions, fault geometry will remain uncertain. Geometries de-
termined from surface rupture, centroid moment tensor solutions,
previous earthquakes, aftershocks distributions or tomography, are
all inaccurate to varying extents. This uncertainty can result in a dis-
crepancy between published models for a given earthquake. Even
for particularly well-recorded and studied events, fault geometry pa-
rameters are poorly constrained. For instance, the published dip and
strike for planar faults parameters for the 2009 l’Aquila event vary
by 15◦ and 10◦, respectively (Lavecchia et al. 2012). We frequently
adopt fault models that are planar and thus smooth, sometimes mul-
tisegmented, with segments of fixed dip and fixed strike. Inaccurate
fault dip and/or position distorts the Green’s functions which will
bias the inversion algorithm towards incorrect source models. In

Figure 1. Schematic view of the 2-D simplified toy model we use to explore
the impact of including uncertainties in fault geometry on source estimation
problems. The assumed geometry does not vary along strike. We investigate
first the effect of accounting for inaccuracies on fault dip. Then, we analyze
the impact of accounting for uncertainties in fault position.

some cases, data allow identification of additional complexities in
the fault geometry, such as curvature or segmentation.

In this study, we investigate the impact of uncertainty in fault
geometry on inverted slip models. We propose a formalism based
on small perturbation theory which limits its application to events
for which the gross characteristics of the fault geometry are known.
Indeed, we choose not to solve for the fault geometry parameters
as it is computationally expensive and can be biased by uncertain-
ties, as discussed further. Uncertainties on the a priori fixed fault
parameters are specified using a covariance matrix of prediction
errors following the approach developed by Duputel et al. (2014)
for Earth structure. We present the corresponding theoretical ap-
proach and then describe implementations for both optimization
and Bayesian formulations of the inverse problem. Through a sim-
plified 2-D toy model, we explore the influence of accounting for
uncertainties in both the fault dip and the surface trace of the fault
(Fig. 1). We choose to investigate the simple case of a 2-D infinite
fault to get a better understanding of the influence of basic fault
geometry parameters, such as fault dip and position. A 2-D model
avoids the 3-D complexity that will perturb the impact of a variation
of fault dip or position on inferred models. The investigation of a
realistic finite-fault inversion in 3-D is left for a subsequent study.

2 P R E D I C T I O N U N C E RTA I N T I E S D U E
T O I NA C C U R A C I E S I N T H E F O RWA R D
M O D E L

2.1 Uncertainties of the forward physical theory

We aim to infer a source model, m, based on observations, dobs, and
Green’s functions, G, that relate the displacement response of the
Earth’s surface to a unit displacement on a portion of the assumed
causative fault (i.e. a subfault or a fault patch). Estimated parameters
can thus be impacted by both observational and forward modelling,
or epistemic, errors.

Measurement errors can be instrumental or result from the mea-
surement method and conditions, such as atmospheric or topo-
graphic bias on Global Positioning System (GPS) and InSAR obser-
vations. A measurement error will result in a discrepancy between
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real surface displacement d and observations dobs. The observa-
tional uncertainty is generally accounted for in source estimation
problems by assuming that the real surface displacement d follows
a Gaussian distribution centred on the observations dobs. The dis-
crepancy between observations and real surface displacement is
characterized by a data covariance matrix Cd. The diagonal compo-
nents of Cd will reflect the variance of independent data, whereas
off-diagonal terms will add knowledge on the correlation of obser-
vational errors (e.g. Lohman & Simons 2005; Sudhaus & Jónsson
2009; Duputel et al. 2015; Bletery et al. 2016a). Cd contains all the
statistical information about the observations.

Uncertainties due to imperfect forward modelling will also influ-
ence inferred source model (e.g. Duputel et al. 2014). But, contrary
to observational uncertainties, such prediction or epistemic errors
are often not accounted for. When studying large events, epistemic
uncertainties may become larger (scaling approximately with slip
amplitude) while observation uncertainties will remain constant (in-
dependent of slip amplitude). In contrast, the effect of uncertainties
in the forward theory will be negligible for small events with poor
data: observational errors will dominate the error budget in such
cases.

The physics of the forward model is subject to numerous simpli-
fications such as material properties (e.g. rheology), fault geometry
or regional characteristics (e.g. topography). Inaccuracy in one of
these parameters or an oversimplification in the forward model will
corrupt the link between forward predictions dpred and real sur-
face displacement dobs. Suppose we assume a set of parameters
of the forward model �prior that are the most realistic a priori.
The prediction error thus manifests our imperfect knowledge of
dpred = G(�prior, m) for a particular resulting source model m and
the assumed set of non-inverted model parameters �prior. We assume
that the real surface displacement d follows a Gaussian distribution
centred on the predictions dpred with a prediction covariance matrix
Cp(m) that depends on the resulting source model.

The discrepancies between observations dobs and forward pre-
dictions dpred = G(�prior, m) can thus be determined by a misfit
function of the form

χ (m) = 1

2
[dobs − G(�prior, m)]T · C−1

χ · [dobs − G(�prior, m)], (1)

where Cχ (m) is the misfit covariance matrix defined as (Tarantola
2005; Minson et al. 2013, 2014; Duputel et al. 2014)

Cχ (m) = Cd + Cp(m). (2)

The misfit function χ (m) is defined as a criterion to select the pre-
ferred source model and is independent of the chosen inversion
method. The misfit function is minimized in an optimization ap-
proach or is part of the likelihood function of Bayesian analysis.
While the formalism of prediction uncertainty modelling has al-
ready been explored for shear modulus by Duputel et al. (2014), we
expand it here to include epistemic uncertainties due to imperfect
knowledge of fault geometry.

2.2 Theoretical development to account for inaccuracies
in fault geometry

Fault models are often described by a fixed dip, a fixed strike and
a fixed surface position, although occasionally some of these pa-
rameters have been solved for in simultaneous inversions of fault
parameters and slip distribution (e.g. Fukuda et al. 2010; Sun et
al. 2011Tinti et al. 2016; Liu et al. 2017) or via sequential estima-
tion (e.g. Huang et al. 2017). The inversion of the fault geometry

independent of slip should be interpreted carefully because of the
trade-off between assumed fault morphology and slip behaviour.

Mirroring the approach described in Duputel et al. (2014), we
can compute a prediction covariance matrix Cp accounting for the
uncertainty of fault geometry parameters. Suppose we choose an
uncertain and presumably inaccurate set of parameters �prior for
given generic fault properties �. We can explore the prediction
uncertainty by assuming that the predictions dpred = G(�, m) for
the generic fault properties � can be approximated by linearized
perturbations of the predictions G(�prior, m) for the fixed set of fault
geometry parameters �prior and the unknown source parameters m:

G(�, m) ≈ G(�prior, m) + K� (�prior, m) · (� − �prior), (3)

where the matrix K� (�prior, m) is the sensitivity kernel of the pre-
dictions with respect to fault geometry parameters. For most earth-
quakes, fault geometry is approximately known and the chosen pa-
rameters �prior are reasonable approximations of the true properties
�. Even if the predictions G(�, m) are nonlinear with respect to
fault geometry parameters, the limited variability between the true
� and the chosen �prior makes the perturbation � − �prior small
enough that the problem may be linearized.

Cp is calculated a priori, and as the predictions dpred =
G(�prior, mprior) depend both on the assumed fault parameters �prior

and on the assumed source model mprior, any variation in the source
model mprior will affect Cp(�prior, mprior) for a given fault geome-
try �prior. Once the source model mprior and fault parameters �prior

are selected, the source inversion problem being linear, we have
dpred = G(�prior) · mprior. Following the development of Duputel
et al. (2014), the prediction matrix describing uncertainty in fault
geometry parameters can be written as

Cp = K� · C� · KT
�, (4)

where

K� = KG
� · mprior, (5)

(KG
� )i jk(�prior) = ∂ Gik

∂ � j
(�prior), (6)

and C� is the standard deviation of the a priori distribution of
parameters �. We can then pre-compute the sensitivity kernels KG

�

without any dependence on the assumed model mprior. Note that we
apply this approach to a static slip inversion. The slip parameters
we solve for are thus included in the vector m while fixed fault
geometry parameters correspond to �prior in the above-mentioned
formulas.

2.3 Implementation of Cp in a source inversion problem

The prediction covariance matrix Cp can be included in the inver-
sion following two different approaches. In the first, Cp is calculated
a priori and included in the inversion process. The alternative ap-
proach that we use for our Bayesian formulation of the problem
is to update Cp with interim models at each step of the tempered
inversion (see later discussion in Section 2.3.2).

2.3.1 Calculation of Cp a priori

In this case, the data covariance matrix Cd is replaced by the misfit
covariance matrix Cχ = Cd + Cp. Once the sensitivity kernels KG

�

are pre-computed, the Cp value relies upon the choice of a priori
uncertainty on chosen parameters C� and of the assumed model
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mprior. Practically, mprior can be selected among a range of a priori
source models, such as the centroid moment tensor solution or a
resulting model solved without including Cp, that is, with Cχ = Cd.

2.3.2 Implementation of Cp in our Bayesian approach

In this study, most of the presented results are solved through a
Bayesian sampling approach that relies on the AlTar package, a
rewrite of the code CATMIP (Minson et al. 2013). AlTar combines
the Metropolis algorithm with a tempering process to realize an
iterative sampling of the solution space of the source models. A
large number of samples are tested in parallel at each transitional
step. Additionally, a resampling is performed at the end of each
tempering step to replace less probable models. The probability of
each sample to be selected depends on its likelihood. The ability
of each model parameter to solve the source problem is evaluated
through

f (m, βi ) ∝ p(m) · exp[−βi · χ (m)], (7)

with m being the current sample and p(m) the prior information on
this sample, χ (m) being the misfit function, i corresponding to each
iteration and the tempering parameter β evolving dynamically from
0 to 1 to improve the efficiency of the parameter space exploration
(Minson et al. 2013). Practically, this implementation of AlTar al-
lows us to recompute Cp at each tempering step by choosing the
mean of tested samples as the assumed model mprior. The predic-
tion covariance is thus updated following the evolution of the target
source model. We choose a uniform model of consistent magnitude
as the initial model. In the case where our target model is uniform,
we choose a uniform zero slip model as the initial model.

3 A S I M P L I F I E D 2 - D M O D E L :
A C C O U N T I N G F O R I NA C C U R A C I E S I N
T H E FAU LT D I P

To highlight the effect of uncertainty in fault dip, we consider a
synthetic 2-D case (Fig. 1). We assume a fault with a 20 km downdip
extent that extends infinitely along strike. The fault is discretized
along dip into subfaults of 1 km. The true dip of the fault is 55◦ for
our dip-slip case, and of 80◦ for the strike-slip case. For both cases,
we compute the corresponding synthetic observations using the
expressions of surface displacement in a homogeneous half-space,
modified after Segall (2010) to be dip-dependent (see equations in
the Appendix). These synthetic observations are computed for 100
data points at the surface, spaced every kilometre if within a distance
of 30 km from the fault, and every 2 km if at greater distances (i.e.
from 30 to 70 km away from the fault trace). This uneven distribution
of data points is driven by the rapid decay of the surface deformation
with distance and the better resolution of fault slip by observations
close to the fault (a few fault widths in this case, e.g. Lohman &
Simons 2005). An uncorrelated Gaussian noise of 7 mm is added
to the observations to simulate measurement errors. The choice
of a 7 mm noise amplitude derives from values of uncertainties
associated with coseismic GPS offsets of continental earthquakes,
that are in average of 2–5 per cent the amount of displacement (for
instance, for the 2009 Mw 6.3 l’Aquila, 2015 Mw 7.8 Pedernales or
2015 Mw 7.8 Gorkha earthquakes). The effect of spatial correlation
of the noise is explored in Section 2.3.

Using these 100 synthetic data points, we then estimate the depth
distribution of slip with AlTar, still assuming a homogeneous elas-
tic half-space, but with an incorrect fault geometry: the dip is 5◦

different from the true value, that is 50◦ instead of 55◦ for the dip-
slip scenario and 75◦ instead of 80◦ for the strike-slip scenario. We
account for uncertainty of the fault dip following the formulation
of Cp defined in Section 3.2.

3.1 Calculation of Cp

Here, we want to account for the uncertainty in just the fault dip.
To calculate Cp following eq. (4), we need to pre-compute the
sensitivity kernel Kdip of Green’s functions with respect to the dip
parameter, and to choose a covariance Cdip that will describe the
uncertainty of the fault dip.

Suppose the assumed, but incorrect dip parameter is dprior. For
each of the ten dip integer values di on the range [dprior − 5◦:
dprior + 5◦], we compute the matrix Gdi of Green’s functions. Re-
garding the small perturbations of the Green’s functions on this
restricted dip interval, we linearize the evolution of each element of
matrix Gdi . Given

Kdip = ∂ Gd

∂ d
, (8)

each element of matrix Kdip is thus equal to the slope of the linear
regression of Gd. The evolution and linear regression of Gd is shown
in Fig. 2 for six elements of the matrix. For most of Gd components,
the linearization well approximates the evolution of the Green’s
functions (Figs 2b–d,f,g). When there is a critical point on this dip
interval (Fig. 2e), the linearization is not a good approximation of
Gd but rather an average of the variation of the Green’s functions.

We choose a covariance Cdip that corresponds to a standard de-
viation of 5◦ from the assumed value (50◦ or 75◦ in our case). Cp is
recalculated at each step of our inversion. The posterior Cp (i.e. the
Cp calculated at the last tempering iteration) is represented in Fig. 3.
Epistemic uncertainties are generally higher near the fault (Fig. 3),
and roughly proportional to the amplitude of observations as pro-
posed by Minson et al. (2013). Cp values also follow the variation
with distance to the fault of the difference between dip-dependent
surface displacements (Fig. 4). For instance, Cp for the vertical dis-
placement reproduces this variation: left of the fault (upper left-hand
part of Fig. 3b), the distance between vertical displacement from a
50◦ and a 55◦ dipping fault increases towards the fault (Fig. 4b).
Right of the fault (lower right-hand part of Fig. 3b), the distance
between the 50◦ and 55◦ curves is low near the fault, tends to zero
around 10 km from the fault, increases around 20 km and decreases
to zero in far field (Fig. 4b). Cp values will vary with the assumed
dip, and this variation will be conditioned by the discrepancy be-
tween assumed and true dips, but also by their own value (80◦ and
85◦ or 30◦ and 35◦). Cp values are also 10 times larger for predic-
tions in the strike-perpendicular direction than in other directions
(Fig. 3c), as surface displacement is dominant in this direction for a
55◦ dipping fault (Fig. 4). The difference between surface displace-
ments due to faults with different dips (assumed or true one) thus
explains the scaling and asymmetries of Cp (between left and right
side of the fault).

3.2 Influence of prediction uncertainty on the inferred slip
distribution

We now evaluate the effect of accounting for prediction uncertainty
in the inversion by comparing slip models inferred with or without
Cp. The synthetic data are computed for a uniform slip model of
1 m from 20 km downdip to the surface (grey vertical bars in Fig. 5).
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1178 T. Ragon, A. Sladen and M. Simons

Figure 2. Variation of six components of the matrix of the Green’s functions for an infinitely long fault along strike with a dip varying between 45◦ and 55◦.
The Green’s function components are vertical surface displacement (a) components for a distance of −3, 5 and 48 km to the fault [respectively (b) and (e), (c)
and (f) and (d) and (g)]. Components are shown for the third downdip parameter [shallow part of the fault, plots (b), (c) and (d)] or the 13th parameter [deeper
part of the fault, plots (e), (f) and (g)]. Green’s functions variation is shown in blue, whereas linearized Green’s functions are shown in orange. The slope of
linearized Green’s functions is taken as component of the sensitivity kernel Kdip.

We use a uniform prior distribution p(m) = U(−0.5 m, 5 m) (uni-
form implies that all values are considered equally likely with no a
priori knowledge) and include 7 mm of observational uncertainty
in Cd.

The posterior mean model as well as the marginal probability
density functions (PDFs) for each fault patch are presented in Fig. 5.
The inversion results have been solved neglecting Cp (Figs 5a and c)
or including Cp (Figs 5b and d), respectively, for the dip-slip and
the strike-slip scenarios. PDFs reproduce the number of samples
in the last iteration that account for a particular value of a model
parameter. A narrower posterior PDF means that the parameter is
more accurately estimated as a large set of samples agree on a very
limited range of values.

The introduction of Cp significantly improves the posterior model
estimations. Both in the dip-slip and strike-slip cases, the inferred
model accounting for Cp is a far better approximation of the target
model than the one without Cp, with this improvement found at
all depths. For the shallow slip distribution, posterior PDFs are
very narrow but yet their mean is offset from the target model if
we ignore epistemic uncertainties (Figs 5a and c). Accounting for
Cp, posterior PDFs for shallow patches are broader but their mean

matches the target slip model. Cp has an even stronger influence
on the deeper parts of the fault. When Cp is not accounted for, the
error of the mean model distribution is about 1 m for dip-slip and up
to 70 cm for strike-slip. For the dip slip case, the deepest subfault
totally excludes the target value from the interval of uncertainty
(Fig. 5a). Again, including Cp gives posterior distributions that
are broader (see patch 14–15 for dip-slip in Fig. 5b) but, more
interestingly, centred around a mean model agreeing almost exactly
with the target model. Accounting for Cp, offsets between target
and inferred models are less than 10 cm, and generally range less
than 5 cm.

In Fig. 6, we compare the synthetic observations, the surface
displacements induced by the target model and the predictions
of the mean model with or without including Cp (the last three
with an incorrect dip). As expected, the predictions are slightly
different from the observations because they were not produced
assuming the same fault geometry (dip = 50◦ and 75◦ usedfor
the inversion, and dip = 55◦ and 80◦ used to create the data).
The posterior uncertainty on predictions is large as following the
uncertainty on the parameters that generally reaches 70 cm. In-
terestingly, we note that the RMS is smaller for the worst slip
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Accounting for uncertain fault geometry – I 1179

Figure 3. Matrix Cp quantifying the influence of fault dip uncertainty on predictions in the case of a strike-slip fault (a) or dip-slip fault: (b) and (c) for
vertical and strike perpendicular displacements, respectively. Near centre Cp values correspond to near-fault data points, whereas near edge values (upper left
and bottom right) correspond to far-field predictions (respectively in the hanging wall and foot wall). Cp is a covariance matrix of the predictions, and thus the
variance of predictions for a variation of dip corresponds to diagonal values. The assumed fault is 20 km wide, with a 55◦ dip and is infinite along strike. These
figures are computed using a uniform mprior slip value of 1 m.

Figure 4. Influence of dip variation on surface displacement in function of
the distance to the fault, for an infinite fault along strike with a 1 m uniform
slip from 20 km downdip to the surface.

model: the one with no Cp has a RMS of 5.5 mm for horizontal
displacement and 3.5 mm for vertical, while the almost perfectly
solved slip distribution with Cp has a RMS of 6.4 mm for horizon-
tal and 4.4 mm for vertical displacement. A similar behaviour is
described in Duputel et al. (2014) and is consistent with allowing
for correlated misfits. The misfit function can be rewritten (from
eq. 1) χ (m) = 1

2 (Rdobs − Rdpred)T · (Rdobs − Rdpred), where R is
the Cholesky decomposition of C−1

χ = RT · R. The standardized
data and predictions, respectively Rdobs and Rdpred, thus differ in

function of which Cχ is used (including Cp or not). When includ-
ing Cp, the offset between standardized data and predictions from
the target model is two times larger than when no Cp is used (see
Fig. S1 of the Supporting Information for a comparison of stan-
dardized data and predictions with or without Cp). In other words,
the inclusion of Cp increases the impact of the fault dip on surface
displacements, and makes the fit of observations harder to reach.

Thus, the model with no Cp fits the observations better but is
not in agreement with the target model. In contrast, the model
accounting for Cp does not overfit components of the mis-
fit associated with potential model deficiencies. Similarly, when
we assume a strictly positive prior (p(m) = U(0 m, 5 m) in-
stead of p(m) = U(−0.5 m, 5 m)), the model with Cp bet-
ter approaches the target model (Fig. S2, Supporting Informa-
tion). These conclusions also hold when the fault dip is off
by 10◦ from the correct fault dip (Fig. S3, Supporting Infor-
mation). When assuming a fault dipping 45◦, the target model
is less well approached than with a 50◦ dipping fault but
the inferred model is still a good approximation. We also explore
the impact of including in an inverse problem for a non-uniform
target model. As for the uniform target model case, the differences
between posterior PDFs and mean model distribution with or with-
out including are compelling (Figs S4 and S5, Supporting Informa-
tion). We also investigate the impact of the assumed standard devia-
tion . If C� is undervalued, inferred model is farther from the target
model than with a right standard deviation (Fig. S6, Supporting
Information). Additionally, if the observational errors are underes-
timated, assuming undervalued standard deviation can lead to an
inferred model at odd with the target model (Fig. S7, Supporting
Information). And even if the standard deviation C� is not under-
valued, only the assumption of correct observational errors allows to
infer a perfect estimation of the target model (compare Figs S6 and
S7, Supporting Information). Similarly, the effect of spatially cor-
related noise in the observations is negligible if the noise amplitude
is not underestimated (Fig. S8, Supporting Information).
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1180 T. Ragon, A. Sladen and M. Simons

(a) (b) (c) (d)

Figure 5. Comparison of inversion results with and without neglecting Cp. The uniform target slip model is shown as a grey vertical bar. The posterior PDFs
are shown in (a) and (c) when the prediction uncertainty is neglected and in (b) and (d) if Cp is included in the inversion, respectively, for dip-slip and strike-slip
behaviour. The posterior mean model is indicated with a vertical grey dotted line. The offset between target model and posterior mean is displayed with a
colour scale saturated at 50 cm.

4 A S I M P L I F I E D 2 - D M O D E L :
A C C O U N T I N G F O R I NA C C U R A C I E S O N
T H E FAU LT S U R FA C E T R A C E
L O C AT I O N

Given the importance of accounting for dip uncertainty, we examine
the influence of uncertainties on the fault location within the same
simplified approach (Fig. 1). The three main parameters allowing to
describe a planar fault geometry are the fault dip, already investi-
gated, and the fault strike and position. The variation of fault strike
is inherently a 3-D problem. The impact of a priori inaccuracies
on strike parameter will thus be dependent on (1) the considered
earthquake and (2) the data distribution. In contrast, the variation
of fault tip location can be investigated in a 2-D synthetic case.

We still consider the 2-D synthetic case of a fault with a 20 km
long downdip extent that prolongs infinitely along strike, discretized
along dip into subfaults of 1 km and with a true dip of 55◦ or 80◦,
respectively, for dip-slip or strike-slip cases. This time, we invert
for a fault location shifted 2 km from the original one, with dip
parameters set to their true value. To avoid the unrealistic case of
having ground displacement measurements incompatible with the
fault trace, we do not take into account the nearest faults obser-
vations (i.e. data points adjacent to the true fault, adjacent to the
assumed shifted fault and in between observations). Five observa-
tion points are thus removed, between −1 and 3 km offset from
the true fault position. Given the zero offset synthetic observations,
we account for uncertainty of the fault location according to the
formulation of Cp defined in Section 2.3.
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(a)

(b)

(c)

Figure 6. Comparisons between synthetic data and predictions with and without accounting for Cp. We assume the slip on the fault to be uniform and equal to 1 m.
The location of the fault surface rupture is shown with a grey vertical line. Dip-slip behaviour (assumed fault dip of 50◦) generates strike-perpendicular surface
displacement (a) and vertical surface displacement (b), whereas strike-slip (assumed fault dip of 75◦) behaviour produces only strike-parallel displacement (c).
The data points (i.e. generated by a slip on the true fault) are shown in blue. The displacements in khaki green are produced by the 1 m uniform target model
assuming an incorrect fault dip. The predictions shown in orange and green are calculated from the posterior mean model, respectively, without and with Cp

included. The orange and green vertical bars correspond to the 1σ posterior uncertainty on the predictions, respectively, without and with Cp included.

4.1 Calculation of Cp

We pre-compute the sensitivity kernels Kshift following the same
framework as for the dip parameter (Section 3.1). Assuming an
incorrect shift of the fault sprior and a range of uncertainty es of
3 km, we compute the matrices Gsi Green’s functions for each fault
offset in the range [sprior − es: sprior + es]. Each element of Kshift is
estimated by the slope of the linear regression of Gs. We choose
an incorrect shift of the fault equal to 2 km and a covariance Cshift

corresponding to a standard deviation of 2 km.

4.2 Influence of prediction uncertainty on inferred slip
distributions

Synthetic observations are calculated from a non-shifted fault and
for a uniform slip model of 1 m as shown in Fig. 7. We use a uniform
prior distribution p(m) = U(−0.5 m, 5 m) and we include 7 mm
of measurement errors in Cd. The posterior mean model as well
as the PDFs for each fault patch are presented in Fig. 7. We run
the inversion with and without Cp (Figs 7b and d or Figs 7a and c,
respectively) respectively for dip-slip and strike-slip cases.

The inclusion of uncertainty on fault position improves the es-
timation of the slip parameters for both the dip-slip and strike-slip
scenarios. However, the improvements brought by the inclusion of
Cp are not the same as when the dip is uncertain. When the fault
location is shifted, the shallowest subfaults (first 7 km) are the less
well resolved and, if we ignore Cp, the mean model can be off from
the target model (1 m homogenous slip) by more than 3 m (Figs 7a
and c). For some shallow subfaults, the target value is totally ex-
cluded from the interval of probable parameters (Figs 7a and c).
Even when introducing Cp, the recovery of the target model is not
perfect for the shallowest subfaults for the dip-slip case, with up to
20 cm offset between target and mean models (Fig. 7b). Estimates
of slip on deeper subfaults is improved when accounting for Cp.

We explain the poor resolution at shallow depth by the compound
effect of (1) the lack of near-fault data, and (2) the greater influence
of an incorrect fault position on the near-field data. These data are
mainly sensitive to shallow slip. Indeed, the largest difference be-
tween data and model predictions is near the surface trace of the fault
(Fig. 8). In Fig. 8, we compare the synthetic observations (calcu-
lated with a zero offset fault) and the surface displacements induced
by the target model and the predictions with or without including
Cp (the last three with a 2 km shifted fault). As expected, the target
model predictions and the observations are different as produced
by faults of various position. As in the case of an uncertain dip an-
gle, the RMS of residuals between observations and predictions are
higher when Cp is included (RMS of 6.1, 1.3 and 3.3 mm, respec-
tively, for strike-perpendicular, strike-parallel and up displacement)
than when Cp is neglected (RMS of 5.9, 1.0 and 3.4 mm, respec-
tively, for strike-perpendicular, strike-parallel and up displacement).
Thus, the model inferred without Cp better fits the observations
while being unable to reach the target slip distribution. In con-
trast, the model including Cp solves the problem while being less
confident on the accuracy of the observations. The introduction of
fault position uncertainty in the inverse problem allows to increase
the resolution of shallow slip distribution. These conclusions also
hold for a non-uniform slip model (Figs S9 and S10, Supporting
Information).

The simplified toy models presented here, thus, illustrate the
relevance of accounting for fault position inaccuracies in the inverse
problem. The formulation of the prediction covariance matrix Cp

allows us to reliably estimate the posterior distribution of source
model parameters inverted with an incorrect fault trace location.
In particular, the inclusion of Cp allows more realistic estimates
of shallow slip when there is uncertainty about the exact surface
extent of a fault rupture.
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(a) (b) (c) (d)

Figure 7. Comparison of inversion results with and without incorporating Cp. The uniform target slip model is shown as a grey vertical bar. The posterior
PDFs are shown in (a) and (c) when the prediction uncertainty is neglected and in (b) and (d) if Cp is included in the inversion, respectively, for dip-slip and
strike-slip behaviour. The posterior mean model is indicated with a vertical grey dotted line. The offset between target model and posterior mean is displayed
with a colour scale saturated at 50 cm.

5 D I S C U S S I O N

5.1 Influence of uncertainties in fault geometry

When there is ambiguity in the fault geometry, which will always
be the case to some extent, our synthetic tests reveal that accounting
for this uncertainty allows one to match the target slip distribution
with minimal errors. Not accounting for these uncertainties can
induce artefacts in the inferred slip distributions. The inclusion of
Cp improves the robustness of the solution.

Cp is not limited to probabilistic algorithms and can also be ac-
counted for when treating the inverse problem with an optimization
approach. To ensure that the proposed Cp formalism works for both
Bayesian and optimization approaches, we perform similar tests as

in the Bayesian framework (Section 3.1). The tests and results are
detailed in Supporting Information. We compute Cp a priori and
use the result of the optimization neglecting Cp as initial model (see
Section 2.3.1). We perform a non-negative least squares inversion
and include spatial smoothing following the approach of Tarantola
(2005). The choice of regularization parameters is explained in Fig.
S11 (Supporting Information). The inferred parameters and their
posterior uncertainty are presented in Fig. S12 (Supporting Infor-
mation). Similar to the Bayesian tests, the ability of the optimization
algorithm to approach the target slip model depends on the inclusion
of Cp. If the assumed fault geometry is incorrect and related un-
certainties not accounted for (Fig. S12a, Supporting Information),
the inferred model is at odds with the target model. Conversely, the
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(a)

(b)

(c)

Figure 8. Comparisons between synthetic data and predictions with and without accounting for Cp. We assume the slip on the fault to be uniform and equal
to 1 m. The correct location of the fault surface rupture is shown with a grey vertical line, whereas the assumed fault position is shown by a dotted grey
vertical line. Dip-slip behaviour generates a strike-perpendicular surface displacement (a) and vertical surface displacement (b), whereas strike-slip behaviour
produces only strike-parallel displacement (c). The data points (i.e. generated by a slip on the true fault) are shown in blue. The displacements in khaki green
are produced by the 1 m uniform target model assuming an incorrect fault dip. The predictions shown in orange and green are calculated from the posterior
mean model, respectively, without and with Cp included. The orange and green vertical bars correspond to the 1σ posterior uncertainty on the predictions,
respectively, without and with Cp included. The five missing data points around the faults position have been removed to simulate a real case.

inclusion of Cp in the optimization allows the quasi-perfect approx-
imation of the target model (Fig. S12b, Supporting Information).

When neglecting Cp, whether it be with an optimization or a
Bayesian approach, predictions of inferred source models approach
the observations as much as possible ignoring the limitations of
the forward model. In this case, we place too much confidence
or weight in our residuals given our limited ability to predict the
observations. Instead, with the introduction of Cp, we allow for
a larger misfit between observations and predictions. The result
of the inversion might seem counter-intuitive because the inferred
model approaches the target model but with an increase in misfit.
This apparent paradox illustrates the aim of Cp, which adjusts the
confidence in each observation such that the inversion algorithm is
guided by information that is less dependent on inaccurate forward
theory. The end result of including Cp is a higher standard deviation
of the posterior slip distribution but a more reliable estimate of its
maximum likelihood values. If the assumed geometry is incorrect
by only a few degrees or a couple of kilometres, as in our simple
2-D tests, observations can be well fit by a slip model at odds with
the true model.

The issue of overconfidence brings into question the rigour of
solving for some fault geometry parameters before or during the
inversion of the slip distribution if Cp is not included. If only one
or two fault geometry parameters (e.g. strike and dip) are solved,
while another (fault position) is assumed correct when it is not,
the resulting source model and fault parameters are possibly all
incorrect. Hence, to infer a robust solution, the uncertainty of all
parameters that are not part of the inversion should be quantified.

Thus, if the studied fault is of particularly complex morphology,
one would want to include the uncertainty related to this complexity
in the inversion. Indeed, faults are frequently modelled as planar but

are a lot more complex in reality: curved along dip, bent or seg-
mented along strike. The Cp matrix is designed to include all kinds
of geometrical complexities, the only limitation being our ability to
compute the Green’s Functions accordingly. For a fault segmented
along strike, the covariance between azimuths of fault segments can
be included within the non-diagonal terms of the covariance matrix
C� . For instance, for a two-segments planar fault, C� will be of size
(2,2). Then, the variation of the Green’s functions with the strike of
each segment will be introduced with two sensitivity kernels K� ,
one for each segment. For a curved fault, the relation between geo-
metrical parameters (dip of subfaults or strike of subfaults) can also
be introduced within C� . Using Cp, random geometrical complex-
ities (bends, segments) could be included in the inversion process
to simulate the impact of an unknown fault roughness. Yet, the un-
certainties in fault dip, strike or position, which are the first-order
parameters controlling the fault geometry, are assumed to have the
largest contribution on uncertainties of the fault geometry. Thus,
including uncertainties of the main fault geometry parameters may
be sufficient to acknowledge (or overwhelm) most of uncertainties
due to geometrical complexities.

To calculate the sensitivity kernels, we have linearized the evo-
lution of Green’s functions with respect to fault geometry, the per-
turbation of predictions being small enough on a restricted fault
geometry parameter interval. We show that this approximation is
validated in the case of synthetics tests. For highly uncertain fault
geometries, this linearization may not be justified.

Note that, in the simplified case of 1 m dip slip, epistemic uncer-
tainties related to fault dip (reaching maximal values of ∼7.10−2 m
for strike-perpendicular displacement, Fig. S13c of the Supporting
Information) can be of more than 103 times higher than observa-
tional uncertainties (σ 2, ∼10−5 m), when we assume a 5◦ standard
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deviation on our preferred fault dip. If we consider the case of great
earthquakes with an average of 10 m of dip slip, such as the Mw 9.0,
2011, Tohoku-Oki earthquake, observational errors will remain on
the order of 10−6–10−3m (around the mm standard deviation for
GPS, cm for InSAR). In contrast, epistemic uncertainties could
reach 1 m, as they scale with the square of the slip. Epistemic un-
certainties could thus be three to six orders of magnitude larger than
observational errors for great earthquakes, assuming that only one
fault geometry parameter is inaccurate. This ratio is up to 103 times
greater than for our simplified 2-D case, showing that uncertainties
in fault geometry would be of critical importance when studying
great (Mw > 8) and well observed earthquakes.

Looking more closely at the details of our 2-D synthetic tests,
we observe that the influence of uncertainty on the fault geometry
is different depending on which parameter is analyzed. The uncer-
tainty in fault dip has a stronger influence on the deepest parts of
the fault, which can be explained by the increase with depth of the
offset between true and assumed fault structures (the location of the
fault surface rupture remains the same). Conversely, the uncertainty
on fault position mainly impacts the fit of near-fault observations
and the estimation of shallow slip. Hence, the impact of uncertainty
in the fault geometry will depend on the unknown slip distribution.

The result of the inverse problem will also depend on the dis-
tribution of surface displacement data. As illustrated in Fig. 4, the
influence of dip variation on surface displacement varies with the
distance to the fault. Therefore, if observations are concentrated
in areas where the surface displacement has a strong gradient (i.e.
where observations allow to better resolve slip on the fault), the
impact of dip uncertainty on source estimation will increase. Near-
fault observations will be the most affected by an incorrect fault
position. If near-fault data are unavailable, the weight of uncertain-
ties will thus be reduced. Thus, the impact of uncertainty in fault
geometry will also depend on the data distribution. The link be-
tween epistemic uncertainties and surface displacement amplitude
is particularly striking when looking at Cp values (Fig. 3). In the
case of a subduction event with observations very far to the fault,
the impact of uncertainties in the fault geometry thus could be lesser
than for a well-instrumented continental earthquake.

The impact of an inaccurate fault position might have contributed
to the debate on a possible shallow slip deficit for continental earth-
quakes, that is, a systematic discrepancy between the amount of slip
in the near surface and on the rest of the fault (Simons et al. 2002;
Kaneko & Fialko 2011). The shallow slip deficit could be explained
by combined effects: a lack of near-fault observations (Xu et al.
2016), inelastic deformation (Simons et al. 2002; Kaneko & Fialko
2011; Gombert et al. 2017) and/or incorrect forward modelling of
Earth elastic properties (Simons et al. 2002; Xu et al. 2016). But
the shallow slip deficit studies are, by happenstance, usually based
on strike-slip earthquakes with long and complex surface fault trace
(Xu et al. 2016). Thus, even the construction of an elaborated fault
morphology remains a simplification of the reality. For the Mw 7.2
2010 El Mayor Cucapah earthquake, Mexico, the assumed fault
geometry can be offset by more than 2 km in the case of a two-
segment fault model (Wei et al. 2011) or by more than 1 km for a
six-segment fault model (Xu et al. 2016). Yet, in our toy models, a
shift of the fault of 2 km induces a significant bias on the estimate
of the shallow slip distribution. Part of the observed shallow slip
deficit could, thus, result from inaccurate models of the fault ge-
ometry. The introduction of Cp in such studies could provide more
insight on the importance of the shallow slip deficit.

Earthquake-induced tsunamis are primarily controlled by the
amount of seafloor deformation. Therefore, tsunami amplitude is

highly sensitive to the distribution and amplitude of shallow slip
(e.g. Geist & Dmowska 1999; Geist et al. 2006) and variations on
fault dip (Tanioka & Satake 1996; Goda et al. 2014; Bletery et al.
2015). Slip and geometry of the ruptured fault can thus be consid-
ered as major sources of uncertainty for predicting tsunami hazards
and observations (Goda et al. 2014). Unfortunately, up dip ruptured
fault geometry is poorly constrained for megathrust earthquakes
(Lay et al. 2005; Moore et al. 2007). We showed that inferred slip
can be biased if the assumed fault structure is inaccurate. Uncer-
tainty in fault geometry and its impact on shallow slip could thus
also influence near-surface slip estimates of megathrust events and
thus have potential implications for tsunami predictions.

5.2 Accounting for uncertainties in both fault geometry
and Earth structure

Fault geometry parameters are not the only parameters that are
held fixed in source estimation problems. Earth structure is often
chosen a priori despite being an important source of epistemic
uncertainty (e.g. Beresnev 2003; Duputel et al. 2014). And just as
with fault geometry, Earth structure is almost never known perfectly.
With the same toy model, we investigate the relative influence of
uncertainty on both fault geometry and Earth structure. To generate
our synthetic data, we assume a pure vertical and strike-slip fault
with a 20 km long down-dip extent, that prolongs infinitely along
strike, and which is discretized every kilometre along dip. This fault
is embedded in a 30 km thick low compliance layer of shear modulus
μ1, overlying an elastic half-space of shear modulus μ2. We define
the shear modulus of both layers so that the ratio of the moduli
(μ2/μ1) is equal to 1.3. Synthetic observations are calculated for
100 data points irregularly distributed at the surface, using analytical
expressions of surface displacements for 1 m of uniform slip on a
strike-slip fault within a layer over a half-space (Segall 2010).

For the inversion, we assume a fault with a dip of 85◦ and
calculate our Green’s functions for an homogeneous elastic half-
space of shear modulus μ2. To account for uncertainties on both
fault geometry and Earth model, Cfault

p and Cearth
p are calculated a

priori, following the approach defined in Section 2.3 and in Du-
putel et al. (2014). The initial model is chosen as the result of an
inversion not accounting for any prediction uncertainty. Cfault

p or
Cearth

p or both are then added to a 7 mm data covariance matrix
Cd, and the misfit covariance matrix Cχ = Cd(+Cfault

p )(+Cearth
p ) re-

places Cd in the inversion process. We then estimate the slip distri-
bution with our Bayesian approach (approximately 60 000 samples
are explored at each tempering step) with a uniform prior distribu-
tion p(m) = U(−0.5 m, 5 m).

The posterior mean model as well as the PDFs for each fault
patch are presented in Fig. 9. The inversion results have been solved
either neglecting Cfault

p and Cearth
p (Fig. 9a), including Cfault

p only
(Fig. 9b), Cearth

p only (Fig. 9c) or both (Fig. 9d). As expected, with
no Cp included, the inversion recovers the uniform 1 m target model
poorly (Fig. 9a). The inclusion of only one type of uncertainty does
not improve the fit to the target model either (Figs 9b and c): in
both cases, the model misfit does not exceed 1 m but is also rarely
below 25 cm. Only the introduction of both types of uncertainty
allows us to recover the target model, with a model misfit below
10 cm for most of subfaults [difference reach 20 cm (20 per cent)
on the two deepest fault segments]. The predictions are very close
to the observations whether Cp is included or not. The RMS on
the surface displacement data is lower when one or no Cp term is
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(a) (b) (c) (d)

Figure 9. Comparison of inversion results with and without incorporating the prediction uncertainty. The uniform target slip model is shown as a grey vertical
bar. The true fault is vertical and embedded in a 30 km thick shallow low compliance layer overlying an elastic half-space. The assumed fault is of 85◦ dip
embedded in an elastic half-space. The posterior PDFs are shown in (a) when the prediction uncertainty is neglected and in (b) and (c) if only Cfault

p or Cearth
p

is included in the inversion. In (d), both uncertainties on fault geometry and Earth structure are included in the source problem. The posterior mean model is
indicated with a vertical grey dotted line. The offset between target model and posterior mean is displayed with a colour scale saturated at 50 cm.

included (2.0 mm). When both Cfault
p and Cearth

p are accounted for,
data residuals are higher (RMS of 2.7 mm).

The relative importance of inaccuracies on fault geometry and
Earth structure will be variable between an earthquake and an-
other. Yet, in our toy model, realistic errors on fault geometry and
rheology have an equivalent influence on inferred models. This
simple approach thus highlights the need to account for the uncer-
tainties associated with all parameters of the forward model that are
not inverted for.

6 C O N C LU S I O N

Inversion method, parametrization of the problem and simplifica-
tions of the forward physics are many factors responsible for the
ill-posed nature of the inverse problem. Among these factors, the
assumed Earth structure and fault geometry are simplifications of
the reality and have a major impact on the source analysis. Indeed,
fixed values of fault geometry parameters or Earth elastic proper-
ties are inherently unrealistic (as not reflecting the roughness of the
fault and of the Earth), but more importantly are uncertain. The
uncertainties of a source inversion problem are defined in the misfit
covariance matrix Cχ . This covariance matrix is involved in the
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inversion process as part of the misfit function, which is used as
a criterion to select the preferred source model in any inversion
method. Although observational errors Cd are generally included
in Cχ , epistemic uncertainties that are related to the forward prob-
lem are often ignored. However, we show that uncertainties in fault
geometry could be 103–106 times higher than observational errors
(σ 2) for well-observed great earthquakes (Mw > 8).

To account for uncertainties in the fault geometry, we propose
a formalism based on small perturbation theory that limits its ap-
plication to events for which the gross characteristics of the fault
geometry are known. This formalism is designed for any inver-
sion method, and is tested here for optimization and Bayesian ap-
proaches. A prediction covariance matrix Cp is quantified from the
sensitivity of forward predictions with respect to the variation of a
particular fault geometry parameter. Then, we assume an evolved
misfit covariance matrix Cχ = Cd + Cp in the inversion process,
regardless of which sampling method is chosen. In practice, we try
our formalism for uncertainties on the fault dip and fault position, a
parametrization motivated by simplicity and the large range of pos-
sible fault configurations which can then be addressed. The mere
inclusion of uncertainty in the fault dip and position reproduces the
first-order inaccuracies when defining a particular fault structure.
Accounting for related uncertainties in the inversion process, what-
ever the inversion method, allows to reliably estimate the posterior
distribution of source model parameters. In particular, we find that
uncertainty on the fault dip and position have complementary influ-
ence, and allow to improve the reliability of slip estimates both on
the shallow and deep parts of the fault. When introducing Cp in the
inversion process, we prevent the predictions to be overconfident in
the data. This modification of the inverse problem leads to a robust
posterior source model. Finally, we investigate the joint impact of
uncertainties in the Earth structure and fault geometry. Our results
emphasize the need to account for both sources of uncertainty to
obtain a robust source model.

Uncertainty in fault geometry could thus have biased shallow
slip estimates for numerous earthquakes. Inaccuracy of assumed up
dip fault structures could be another contributor to the observed
shallow slip deficit for continental earthquakes. The poorly con-
strained morphology of ruptured faults for megathrust events could
also have a high impact on near-surface slip estimates and potential
implications for the tsunami hazard assessment.

The results of this study are accurate for our 2-D simplified
application of an infinitely long fault. Although the discrepancy
between assumed and true fault geometries is similar to what can
be observed for real events, the striking impact of uncertainties
in fault geometry may be enhanced by our simplified approach.
Nevertheless, accounting for uncertainty of the forward problem
allows us to infer source models with a level of precision that is not
reachable otherwise.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.
Figure S1. Comparisons between standardized data and predictions
with and without accounting for Cp, for a fault with dip-slip motion
and assuming an incorrect dip angle. The location of the fault sur-
face rupture is shown with a grey vertical line. Standardized data
and predictions without accounting for Cp (i.e. Cχ = Cd) are shown
in (a) and (b), respectively, for strike perpendicular and vertical sur-
face displacements. Standardized data and predictions accounting
for Cp (i.e. Cχ = Cp + Cd) are shown in (c) and (d). The standard-
ized observations Rdobs (with Cχ

-1 = RTR) are shown in blue. The
standardized displacements in khaki green are produced by the 1 m
uniform target model assuming an incorrect fault dip. The standard-
ized predictions Rdpred shown in orange and green are calculated
from the posterior mean model, respectively, without and with Cp

included (and thus with a different R matrix).
Figure S2. Comparison of inversion results with and without ne-
glecting the prediction uncertainty, for a dip-slip scenario with vary-
ing assumed prior. The uniform target slip model is shown as a grey
vertical bar. In (a) and (b), the assumed prior allows for 50 cm of up
dip slip, whereas in (c) and (d) the prior is strictly positive. The pos-
terior PDFs are shown in (a) and (c) when the prediction uncertainty
is neglected and in (b) and (d) if Cp is included in the inversion. The
posterior mean model is indicated with a vertical grey dotted line.
The offset between target model and posterior mean is displayed
with a colour scale saturated at 50 cm.
Figure S3. Comparison of inversion results with and without ne-
glecting the prediction uncertainty, for a dip-slip scenario. The uni-
form target slip model is shown as a grey vertical bar. The correct
fault is of 55◦ dip, whereas the assumed fault for inversion is of
50◦ dip in (a) and (b) and of 45◦ dip in (c) and (d). The posterior
PDFs are shown in (a) and (c) when the prediction uncertainty is
neglected and in (b) and (d) if Cp is included in the inversion. The
posterior mean model is indicated with a vertical grey dotted line.
The offset between target model and posterior mean is displayed
with a colour scale saturated at 50 cm.
Figure S4. Comparison of inversion results with and without ne-
glecting the prediction uncertainty. The non-uniform target slip
model is shown as a grey vertical bar. The posterior PDFs are

shown in (a) and (c) when the prediction uncertainty is neglected
and in (b) and (d) if Cp is included in the inversion, respectively,
for dip-slip and strike-slip behaviour. The posterior mean model is
indicated with a vertical grey dotted line. The offset between target
model and posterior mean is displayed with a colour scale saturated
at 50 cm.
Figure S5. Comparisons between synthetic data and predictions
with and without accounting for Cp. We assume the slip on the
fault to be non-uniform. The location of the fault surface rupture
is shown with a grey vertical line. Dip-slip behaviour (assumed
fault dip of 50◦) generates cross strike surface displacement (a) and
vertical surface displacement (b), whereas strikeslip (assumed fault
dip of 75◦) behaviour produces only strike parallel displacement
(c). The data points (i.e. generated by a slip on the true fault) are
shown in blue. The displacements in khaki green are produced
by the 1 m uniform target model assuming an incorrect fault dip.
The predictions shown in orange and green are calculated from the
posterior mean model, respectively, without and with Cp included.
Figure S6. Comparison of inversion results with or without ne-
glecting for the prediction uncertainty for a dip-slip scenario. The
uniform target slip model is shown as a grey vertical bar. The pos-
terior PDFs are shown in (a) when the prediction uncertainty is
neglected. When Cp is included in the inversion, the assumed stan-
dard deviation varies from 1◦, 5◦ to 10◦ respectively, in (b), (c)
and (d). The posterior mean model is indicated with a vertical grey
dotted line. The offset between target model and posterior mean is
displayed with a colour scale saturated at 50 cm.
Figure S7. Comparison of inversion results with or without ne-
glecting for the prediction uncertainty for a dip-slip scenario. The
uniform target slip model is shown as a grey vertical bar. The pos-
terior PDFs are shown in (a) when the prediction uncertainty is
neglected. When Cp is included in the inversion, the assumed stan-
dard deviation varies from 1◦, 5◦ to 10◦, respectively, in (b), (c) and
(d). In this case, the observational errors are assumed of 4 mm, and
are thus understimated as the added noise is of 7 mm. The posterior
mean model is indicated with a vertical grey dotted line. The offset
between target model and posterior mean is displayed with a colour
scale saturated at 50 cm.
Figure S8. Comparison of inversion results with or without ne-
glecting for the prediction uncertainty for a dip-slip scenario. The
uniform target slip model is shown as a grey vertical bar. The poste-
rior PDFs are shown in (a) and (c) when the prediction uncertainty
is neglected and in (b) and (d) if Cp is included. In (a) and (b), the
noise added to the data has an amplitude of 7 mm. In (c) and (d),
the noise has an amplitude of 7 mm and is correlated spatially. The
posterior mean model is indicated with a vertical grey dotted line.
The offset between target model and posterior mean is displayed
with a colour scale saturated at 50 cm.
Figure S9. Comparison of inversion results with and without ne-
glecting the prediction uncertainty. The non-uniform target slip
model is shown as a grey vertical bar. The offset between correct
and assumed faults is of 2 km. The posterior PDFs are shown in (a)
and (c) when the prediction uncertainty is neglected and in (b) and
(d) if Cp is included in the inversion, respectively, for dip-slip and
strike-slip behaviour. The posterior mean model is indicated with
a vertical grey dotted line. The offset between target model and
posterior mean is displayed with a colour scale saturated at 50 cm.
Figure S10. Comparisons between synthetic data and predictions
with and without accounting for Cp. We assume the slip on the
fault to be non-uniform. The correct location of the fault surface
rupture is shown with a grey vertical line, whereas the assumed fault
position is shown by a dotted grey vertical line. Dip-slip behaviour
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generates cross strike surface displacement (a) and vertical surface
displacement (b), whereas strike-slip behaviour produces only strike
parallel displacement (c). The data points (i.e. generated by a slip on
the true fault) are shown in blue. The displacements in khaki green
are produced by the 1 m uniform target model assuming an incorrect
fault dip. The predictions shown in orange and green are calculated
from the posterior mean model, respectively, without and with Cp

included. The five missing data points around the faults position
have been removed to simulate a real case.
Figure S11. Misfit (see eq. 1, with Cχ (m) = Cd) as a function
of maximum slip amplitude (indication of model roughness) for
different optimizations made assuming correlation lengths varying
from 2 to 26 km. We finally assume for our optimizations the value
of 14 km. The a priori standard deviation of model parameters σ

has been chosen from the posterior standard deviation of model
parameters of a Bayesian optimization (see Fig. 5). Our assumed
σ is of 50 cm. The scaling factor λ0 is usually chosen as average
distance between subfaults, and is thus assumed here of 1 km.
Figure S12. Comparison of results for a positive least squares op-
timization, with and without incorporating Cp. The uniform target
slip model is shown as a grey vertical bar. The inversion results are
shown in (a) and (c) when the prediction uncertainty is neglected and
in (b) and (d) if Cp is included in the inversion, respectively for a 20
subfaults or a 8 subfaults fault parametrization. The inferred model
corresponds to the mean of the posterior gaussian distribution, the
standard deviation being the uncertainty on inferred parameters Cm

= (GT · Cχ
−1 · G)−1. The posterior mean model is indicated with a

grey vertical dotted line, or with a colored dotted line if the posterior
distribution is almost uniform (i.e the posterior uncertainty is high).
The offset between target and resulting model is displayed with a
colorscale saturated at 50 cm.
Figure S13: Cp due to imprecise fault dip in a simplified 2D ap-
plication. The assumed fault does not vary along strike, is 20 km
large and is dipping of 35◦ while the correct fault is dipping 30◦.
The assumed model mprior is uniform at 1 m. The prediction covari-
ance matrix Cp is shown for strike parallel, vertical and cross strike
surface displacement respectively in (a), (b) and (c).
Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X : D I P - D E P E N D E N T
E X P R E S S I O N S O F S U R FA C E
D I S P L A C E M E N T F O R A N I N F I N I T E
FAU LT

We consider a simple 2-D model of a fault that extends infinitely
along strike. For a strike-slip case, the displacement on the fault
is restricted to the x3 direction (i.e. along strike direction). For a
dip-slip case, the displacements are restricted to the x1, x2 plane
(respectively perpendicular to strike and vertical directions). Each
surface displacement is calculated for a particular data point lo-
cated at x1 along the strike-perpendicular direction x1. These ex-
pressions of surface displacement in an homogeneous half-space are
modified after the fixed-dip equations of Segall (2010) to become
dip-dependent.

A1 For a uniform slip distribution

The fault has a width w, a dip δ and the slip is constant over the
fault with a value s.

A1.1 Strike-slip dislocation

The free surface displacement (i.e. at x2 = 0) of a vertical fault
(δ = 90◦) with a strike-slip surface breaking dislocation is (Segall
2010)

u3(x2 = 0) = − s

π

[
tan−1 x1

d1
− π

2
sgn(x1)

]
, (A1)

with x1 being the distance from the dislocation along the x1 axis
and d1 being the depth end of dislocation.

For a non-vertical fault, we develop from eq. (A1). For a fault
dipping of δ, the distance from the dislocation thus becomes x1 −
w cos δ and the depth end of dislocation becomes . The surface
displacement is thus

u3(x2 = 0) = − s

π

[
tan−1 ξ − π

2
sgn(x1)

]
, (A2)

with

ξ = x1 − w cos δ

w sin δ
. (A3)

A1.2 Dip-slip dislocation

From Segall (2010), the surface displacement due to a surface break-
ing dislocation of a fault dipping of δ are (u2 being the vertical
displacement and u1 the displacement perpendicular to the strike
direction)

u2(x2 = 0) = s

π

[
sin δ

(
tan−1 ξ − π

2
sgn(x1)

)

+ cos δ + ξ sin δ

1 + ξ 2

]
, (A4)

u1(x2 = 0) = − s

π

[
cos δ

(
tan−1 ξ − π

2
sgn(x1)

)

+ sin δ − ξ cos δ

1 + ξ 2

]
, (A5)

with

ξ = x1 − w cos δ

w sin δ
. (A6)

A2 For a non-uniform slip distribution

The fault has a width w, a dip δ and is divided into N subfaults. On
each subfault, the slip has a different value{sn}i=0:N .

The surface displacement due to a non-uniform slip distribution
can be calculated as the sum of the surface displacements produced
by the uniform slip on each of the N subfaults. The surface displace-
ment produced by an umpteenth subfault n can be calculated using
uniform slip and surface breaking dislocation equations. Indeed, the
surface displacement due to subfault n corresponds to the surface
displacement due to slip from surface to subfault n minus the same
slip from surface to subfault (n − 1).
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A2.1 Strike-slip dislocation

The free surface displacement (i.e. at x2 = 0) for a strike-slip case
is thus (from eq. A2)

u3(x2 = 0) =
N−1∑
n=0

− sn

π

[
tan−1 ξn+1 − tan−1 ξn

]
(A7)

as

lim
n→0

tan−1 N x1 − nw cos δ

nw sin δ
= π

2
sgn(x1), (A8)

with

ξn = N x1 − nw cos δ

nw sin δ
. (A9)

A2.2 Dip-slip dislocation

The surface displacement in the vertical direction for a dip-slip case
is (from eq. A4)

u2(x2 = 0) = s0

π

[
sin δ

(
tan−1 ξ1 − π

2
sgn(x1)

)

+ cos δ + ξ1 sin δ

1 + ξ1
2

]

+
N−1∑
n=1

− sn

π

[
sin δ tan−1 ξn + cos δ + ξn sin δ

1 + ξn
2

]

+ sn

π

[
sin δ tan−1 ξn+1 + cos δ + ξn+1 sin δ

1 + ξn+1
2

]
. (A10)

The surface displacement in the strike-perpendicular direction
for a dip-slip case is (from eq. A5)

u1(x2 = 0) = s0

π

[
cos δ

(
tan−1 ξ1 − π

2
sgn(x1)

)

+ sin δ − ξ1 cos δ

1 + ξ1
2

]

+
N−1∑
n=1

sn

π

[
cos δ tan−1 ξn + sin δ − ξn cos δ

1 + ξn
2

]

− sn

π

[
cos δ tan−1 ξn+1 + sin δ − ξn+1 cos δ

1 + ξn+1
2

]
,(A11)

with

ξn = N x1 − nw cos δ

nw sin δ
. (A12) D
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