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TEST OF VANDIVER’S CONJECTURE
WITH GAUSS SUMS – HEURISTICS

GEORGES GRAS

Abstract. The link between Vandiver’s conjecture and Gauss sums
is well-known since the papers of Iwasawa (1975) and Anglès–Nuccio
(2010); this context has been considered by many authors with vari-
ous purposes (Iwasawa theory, Galois cohomology, Fermat curves,...).
We prove again the interpretation of Vandiver’s conjecture in terms of
minus part of the torsion of the Galois group of the maximal abelian
p-ramified pro-p-extension of the pth cyclotomic field, from a lecture
we gave at the Laval University (1984). Then we provide a specific use
of Gauss sums of characters of order p of F×` allowing a necessary and
sufficient condition for Vandiver’s conjecture (Theorem 4.6 and corol-
laries 4.7, 4.8, using both the sets of exponents of p-irregularity and of
p-primarity of suitable products of Jacobi sums obtained as twists of
Gauss sums). We propose § 5.2 new heuristics and numerical experi-
ments to strengthen our arguments in direction of Vandiver’s conjecture
and we show that any counterexample leads to excessive constraints
modulo p on the above twists as ` varies. All the calculations are given
with their PARI/GP programs.
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1. Introduction

Let K = Q(µp) be the field of pth roots of unity for a given prime p > 2 and
let K+ be its maximal real subfield. We denote by C̀ and C̀ + the p-class
groups of K and K+, respectively, then by C̀ − the relative p-class group,
so that C̀ = C̀ +⊕ C̀ −. Let E and E+ be the groups of units of K and K+;
we know that E = E+ ⊕ µp.
The Vandiver (or Kummer–Vandiver) conjecture asserts that C̀ + is trivial.
This statement is equivalent to say that the group of real cyclotomic units
is of prime to p index in E+ [43, Theorem 8.14]. See numerical tables using
this property in [4, 8] (verifying the conjecture up to 2 · 109), and more
general results in [41, 42] where some relations with Gauss and Jacobi sums
are used, in a different framework, to determine the order of the isotypic
components of C̀ + (e.g., [41, Theorem 4]).
Many heuristics are known about this conjecture; see Washington’s book
[43, § 8.3, Corollary 8.19] for some history, criteria, and for probabilistic
arguments, then see [32]. We have also given a probabilistic study in [12,
II.5.4.9.2]. All these heuristics lead to the fact that the number of primes p
less than p0, giving a counterexample, can be of the form O(1) · log(log(p0)).
These reasonings, giving the possible existence of infinitely many counterex-
amples to Vandiver’s conjecture, are based on standard probabilities associ-
ated with the Borel–Cantelli heuristic, but many recent p-adic conjectures
(on class groups and units) may contradict such approaches.
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In this paper, we shall give numerical experiments in another direction
using Gauss sums and Stickelberger annihilation of relative classes, together
with a weaker form of the main theorem on abelian fields. Such a link
of Vandiver’s conjecture with Gauss sums and abelian p-ramification has
been given first by Iwasawa [24] and applied by many authors in various
directions, often needing Vandiver’s conjecture (e.g., [1, 7, 15, 20, 21, 22, 23,
27, 36, 37, 38, 44, 45]), or in the context of Greenberg’s conjecture considered
as a generalization of Vandiver’s conjecture (e.g., [19], [30]); we shall give
Section 3 a short survey, explain the links with p-ramification and prove
again the Theorem of reflection 3.1, not so well known in the literature.
Then we shall interprete a counterexample to Vandiver’s conjecture in terms
of non-trivial “p-primary pseudo-units” stemming from Gauss sums

τ(ψ) =
∑
x∈F×`

ψ(x) ξx` ,

for ψp = 1, ξ` of prime order ` ≡ 1 (mod p). Indeed, if #C̀ + ≡ 0 (mod p),
there exists a class γ = c̀ (A) ∈ C̀ −, of order p, such that Ap = (α), with α p-
primary (to give an unramified extension K( p

√
α)/K, decomposed over K+

into a cyclic unramified extension L+/K+ of degree p predicted by class field
theory); the reciprocal being obvious. Since α can be obtained explicitely
by means of twists gc(`) = τ(ψ)c−σc with Artin automorphisms σc (by
definition ζσap = ζap for all a 6≡ 0(mod p)), of the above Gauss sums, giving
products of Jacobi sums, this shall give the main test verifying the validity
of the conjecture for a given p (Theorem 4.6 and Corollaries 4.7, 4.8).
We show that some assumption of independence, of the congruential prop-
erties (mod p) of these products of Jacobi sums as ` varies, is an obstruction
to any counterexample to Vandiver’s conjecture or, at least, that the prob-
ability of such a counterexample is at most O(1)

p2
.

This method is different from those needing to prove that some cyclotomic
units are not global pth powers, which does not give obvious probabilistic
approaches.
Finally, we propose, §§ 5.2, 5.3, new heuristics (to our knowledge) and give
substantial numerical experiments confirming them. PARI/GP programs
[33] can be copy and paste by the reader for any further experience. 1

Definitions 1.1. Let K := Q(µp) and G := Gal (K/Q).
(i) Let ζp be a primitive pth root of unity. We denote by ω the character
of Teichmüller of G (i.e., the p-adic character with values in µp−1(Qp) such
that ζsp = ζ

ω(s)
p for all s ∈ G).

1Verbatim characters are compatible for copy and past, except sometimes, in some
Journals, for the power symbol ˆ to be replaced by the PARI/GP one. We give a copy of
our programs at: https://www.dropbox.com/s/y57jdgv4thyx0tb/Vandiver.Prog.pdf?dl=0

https://www.dropbox.com/s/y57jdgv4thyx0tb/Vandiver.Prog.pdf?dl=0
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(ii) An irreducible p-adic character of G is of the form θ = ωk, 1 ≤ k ≤ p−1;
we denote by 1 the unit character. We denote by X+ the set of even
characters χ 6= 1 (i.e., χ = ωn, n ∈ [2, p− 3] even).
(iii) If θ = ωm, we put θ∗ := ωθ−1 = ωp−m. This defines an involution on
the group of characters which applies X+ onto the set X ∗

+ of odd characters
distinct from ω.
(iv) For any character θ, we denote by eθ := 1

p−1
∑

s∈G θ(s
−1) s the associ-

ated idempotent in Zp[G]. Thus s · eθ = θ(s) · eθ for all s ∈ G.
(v) For a Zp[G]-module M , we put Mθ := M eθ . The operation of the
complex conjugation s−1 ∈ G gives rise to the obvious definition of the
components M+ and M− such that M = M+ ⊕M−.
(vi) We denote by rkp(A) the p-rank of any abelian group A (i.e., the Fp-
dimension of A/Ap).
(vii) For α ∈ K×, prime to p and considered modulo K×p, we denote by
αθ a representative of α eθ ∈

(
〈α〉Z[G]K

×p/K×p
)
θ
(e.g., αθ = αe

′
θ where

e′θ ∈ Z[G] approximates eθ modulo p).
For any ideal A (prime to p) such that c̀ (A) ∈ C̀ , there exists an approxi-
mation e′θ ∈ Z[G] of eθ modulo a sufficient power of p such that Aθ := Ae

′
θ

is defined up to a principal ideal of the form (xp), x ∈ K×. If A = (α), then
Aθ = (α′θ) with α′θ = αe

′
θ .

(viii) For χ =: ωn ∈ X+, denote by b(χ∗) = 1
p

∑p−1
a=1(χ

∗)−1(sa) a (where
sa ∈ G is the Artin automorphism of a) the generalized Bernoulli number
B1, (χ∗)−1 = B1, ωn−1 ; it is an element of Zp congruent modulo p to Bn

n
,

where Bn is the ordinary Bernoulli number of even index n ∈ [2, p− 3]; see
[43, Proposition 4.1, Corollary 5.15].
The index of p-irregularity i(p) is the number of even n ∈ [2, p − 3] such
that Bn ≡ 0 (mod p); see [43, § 5.3 & Exercise 6.6] giving statistics and
the heuristic i(p) = O

( log(p)
log(log(p))

)
.

(ix) We say that A is p-principal if its class is of order prime to p; considering
A in I ⊗Zp, where I is the group of prime to p ideals of K, this means that
A = (α), with α ∈ K× ⊗ Zp, defined up to ε ∈ E ⊗ Zp.
We shall often write in this context for which Aθ := Aeθ and αθ := αeθ

make sense, then use the practical writing defined in (vii) for programming.

Remark 1.2. We shall say that a Zp[G]-module M is monogenous (or G-
monogenous) if it is generated, over Zp[G], by a single element. One verifies
that M is monogenous if and only if rkp(Mθ) ≤ 1 for all irreducible p-adic
character θ of G (indeed, in our context, Zp[G] · eθ ' Zp).

For a nice presentation on the history of Bernoulli–Kummer–Herbrand’s
works on cyclotomy, see [34].
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2. Pseudo-units – Notion of p-primarity

Definitions 2.1. (i) We call pseudo–unit any α ∈ K×, prime to p, such
that (α) is the pth power of an ideal of K.
(ii) We say that an arbitrary α ∈ K×, prime to p, is p-primary if the
Kummer extension K( p

√
α )/K is unramified at the unique prime ideal p

above p in K (but possibly ramified elsewhere).

Remarks 2.2. (i) Let A be the group of pseudo–units of K; then we have
the exact sequence (where pC̀ := {γ ∈ C̀ , γp = 1}):

1 −→ E/Ep −−−→ AK×p/K×p −−−→ pC̀ −→ 1,

giving rkp(AK
×p/K×p) =

p− 1

2
+ rkp(C̀ ). Thus rkp

(
(AK×p/K×p)θ

)
is

immediate from rkp(C̀ θ) and rkp(
(
E/Ep)θ

)
= 1 (resp. 0) if θ ∈ X+ ∪ {ω}

(resp. θ ∈X ∗
+ ∪ {1}).

(ii) The general condition of p-primarity for any α ∈ K× (prime to p but not
necessarily pseudo-unit) is “ α congruent to a pth power modulo pp = (p) p ”
(e.g., [12, Ch. I, § 6, (b), Theorem 6.3]). Since in any case (replacing
α by αp−1) we can suppose α ≡ 1 (mod p), the above condition is then
equivalent to α ≡ 1 (mod pp) (indeed, for any x ≡ 1 (mod p) we get xp ≡ 1
(mod pp)).

For the pseudo-units of K, the p-primarity may be precised as follows:

Proposition 2.3. Let α ∈ K× be a pseudo–unit. Then α is p-primary if
and only if it is a local pth power at p.

Proof. One direction is trivial. Suppose that K( p
√
α )/K is unramified at p;

since α is a pseudo-unit, this extension is unramified as a global extension
and is contained in the p-Hilbert class field H of K. The Frobenius auto-
morphism in H/K of the principal ideal p = (ζp − 1) is trivial; so p totally
splits in H/K, thus in K( p

√
α )/K, proving the proposition. �

There is another analogous case when α is not necessarily a pseudo-unit,
but when we look at the p-primarity of αθ for θ 6= 1, ω:

Proposition 2.4. Let α ≡ 1 (mod p) and let m ∈ [2, p − 2]. Let θ = ωm,
and consider αθ. Then αθ ≡ 1 (mod pm) and αθ is p-primary if and only
if αθ ≡ 1 (mod p), in which case αθ ≡ 1 (mod pm+p−1 = (p)pm).

Proof. Consider the Dwork uniformizing parameter $ in Zp[µp] which has
the following properties:
(i) $p−1 = −p,
(ii) s($) = ω(s) ·$, for all s ∈ G.

Put αθ = 1 + $ku, where u is a unit of Zp[$] and k ≥ 1; let u0 ∈ Z\pZ
such that u ≡ u0 (mod $) giving αθ ≡ 1 +$ku0 (mod $k+1).
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Since αsθ = α
θ(s)
θ in K× ⊗ Zp, we get, for all s ∈ G:

1 + s($k)u0 = 1 + ωk(s)$ku0 ≡ (1 +$ku0)
θ(s)

≡ 1 + ωm(s)$ku0 (mod $k+1),

which implies k ≡ m (mod p−1) and αθ = 1+$k u, k ∈ {m,m+p−1, . . .}.
The p-primarity condition for αθ is αθ ≡ 1 (mod $p) giving the obvious
direction since ($p) = (p$). Suppose αθ ≡ 1 (mod $p−1); so k = m does
not work since m ≤ p − 2, and necessarily k is at least m + p − 1 ≥ p + 1
since m ≥ 2 (which is also the local pth power condition). �

3. Abelian p-ramification and Gauss sums

3.1. Vandiver’s conjecture and abelian p-ramification. Let T be the
torsion group of the Galois group of the maximal abelian p-ramified (i.e.,
unramified outside p) pro-p-extension Hpr of K; since Leopoldt’s conjecture

holds for abelian number fields, we have Gal(Hpr/K) = Γ⊕T ' Z
p+1
2

p ⊕T
where the Galois group Γ = Γ+⊕Γ−, of the compositum of the Zp-extensions
of K, is such that Γ+ = Γ1 ' Zp and Γ− ' Zp[G]− giving Γθ ' Zp for all
odd θ (for more information, see [12, 13, 16] and their references).
Write T = T+ ⊕ T− and define Hpr

− ⊆ Hpr (fixed by Gal(Hpr/K)+),
Hpr

+ ⊆ Hpr (fixed by Gal(Hpr/K)−); then Gal(Hpr
+ /K) ' Zp ⊕ T+ and

Gal(Hpr
− /K) ' Z

p−1
2

p ⊕ T−; one defines in the same way the fields Hpr
θ for

which Gal(Hpr
θ /K) ' Γθ ⊕ Tθ (reduced to Tθ, finite, for all θ = χ ∈X+).

Note that Hpr
+ /K is decomposed over K+ to give the maximal abelian p-

ramified pro-p-extension of K+.
We then have unconditionally the following interpretation for K (particular
case of [12, Theorem II.5.4.5]):

Theorem 3.1. The Vandiver conjecture C̀ + = 1 is equivalent to T− = 1.

Proof. We will briefly prove this famous “global” reflection result as follows
from classical Kummer duality between radicals and Galois groups, using
the fact that K( p

√
β)/K, β ∈ K×, is p-ramified if and only if (β) = pe ·Ap,

e ≥ 0, A ∈ I (see, e.g., [12, Theorem I.6.2 & Corollary I.6.2.1]):
The Kummer radical of the compositum of the cyclic extensions of degree
p of K contained in Hpr

− is generated (modulo K×p) by the part E+ of real
units, giving a p-rank p−3

2 , by the real p-unit η+ := ζp+ ζ−1p −2, and by the
pseudo-units α+ comming from the elements of order p of C̀ +, which gives
the p-rank of this radical equal to p−1

2 +rkp(C̀ +). Since rkp(Gal(Hpr
− /K)) =

p−1
2 +rkp(T−), we get the more precise information rkp(T−) = rkp(C̀ +). �
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Similarly, rkp(T+) = rkp(C̀ −), and the proof for the isotypic components is
obtained taking the θ or θ∗-components for each object, which yields:

(1) rkp(Tθ∗) = rkp(C̀ θ) for all θ.

Note that T1 = Tω = C̀ ω = C̀ 1 = 1.
In particular, if χ ∈ X+, we shall say that Vandiver’s conjecture is true at
χ if C̀ χ = 1 (which holds if and only if Tχ∗ = 1).

Remarks 3.2. (i) One says that K is p-rational if T = 1 (same definition for
any number field fulfilling the Leopoldt conjecture at p; see [13] for more
details and programs testing the p-rationality of any number field). For the
pth cyclotomic field K this is equivalent to its “p-regularity” in the more
general context of “regular kernel” given in [11, Théorème 4.1] (T− = 1 may
be interpreted as the conjectural “relative p-rationality” of K).
(ii) As we have seen, at each unramified cyclic extension L+ of degree p of
K+ is associated a p-primary pseudo-unit α ∈ (K×/K×p)−, with α1+s−1 ∈
K×p+ and L+K = K( p

√
α). Put (α) = Ap, where c̀ (A) ∈ C̀ − (giving

A1+s−1 = (β+), β+ ∈ K×+ ); moreover A is not principal, otherwise α should
be, up to a pth power factor, a unit ε such that ε1+s−1 = 1, which gives
ε ∈ µp (absurd). In the same way, if G operates via χ on Gal(L+/K+) then
by Kummer duality G operates via χ∗ on 〈α〉Z[G]K

×p/K×p.
As explained in the Introduction, we shall prove that such pseudo-units
α may be found by means of twists gc(`) := τ(ψ)c−σc associated to primes
` ≡ 1(mod p) and Artin automorphisms σc (tese twists shall be defined and
studied Section 4 and used in Lemma 4.5 to obtain the main Theorem 4.6).

3.2. Vandiver’s conjecture and Gauss sums. Recall, for the field K,
the formula (see [12, Corollary III.2.6.1, Remark III.2.6.5] for more details
and references):

#T− =
#C̀ −

#
(
Zp log(I)

/
Zp log(U)

)
−

,

where I is the group of prime to p ideals of K and U the group of principal
local units of Qp(µp) which is equal to 1 + $Zp[$]. For any A ∈ I, let
m ≥ 1 be such that Am = (α), then log(A) := 1

m log(α) where log is the
p-adic logarithm; taking the minus parts, log(A) becomes well-defined since
Qplog(E)− = 0. We obtain for all χ ∈X+:

(2) #Tχ∗ =
#C̀ χ∗

#
(
Zp log(I)

/
Zp log(U)

)
χ∗
·

The following reasonning (from [15, § 3]) gives another, but similar, inter-
pretation of the result of Iwasawa [24]. Consider the Stickelberger element:

S :=
1

p

p−1∑
a=1

a s−1a ∈ Q[G];
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it is such that:

S . eχ∗ = b(χ∗) . eχ∗ := B1,(χ∗)−1 . eχ∗ ∈ Zp[G] for all χ ∈X+;

then if χ = ωn, χ∗ = ωp−n for which #C̀ χ∗ corresponds to the ordinary
Berrnoulli numbers Bn giving the “exponents of p-irregularity” n for Bn ≡ 0
(mod p) (see Definitions 1.1 (viii)).
Let ` be a prime number totally split in K (i.e., ` ≡ 1 (mod p)). Let ψ be
a character of order p of F×` . We define the Gauss sum:

(3) τ(ψ) := −
∑
x∈F×`

ψ(x) ξx` ∈ Z[µp `],

where ξ` is a primitive `th root of unity.

Lemma 3.3. We have τ(ψ)σa = ψ(a)−a τ(ψa) for any Artin automorphism
σa of Gal(Q(µp `)/Q) and τ(ψ)p ∈ Z[ζp]; then τ(ψ) ≡ 1 (mod pZ[µp `]).

Proof. By definition of σa, one has:

τ(ψ)σa = −
∑
x∈F×`

ψ(x)a ξa x` = −ψa(a−1)
∑
y∈F×`

ψa(y) ξy` ,

whence the second claim taking σa ∈ Gal(Q(µp `)/K) (i.e., a ≡ 1 (mod p)).
Then τ(ψ) ≡ −

∑
x∈F×`

ξx` (mod pZ[µp `]); since ` is prime,
∑
x∈F×`

ξx` = −1. �

We then have the fundamental relation in K (see [43, §§ 6.1, 6.2, 15.1]):

(4) L pS = τ(ψ)p Z[ζp],

for L | ` such that ψ is defined on the multiplicative group of Z[ζp]/L ' F`.

Remarks 3.4. (i) Since various choices of L | `, ξ` and ψ, from a given `,
correspond to Galois conjugations and/or products by a pth root of unity, we
denote simply τ(ψ) such a Gauss sum, where ψ is for instance the canonical
character of order p; for convenience, we shall have in mind that ` defines
such a τ(ψ) (and some other forthcoming objects) in an obvious way.
(ii) If we consider α := τ(ψ)p ∈ K× as the Kummer radical of the cyclic
extensionM` := K(τ(ψ)) of K, we have αc−sc =: gc(`)

p, where we have put
gc(`) := τ(ψ)c−σc ∈ K×, for all c ∈ [1, p− 1] (see (7) and Lemma 4.2 using
Jacobi sums); which gives M` = K( p

√
α) = F`K, where F` is the subfield

of Q(µ`) of degree p (the character of 〈α〉Z[G]K
×p/K×p is ω and that of

Gal(M`/K) is 1). Thus p is unramified in M`/K (which is coherent with
τ(ψ) ≡ 1 (mod pZp[µp `]) implying τ(ψ)p ≡ 1 (mod pp)); it splits if and
only if τ(ψ)p ≡ 1 (mod pp+1).

Taking the logarithms in (4), we obtain, for all χ ∈X+:(
S . eχ∗

)
. log(L) = b(χ∗) . log(L) . eχ∗ = log(τ(ψ)) . eχ∗,
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where log(τ(ψ)) := 1
p log(τ(ψ)p) ∈ Zp[$]. Put b(χ∗) = pe · u, e ≥ 1, u being

a p-adic unit. Then pe Zp log(L) . eχ∗ = Zp log(τ(ψ)) . eχ∗, thus, from (2),
since I/P may be represented by prime ideals of degree 1:

(5) #Tχ∗ =
pe

#
(
Zplog (G)

/
pe log (U)

)
χ∗

,

where G is the group generated by all the Gauss sums. So, the Vandiver con-
jecture at χ ∈X+ (i.e., Tχ∗ = 1) is equivalent to

(
Zp log (G)/log(U)

)
χ∗ = 1,

and is, as expected, obviously fulfilled if e = 0. The whole Vandiver con-
jecture is equivalent to the fact that the images of the Gauss sums in U
generate the minus part of this Zp-module giving again Iwasawa’s result.
We shall from now make in general the following working hypothesis which
corresponds to the more subtle case for testing Vandiver’s conjecture by
means of Theorem 4.6, the general case (i.e., when some C̀ χ∗ are not cyclic)
being obvious as soon as one knows that b(χ∗) gives the order of C̀ χ∗, thus
its annihilation:

Hypothesis 3.5. We assume that, for all χ ∈ X+, the component C̀ χ∗ of
the p-class group is cyclic; in other words, we restrict ourselves to the case
where C̀ is G-monogenous (cf. Remark 1.2), giving rkp(C̀ −) = i(p).

Moreover, we know that #C̀ χ∗ ≡ 0 (mod p2) has probability less than O(1)
p2

,
especially for the case rkp(C̀ χ∗) ≥ 2 which may be considered as giving
a finite number of counterexamples to Vandiver’s conjecture, what can be
discarded for our purpose (the numerical results [4, 8] are in complete accor-
dance with this viewpoint). The main theorem on abelian fields gives, under
our assumption, b(χ∗) ∼ pe, e ≥ 1, for each non-trivial component C̀ χ∗ of
order pe, where ∼ means “equality up to a p-adic unit factor”, but leads, in
fact, to the classical Herbrand theorem “#C̀ χ∗ ∼ pe implies b(χ∗) ∼ pe”.

3.3. Vandiver’s conjecture and ray class group modulo (p). Assume
the Hypothesis 3.5 and let χ = ωn ∈X+ be such that b(χ∗) ∼ pe, e ≥ 1 (i.e.,
#C̀ χ∗ = pe); thus, from (5), Tχ∗ = 1 (i.e., C̀ χ = 1) if and only if there exists
a prime number ` ≡ 1 (mod p) such that the corresponding log(τ(ψ)χ∗)
generates log(Uχ∗) = log(1 + $p−nZp[$]) = $p−nZp[$] (Proposition 2.4),
which indicates analytically the non-p-primarity of τ(ψ)χ∗ in Z[ζp].
There is also the fact that the Gauss sums, considered modulo pth powers
and computed modulo p, are indexed by infinitely many `; in other words
there are some non-obvious periodicities in the numerical results as ` varies.
This may be explained as follows (which also gives an interesting criterion):

Theorem 3.6. Let C̀ (p) := I/{(x), x ≡ 1 (mod p)} be the ray class group
of modulus pZ[ζp]. Then for any χ ∈X+, we have the following properties
(under the Hypothesis 3.5):
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(i) #C̀ (p)
χ∗ = p · #C̀ χ∗.

(ii) The condition C̀ χ = 1 is equivalent to the cyclicity of C̀ (p)
χ∗ .

Proof. Let V := {x ∈ K×, x ≡ 1(mod p)},W := {x ∈ K×, x ≡ 1(mod p)}.
Since (E/Ep)χ∗ = 1, we have the exact sequence (using Proposition 2.4):

1→ (V/W )χ∗ ' Fp → C̀ (p)
χ∗ → C̀ χ∗ → 1,

giving (i). The statement (ii) is obvious if C̀ χ∗ = 1.
Suppose #C̀ χ∗ = pe, with e ≥ 1. Then C̀ χ = 1 implies Tχ∗ = 1 (from
equality (1)) which implies C̀ (p)

χ∗ ' Z/pe+1Z (indeed, the χ∗-part Hpr
χ∗/K

of the pro-p-extension Hpr/K is a Zp-extension, thus the p-ray class field
corresponding to C̀ (p)

χ∗ , contained in Hpr
χ∗, is cyclic).

Reciprocally, if C̀ (p)
χ∗ is cyclic of order pe+1, e ≥ 1 (so C̀ χ∗ ' Z/peZ), there

exists an ideal A (whose class is of order pe+1 in C̀ (p)
χ∗ ) such that Ap

e

χ∗ = (αχ∗)
(up to a pth power, see Definitions 1.1 (ix)), with αχ∗ ≡ 1 (mod pp−n) if
χ = ωn, n ∈ [2, p− 3], but αχ∗ 6≡ 1 (mod p).
Thus αχ∗ defines the radical of the unique p-ramified (but not unramified)
cyclic extension of degree p of K decomposed over K+ into L+/K+ and
contained in Hpr

χ (its Galois group is a quotient of order p of the cyclic
group Tχ since Γχ = 1 for an even χ 6= 1); thus C̀ χ = 1. �

4. Twists of Gauss sums associated to primes ` ≡ 1 (mod p)

Let Lp be the set of primes ` totally split in K (i.e., ` ≡ 1 (mod p)). For
` ∈ Lp, let ψ : F×` −→ µp be of order p; if g is a primitive root modulo `,
we put ψ(g) = ζp. Let ξ` be a primitive `-th root of unity; then the Gauss
sum associated to ` may be written in Z[µp `]:

(6) τ(ψ) := −
∑
x∈F×`

ψ(x) · ξx` = −
`−2∑
k=0

ζkp · ξ
gk

` .

4.1. Practical computation of gc(`) := τ(ψ)c−σc. Let c ∈ [2, p− 2] be a
primitive root modulo p; to get an element of K (a PARI/GP program in
Z[µp `] overflows as ` increases arbitrarily, even if τ(ψ)χ∗ = τ(ψ)e

′
χ∗ (defined

up to K×p) makes sense in Z[ζp], a posteriori), one use the twist τ(ψ)c−σc

where σc ∈ Gal(Q(µp `)/Q) is the Artin automorphism of c (its restriction
to K is sc ∈ G). We define (using Lemma 3.3):

(7) gc(`) := τ(ψ)c−σc ∈ Z[ζp].

This notation using ` ∈ Lp is justified by the Remark 3.4, then formulas
(3) and (4), giving, up to K×p (see Definitions 1.1 (vii, ix, x)):

(8) LSc = gc(`)Z[ζp] & L
(c−χ∗(sc))·b(χ∗)
χ∗ = gc(`)χ∗ Z[ζp], for all χ ∈X+,
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where L | ` in K, Sc := (c− sc) · S ∈ Z[G] is the corresponding twist of the
Stickelberger element and where we know that gc(`) ∈ Z[ζp]. Put:

(9) bc(χ
∗) := (c− χ∗(sc)) · b(χ∗) ∼ b(χ∗), for all χ ∈X+.

Then:

(10) L
bc(χ∗)
χ∗ = gc(`)χ∗ Z[ζp].

Remark 4.1. In the above definition (7) of gc(`), τ(ψ)σc = τ(ψc) · ψ−c(c)
(Lemma 3.3); but for all χ 6= 1, µeχ∗p = 1, defining gc(`)χ∗ without ambiguity
up to K×p, which does not change the p-primarity properties. But in some
sense the best definition of the twists should be ψ−c(c) · τ(ψ)c−σc . Note
that, since τ(ψ)1+s−1 = `, gc(`)χ ∈ K×p for all χ ∈X+.

Lemma 4.2. Let ` ∈ Lp be given. Then ψ−c(c) ·gc(`) is a product of Jacobi
sums and ψ−c(c) · gc(`) ≡ gc(`) ≡ 1 (mod p).

Proof. The classical formula [43, § 6.1] for Jacobi sums (for ψ ψ′ 6= 1) is
J(ψ,ψ′) := τ(ψ) · τ(ψ′) · τ(ψ ψ′)−1 = −

∑
x∈F`\{0,1}

ψ(x) · ψ′(1− x). Whence

τ(ψ)c = J1 · · · Jc−1 · τ(ψc), where Ji = −
∑

x∈F`\{0,1}
ψi(x) · ψ(1− x), thus:

(11) τ(ψ)c−σc = J1 · · · Jc−1 · τ(ψc) τ(ψ)−σc = J1 · · · Jc−1 · ψc(c).
From Lemma 3.3, τ(ψ) ≡ 1(mod pZ[µp `]) implies the result for gc(`). �

Thus, in the numerical computations, we shall use the relation:

gc(`)χ∗ = (J1 · · · Jc−1)χ∗ for any χ ∈X+.

Definitions 4.3. (i) We call set of exponents of p-primarity, of a prime
` ∈ Lp, the set E`(p) of even integers n ∈ [2, p − 3] such that gc(`)ωp−n is
p-primary, thus gc(`)ωp−n ≡ 1(mod p) (Definition 2.1 (ii), Proposition 2.4).
(ii) We call set of exponents of p-irregularity, the set E0(p) of even integers
n ∈ [2, p − 3] such that Bn ≡ 0 (mod p) (i.e., b(ωp−n) ≡ 0 (mod p); see
Definitions 1.1 (viii)).

Remark 4.4. Let χ =: ωn ∈X+. If gc(`)χ∗ is p-primary (i.e., n ∈ E`(p)) this
does not give necessarily a counterexample to Vandiver’s conjecture for the
two following possible reasons considering the expression Sc eχ∗ = bc(χ

∗) eχ∗
(recall from (9) that bc(χ∗) = (c− χ∗(sc)) · b(χ∗) ∼ b(χ∗)):
(i) The number bc(χ∗) is a p-adic unit (i.e., n /∈ E0(p)), so the radical gc(`)χ∗
is not the pth power of an ideal (thus not a pseudo-unit, even if Proposition
2.4 applies) and leads to a cyclic `-ramified Kummer extension of degree p
of K+.
For instance, for p = 11 (c = 2), ` = 23, the exponent of 11-primarity is
n = 2 so that α := gc(`)χ∗ is the integer (where x = ζ11):
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-8491773970656065727678427465045288222*x^9-196323101985667773368872243
9078492228*x^8+11757523232198873159205810348854526320*x^7-586067415031
0922200348907606983566648*x^6-644088006192816851608142123579276962*x^5
-611074014289231284308386817199658010*x^4+2673005955545675004066087284
224877298*x^3+15023028737838809151251842166615658188*x^2+1520229819300
797188419125563036321734*x+17836238554732163868933693789025679469

for which K( 11
√
α)/K is decomposed over K+ into L+/K+ only ramified at

`; then (α) is a product of prime ideals above `:

(α) = L1+2s+22s2+23s3+24s4+25s5+26s6+27s7+28s8+29s9

up to the 11th power of an `-ideal (s = s2). We obtain NK/Q(α) = `275 and
NK/Q(α− 1) ∼ 1113. In fact the program gives:

(α) = L25
1 ·L27

2 ·L31
3 ·L24

4 ·L28
5 ·L15

6 ·L30
7 ·L23

8 ·L32
9 ·L40

10

and one must discover the significance given above ! Here, we get bc(χ∗) ≡ 1
(mod 11).

(ii) The number bc(χ∗) is divisible by p, but the ideal Lχ∗ is p-principal and
then gc(`)χ∗ is a pth power in K× (numerical examples in § 4.5.2).
So, a sufficient condition for a counterexample to Vandiver’s conjecture is
the existence of χ ∈ X+ such that bc(χ∗) ≡ 0 (mod p), and ` ∈ Lp such
that gc(`)χ∗ is p-primary and gc(`)χ∗ /∈ K×p (ie., a non-trivial p-primary
pseudo-unit). The necessity shall be given in Lemma 4.5 and Theorem 4.6.

4.2. Program computing E`(p). For p ∈ [3, 199] and for the least ` ∈
Lp, the program computes gc(`) in Mod(J,P), with P = polcyclo(p), where
J = J1 · · · Jc−1 is written in Z[x] modulo pZ[x]; c is a primitive root modulo
p. For the computation of Ji we use the discrete logarithm znlog to interprete
the 1− gk in gZ/(`−1)Z. We put χ = ωn & χ∗ = ω1−n, taking n = 2 ∗m.
The program takes into account the relation J1+s−1 ≡ 1 (mod p) in the
action of the idempotents and drops the coefficient 1

p−1 in eχ∗ (in which
χ∗(s−1a ) is replaced by the residue of an−1 modulo p), thus computes in
reality gc(`)

−1/2 up to pth powers. Then the polynomials Jj give, in the
list LJ, the powers Jj modulo p, j = 1, . . . , p − 1. The result is given in
Sn =

∏(p−1)/2
a=1 sa(Ja

n−1
) from:

gc(`)
−1/2
χ∗ =

(p−1)/2∏
a=1

sa(gc(`))
ωn−1(a)

(up to a pth power); then ωn−1(a) ≡ an−1 (mod p) is computed in an and
then Jan is given by component(LJ, an). The conjugate sa(Jan) is computed
in sJan via the conjugation x 7→ xa in Jan, whence the product in Sn (the
exponents of p-primarity are denoted expp):
{forprime(p=3,200,c=lift(znprimroot(p));P=polcyclo(p)+Mod(0,p);
X=Mod(x,P);el=1;while(isprime(el)==0,el=el+2*p);g=znprimroot(el);
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print("p=",p," el=",el," c=",c," g=",g);J=1;for(i=1,c-1,Ji=0;
for(k=1,el-2,kk=znlog(1-g^k,g);e=lift(Mod(kk+i*k,p));Ji=Ji-X^e);J=J*Ji);
LJ=List;Jj=1;for(j=1,p-1,Jj=lift(Jj*J);listinsert(LJ,Jj,j));
for(m=1,(p-3)/2,n=2*m;Sn=Mod(1,P);for(a=1,(p-1)/2,
an=lift(Mod(a,p)^(n-1));Jan=component(LJ,an);sJan=Mod(0,P);
for(j=0,p-2,aj=lift(Mod(a*j,p));sJan=sJan+x^(aj)*component(Jan,1+j));
Sn=Sn*sJan);if(Sn==1,print(" exponents of p-primarity: ",n))))}

p=3 el=7 c=2 g=3 p=97 el=389 c=5 g=2 expp:26
p=5 el=11 c=2 g=2 p=101 el=607 c=2 g=3 expp:10
p=7 el=29 c=2 g=2 p=103 el=619 c=5 g=3
p=11 el=23 c=3 g=5 expp:2 p=107 el=643 c=2 g=11
p=13 el=53 c=2 g=2 p=109 el=1091 c=6 g=2 expp:14,86
p=17 el=103 c=3 g=5 p=113 el=227 c=3 g=2
p=19 el=191 c=4 g=19 p=127 el=509 c=3 g=2
p=23 el=47 c=2 g=5 p=131 el=263 c=2 g=5 expp:16
p=29 el=59 c=2 g=2 expp:2 p=137 el=823 c=3 g=3 expp:78
p=31 el=311 c=7 g=17 p=139 el=557 c=2 g=2
p=37 el=149 c=2 g=2 p=149 el=1193 c=2 g=3
p=41 el=83 c=6 g=2 p=151 el=907 c=6 g=2
p=43 el=173 c=9 g=2 expp:26 p=157 el=1571 c=5 g=2 expp:94
p=47 el=283 c=2 g=3 p=163 el=653 c=2 g=2 expp:42
p=53 el=107 c=2 g=2 expp:34,10 p=167 el=2339 c=5 g=2 expp:122
p=59 el=709 c=3 g=2 p=173 el=347 c=2 g=2
p=61 el=367 c=2 g=6 p=179 el=359 c=2 g=7 expp:138
p=67 el=269 c=4 g=2 p=181 el=1087 c=2 g=3 expp:114,164
p=71 el=569 c=2 g=3 p=191 el=383 c=19 g=5
p=73 el=293 c=5 g=2 p=193 el=773 c=5 g=2 expp:108,172
p=79 el=317 c=2 g=2 p=197 el=3547 c=2 g=2 expp:62
p=83 el=167 c=3 g=5 p=199 el=797 c=3 g=2
p=89 el=179 c=3 g=2

The program tests the “first” prime ` ∈ Lp and we shall see § 4.4.2 that it
is sufficient, if necessary, to try another ` to be successful (in practice) in
testing Vandiver’s conjecture.

4.3. Reciprocal study. Recall, from formula (10) and Remark 4.4, that,
for all χ ∈ X+, (gc(`)χ∗) = LSc eχ∗ = L

bc(χ∗)
χ∗ and that the union of the

following conditions gives rise to a counterexample to Vandiver’s conjecture:

(a) bc(χ∗) ≡ 0 (mod p),
(b) gc(`)χ∗ is p-primary,
(c) gc(`)χ∗ is not a global pth power.

We still assume the Hypothesis 3.5 to obtain the reciprocal (to be put in
relation with Theorem 3.6 (ii)); otherwise, if for instance rkp(C̀ χ∗0) ≥ 2 for
some χ0 = ωn0 ∈ X+ (giving a counterexample to Vandiver’s conjecture),
we get, from the main theorem on abelian fields, #C̀ χ∗0 ∼ bc(χ

∗
0); then the

p-part of bc(χ∗0) is strictely larger than the exponent of C̀ χ∗0 so that, in
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any relation L
bc(χ∗0)
χ∗0

= (gc(`)χ∗0) (cf. (10)), necessarily gc(`)χ∗0 is a global pth
power (condition (c) is never fulfilled), whence the property E`(p)∩E0(p) 6= ∅
for all ` ∈ Lp; thus Theorem 4.6 and Corollaries 4.7, 4.8 shall apply for
trivial reasons.

Lemma 4.5. Let χ ∈ X+ be such that C̀ χ 6= 1 (i.e., we assume to have a
counterexample to Vandiver’s conjecture).
Then C̀ χ∗ 6= 1, thus bc(χ∗) ≡ 0 (mod p), and there exists a totally split
prime ideal L such that Lχ∗ represents a generator of C̀ χ∗.
Afterwards LSc eχ∗ = L

bc(χ∗)
χ∗ = (αχ∗), where the generator αχ∗ is unique (up

to a pth power), thus equal to gc(`)χ∗ which is p-primary (i.e., gc(`)χ∗ ≡ 1
(mod p)) and not a global pth power in K×.

Proof. The claim C̀ χ∗ 6= 1 is the consequence of the reflection theorem.
From the Chebotarev density theorem in H/Q, there exists a prime ` and
L | ` inH such that (in terms of Frobenius)

(H/Q
L

)
generates the subgroup of

Gal(H/K) corresponding to C̀ χ∗ by class field theory. So ` splits completely
in K/Q (i.e., ` ∈ Lp) and the ideal L of K under L is (as well as Lχ∗) a
representative of a generator of C̀ χ∗.
Necessarily bc(χ∗) ≡ 0 (mod p), and L

bc(χ∗)
χ∗ = (αχ∗); since Eχ∗ = 1 (except

for χ∗ = ω excluded), αχ∗ is unique and not a pth power; in terms of Gauss
sums, Lbc(χ

∗)
χ∗ = (gc(`)χ∗), thus αχ∗ = gc(`)χ∗.

The p-primarity of αχ∗ is necessary to obtain the unique (thanks to Hy-
pothesis 3.5) corresponding unramified Kummer extension K( p

√
αχ∗)/K of

degree p, decomposed over K+ into the unramified extension L+/K+ asso-
ciated to C̀ χ by class field theory, whence the p-primarity of gc(`)χ∗. �

4.4. The test of Vandiver’s conjecture. Drawing the consequences of
the above, we shall get the main test for Vandiver’s conjecture.

4.4.1. Main theorem. A necessary and sufficient condition, to have a coun-
terexample to Vandiver’s conjecture, is that there exists χ ∈X+, such that
bc(χ

∗) ≡ 0 (mod p), and ` ∈ Lp such that gc(`)χ∗ := τ(ψ)c−σc (cf. (7), (8))
be p-primary and not a global pth power (i.e., Lχ∗ non-p-principal):

Theorem 4.6. For any ` ∈ Lp (the set of primes ` ≡ 1 (mod p)) let E`(p)
be the set of exponents of p-primarity of ` (i.e., the even n ∈ [2, p − 3],
such that gc(`)ωp−n ≡ 1 (mod p)); let E0(p) be the set of exponents of p-
irregularity of K (i.e., the even n ∈ [2, p− 3], such that p | Bn).
Then, Vandiver’s conjecture holds for K if and only if there exists ` ∈ Lp

such that E`(p) ∩ E0(p) = ∅.
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Proof. As we have explain § 4.3, we may assume to be in the context of
Hypothesis 3.5. Suppose E`(p)∩E0(p) = ∅ and consider, for χ =: ωn ∈X+,
and χ∗ = ωp−n, the relation (10) giving L

bc(χ∗)
χ∗ = (gc(`)χ∗), and examine

the two possibilities:
(i) If n is not an exponent of p-irregularity (i.e., bc(χ∗) 6≡ 0 (mod p) or
Bn 6≡ 0 (mod p)), then C̀ χ∗ = 1 and C̀ χ = 1 from reflection theorem.
(ii) If n is an exponent of p-irregularity, then bc(χ∗) ∼ pe, e ≥ 1, giving, for
some p-adic unit u, Lp

eu
χ∗ = (gc(`)χ∗); if L

pe−1u
χ∗ is p-principal, then gc(`)χ∗

is a global pth power, hence p-primary (absurd by assumption).
So Lχ∗ defines a class of order pe in C̀ χ∗ for which gc(`)χ∗ is not p-primary
by assumption, whence C̀ χ = 1 by Kummer duality since K( p

√
gc(`)χ∗)/K

(unique extension cyclic of degree p, decomposed over K+ and contained in
Hpr
χ since Gal(Hpr

χ /K+) = Tχ is cyclic), is ramified at p.
Reciprocally, if Vandiver’s conjecture holds, C̀ = C̀ − is G-monogenous,
i.e., the direct sum of non-trivial cyclic isotypic components generated by
some γ(n0) = c̀ (L

(n0)

ωp−n0
) ∈ C̀ ωp−n0 (n0 ∈ E0(p)) related to non-p-primary

gc(`
(n0))ωp−n0 ; thus there exists, from density theorem, ` ∈ Lp and L | `

such that c̀ (L)ωp−n0 = γ(n0) for all n0 ∈ E0(p) (e.g., L = (z) ·
∏
n0

L
(n0)

ωp−n0
).

So each gc(`)ωp−n0 = gc(`
(n0))ωp−n0 (up to a pth power) is non-p-primary,

whence E`(p) ∩ E0(p) = ∅ for this prime `. �

Corollary 4.7. Let ` ∈ Lp. If, for all χ ∈ X+, the numbers gc(`)χ∗ are
not p-primary (i.e., E`(p) = ∅), then the Vandiver conjecture is true for p.

4.4.2. Minimal prime ` ∈ Lp such that E`(p) = ∅. The following program
examines, for each p, the successive prime numbers `i ∈ Lp, i ≥ 1, and
returns the first one, `N (in L with its index N), such that E`N (p) = ∅.
Its existence is of course a strong conjecture, but the numerical results are
extremely favorable to the existence of such primes; which strengthens the
conjecture of Vandiver. Moreover, since the integer i(p) = #E0(p) is rather
small regarding p, as doubtless for #E`(p), and can be both in O

( log(p)
log(log(p))

)
,

the intersection E`(p)∩E0(p) may be easily empty if these sets are indepen-
dent; the experiments give the impression that the sets E`(p) are random
when ` varies and have no link with E0(p).
{forprime(p=3,700,c=lift(znprimroot(p));P=polcyclo(p)+Mod(0,p);X=Mod(x,P);
N=0;T=1;el=1;while(T==1,el=el+2*p;if(isprime(el)==1,N=N+1;g=znprimroot(el);
J=1;for(i=1,c-1,Ji=0;for(k=1,el-2,kk=znlog(1-g^k,g);e=lift(Mod(kk+i*k,p));
Ji=Ji-X^e);J=J*Ji);LJ=List;Jj=1;for(j=1,p-1,Jj=lift(Jj*J);
listinsert(LJ,Jj,j));T=0;for(m=1,(p-3)/2,n=2*m;Sn=Mod(1,P);for(a=1,(p-1)/2,
an=lift(Mod(a,p)^(n-1));Jan=component(LJ,an);sJan=Mod(0,P);
for(j=0,p-2,aj=lift(Mod(a*j,p));sJan=sJan+x^(aj)*component(Jan,1+j));
Sn=Sn*sJan);if(Sn==1,T=1;break));if(T==0,print(p," ",el," ",N);break))))}
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For p < 400, we only write the primes p, `N for which N > 1:
p el N p el N p el N p el N p el N
11 67 2 197 4729 2 409 4091 2 499 1997 1 601 25243 5
29 233 2 211 10973 4 419 839 1 503 3019 1 607 20639 3
43 431 2 223 6691 2 421 4211 1 509 4073 2 613 6131 1
53 743 2 227 5903 2 431 863 1 521 16673 1 617 30851 3
97 971 2 229 5039 2 433 5197 2 523 6277 2 619 17333 3
101 809 2 233 1399 2 439 4391 1 541 9739 1 631 6311 1
109 2399 2 251 4519 2 443 887 1 547 5471 1 641 1283 1
131 1049 3 277 4987 3 449 3593 1 557 24509 3 643 10289 2
137 1097 2 337 6067 3 457 21023 3 563 7883 1 647 9059 1
157 7537 5 349 8377 2 461 9221 2 569 6829 1 653 1307 1
163 5869 3 367 3671 2 463 5557 1 571 5711 1 659 1319 1
167 7349 3 383 16087 4 467 2803 1 577 3463 2 661 14543 3
179 1433 2 389 14783 2 479 3833 1 587 8219 1 673 2693 1
181 1811 2 397 6353 2 487 1949 1 593 1187 1 677 5417 1
193 1931 2 401 10427 4 491 983 1 599 4793 1 683 4099 2

The comparison with the table of exponents of p-irregularity does not show
any relation. Moreover, this much stronger test of Vandiver’s conjecture
does not need the knowledge of E0(p) nor that of the whole class number h.

4.5. What happens when ` ∈ Lp varies with E0(p) 6= ∅ ? Let n0 even
be an exponent of p-irregularity; put χ0 = ωn0 and bc(χ∗0) ∼ pe, e ≥ 1; then
#C̀ χ∗0 = pe.

4.5.1. About the p-classes of L | `. Let ` ∈ Lp and let Lχ∗0 with L | `. There
are two cases as we have seen previously:

(i) Lp
e−1

χ∗0
is p-principal. Since bc(χ∗0) ∼ pe, e ≥ 1, gc(`)χ∗0 is a global pth

power in K×, whence gc(`)χ∗0 is p-primary and n0 ∈ E`(p), but this does not
lead to an unramified cyclic extension of degree p of K+ of character χ0;

(ii) Lp
e−1

χ∗0
is not p-principal (such a prime ` does exist from density theorem).

Thus it defines a generator of C̀ χ∗0 and Vandiver’s conjecture holds at χ0 =
ωn0 if and only if gc(`)χ∗0 is not p-primary.
Otherwise, if gc(`)χ∗0 ≡ 1 (mod p), whatever the ideal L′χ∗0 , L

′ | `′ ∈ Lp, we
have L′χ∗0

= (zχ∗0) · Lrχ∗0 , with z ∈ K
× and r ∈ [0, pe − 1], so:

L′p
eu
χ∗0

= (zp
eu
χ∗0

) · Lrp
eu

χ∗0
& gc(`

′)χ∗0 ≡ gc(`)
r
χ∗0
≡ 1 (mod p).

Whence, the exponent n0 of p-irregularity is a common exponent of p-
primarity for all ` ∈ Lp, giving E0(p) ∩

( ⋂
`∈Lp

E`(p)
)
6= ∅.

Thus, from Theorem 4.6:

Corollary 4.8. As soon as there exist distinct `1, . . . , `N ∈ Lp, N ≥ 1,
such that E`1(p) ∩ · · · ∩ E`N (p) = ∅, the Vandiver conjecture holds.
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So it is fundamental to see if the sets E`(p) are independent (or not) of
the choice of ` ∈ Lp for p fixed and E0(p) 6= ∅. We analyse the case of
p = 37 whose exponent of p-irregularity is n0 = 32 giving #C̀ ω5 = 37 and
compute (in expp) the sets E`(37) when ` ∈ Lp varies. We shall see that the
number of exponents of p-primarity grows, with `, in the same proportion
as, classically, for the exponents of p-irregularity; if n0 ∈ E`(37), this means
that Lχ∗ is necessarily p-principal and then gc(`)ω5 ∈ K×37:
{p=37;c=lift(znprimroot(p));P=polcyclo(p)+Mod(0,p);X=Mod(x,P);
for(i=1,100,el=1+2*i*p;if(isprime(el)==1,g=znprimroot(el);
print("el=",el," g=",g);J=1;for(i=1,c-1,Ji=0;
for(k=1,el-2,kk=znlog(1-g^k,g);
e=lift(Mod(kk+i*k,p));Ji=Ji-X^e);J=J*Ji);LJ=List;Jj=1;
for(j=1,p-1,Jj=lift(Jj*J);listinsert(LJ,Jj,j));for(m=1,(p-3)/2,n=2*m;
Sn=Mod(1,P);for(a=1,(p-1)/2,an=lift(Mod(a,p)^(n-1));
Jan=component(LJ,an);sJan=Mod(0,P);for(j=0,p-2,aj=lift(Mod(a*j,p));
sJan=sJan+x^(aj)*component(Jan,1+j));Sn=Sn*sJan);
if(Sn==1,print(" exponent of p-primarity: ",n)))))}

el=149 g=2 el=3331 g=3 expp: 22
el=223 g=3 el=3701 g=2
el=593 g=3 el=3923 g=2
el=1259 g=2 el=4219 g=2 expp: 18,16
el=1481 g=3 expp: 30 el=4441 g=21
el=1777 g=5 el=4663 g=3
el=1999 g=3 el=5107 g=2
el=2221 g=2 el=5477 g=2
el=2591 g=7 expp: 34 el=6143 g=5 expp: 28
el=2887 g=5 el=6217 g=5
el=3109 g=6 el=6661 g=6
el=3257 g=3 el=6883 g=2
---------------------------------------------------------------------
el=742073 g=3 expp: 12 el=768343 g=11 expp: 18
el=742369 g=7 el=768491 g=10
el=742591 g=3 el=768787 g=2 expp: 20
el=743849 g=3 el=769231 g=11 expp: 24
el=743923 g=3 expp: 16 el=769453 g=2 expp: 30
el=744071 g=22 el=772339 g=3
el=744811 g=10 el=773153 g=3 expp: 14
el=744959 g=13 expp: 10 el=774337 g=5 expp: 28
el=745033 g=10 expp: 16 el=774929 g=3 expp: 18
el=745181 g=2 el=775669 g=10 expp: 18
el=745477 g=2 el=776483 g=2
el=745699 g=2 el=776557 g=2 expp: 20
el=746069 g=2 el=777001 g=31 expp: 18,28
el=746957 g=2 el=778111 g=11
el=747401 g=3 el=778333 g=2 expp: 28
el=747919 g=3 el=778777 g=5
el=748807 g=6 expp: 22 el=779221 g=2
el=749843 g=2 expp: 34 el=779591 g=7
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el=750287 g=5 el=779887 g=10 expp: 18
el=750509 g=2 expp: 14,22 el=780257 g=3 expp: 8
el=751027 g=3 el=780553 g=10
el=751841 g=3 expp: 14,16,24 el=781367 g=5 expp: 34
el=752137 g=10 expp: 8 *el=781589 g=2 expp: 32
el=752359 g=3 expp: 18 el=782107 g=2
el=752581 g=2 expp: 16 el=782329 g=13 expp: 18
el=752803 g=2 expp: 22,32 el=782921 g=3 expp: 20
el=753617 g=3 el=783143 g=5
el=753691 g=11 expp: 16 el=783661 g=2
el=753839 g=7 expp: 4,22 el=784327 g=3
el=754283 g=2 el=784697 g=3
el=755171 g=6 el=784919 g=7
el=755393 g=3 expp: 22 el=785363 g=2
el=756281 g=3 expp: 2 el=786251 g=2
el=756799 g=15 expp: 18 el=786547 g=2
el=757243 g=2 el=787139 g=2 expp: 20
el=757909 g=2 expp: 16 el=787361 g=6
el=758279 g=7 el=787879 g=6 expp: 10,18,20
el=758501 g=2 expp: 18 el=788027 g=2 expp: 34
el=759019 g=2 el=789137 g=3 expp: 24
el=759167 g=5 expp: 12 el=790099 g=2
el=759463 g=3 el=791209 g=7
el=759833 g=3 expp: 4 el=791431 g=12
el=760129 g=11 el=791801 g=3
el=760499 g=2 *el=792023 g=5 expp: 32
el=762053 g=2 el=792689 g=3
el=762571 g=10 el=793207 g=5
el=763237 g=2 el=795427 g=2
el=764051 g=2 *el=795649 g=22 expp: 2,32
el=764273 g=3 el=795797 g=2
el=764717 g=2 expp: 2 el=795871 g=3
el=765383 g=5 el=796759 g=3
el=765827 g=2 expp: 34 el=796981 g=7
el=766049 g=3 expp: 22 el=797647 g=3
el=766937 g=3 expp: 34 el=797869 g=10
el=767381 g=2 expp: 18 el=798461 g=2
el=767603 g=5 expp: 34 el=798757 g=2
el=767677 g=5 el=800089 g=7 expp: 20

For ` = 149, 223, 593, 1259, 1777, . . . , E`(37) = ∅, which proves the Vandiver
conjecture for p = 37 a great lot of times. For ` = 1481 one finds a p-
primarity for χ∗ = ω7 (χ = ω30 6= ω32). Corollary 4.8 applies at will.

Remark 4.9. We remark that χ0 = ω32 gives χ∗0 = ω5 which is a character of
K, not the character of a strict subfield (the class of order 37 does not come
from a strict imaginary subfield). Let ` = 1481; then χ = ω30 is a character
of the real subfield k6 of degree 6 which gives rise to a `-ramified (i.e.,
unramified outside ` since the 37-primarity gives the non-ramification of
37) cyclic extension of degree 37 of k6. If the exponent of p-irregularity had
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been 30 instead of 32, this would have given an unramified cyclic extension
of degree 37 of k6, i.e., #C̀ k6 = 37 (but we would have in the previous table
an expp = 30 at each line).

It remains to give statistics about the p-principality (or not) of the Lχ∗0
when ` ∈ Lp varies. In the particular case p = 37, Lχ∗0 is 37-principal if
and only if L is principal since the exponent of 37-irregularity n0 = 32 is
unique and the whole class number of K equal to h = 37.

4.5.2. Table of the classes of L for p = 37. We give a table with a generator
of L in the principal cases given by PARI/GP (indicated by ∗). Otherwise,
the class of L is of order 37 in K. The exponents of p-primarity are denoted
expp and we only write the cases where E`(37) 6= ∅:
{p=37;c=lift(znprimroot(p));P=polcyclo(p);K=bnfinit(P,1);P=P+Mod(0,p);
X=Mod(x,P);Lsplit=List;N=0;for(i=1,2000,el=1+2*i*p;if(isprime(el)==1,
N=N+1;listinsert(Lsplit,el,N)));for(j=1,N,el=component(Lsplit,j);
F=bnfisintnorm(K,el);if(F!=[],print("el=",el," ",component(F,1)));
g=znprimroot(el);J=1;for(i=1,c-1,Ji=0;for(k=1,el-2,kk=znlog(1-g^k,g);
e=lift(Mod(kk+i*k,p));Ji=Ji-X^e);J=J*Ji);LJ=List;
Jj=1;for(j=1,p-1,Jj=lift(Jj*J);listinsert(LJ,Jj,j));for(m=1,(p-3)/2,
n=2*m;Sn=Mod(1,P);for(a=1,(p-1)/2,an=lift(Mod(a,p)^(n-1));
Jan=component(LJ,an);sJan=Mod(0,P);for(j=0,p-2,aj=lift(Mod(a*j,p));
sJan=sJan+x^(aj)*component(Jan,1+j));Sn=Sn*sJan);
if(Sn==1,print("el=",el," expp:",n))))}

el=1481 expp: 30 el=56167 expp: 10,14,26
el=2591 expp: 34 el=57203 expp: 34
el=3331 expp: 22 el=58313 expp: 28
el=4219 expp: 16,18 el=58757 expp: 16,18
el=6143 expp: 28 el=58831 expp: 24,30
el=7993 expp: 16,20 el=59497 expp: 28
el=8363 expp: 8 el=61051 expp: 10
el=9769 expp: 20 el=62383 expp: 2
el=10657 expp: 4,18,26 el=62753 expp: 2
el=12433 expp: 20 el=63493 expp: 2
el=13099 expp: 28 *el=64381 expp: 6,32 [x^20+x^9+x]
el=14431 expp: 4,14,22 el=66749 expp: 30
el=17021 expp: 6 *el=67489 expp: 30,32 [x^24-x^3-x^2]
el=17909 expp: 30 el=67933 expp: 6
el=18131 expp: 22 *el=68821 expp: 32 [x^15-x^9+x^4]
el=19463 expp: 6 el=69931 expp: 12
el=20129 expp: 6 el=71411 expp: 4
el=21017 expp: 2,4 el=72817 expp: 28
el=21313 expp: 18 el=74149 expp: 2
el=21757 expp: 8 el=75407 expp: 10
el=22349 expp: 8 el=75629 expp: 12, 20
el=23459 expp: 6 el=76961 expp: 14
el=23977 expp: 26 el=78737 expp: 28
el=25087 expp: 26 el=79181 expp: 10
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el=25457 expp: 30 el=80513 expp: 16, 26
el=29009 expp: 8,24 el=81031 expp: 18, 34
el=30859 expp: 2 el=82067 expp: 34

*el=32783 expp: 32 [x^11+x^3+x] el=83621 expp: 34
el=33301 expp: 30 el=83843 expp: 2
el=33967 expp: 26 el=84731 expp: 6
el=36187 expp: 8 el=85027 expp: 26
el=37889 expp: 16 el=86729 expp: 22
el=38629 expp: 22 el=86951 expp: 8
el=40627 expp: 30 el=87691 expp: 24
el=40849 expp: 6 el=91243 expp: 22, 34
el=42773 expp: 4 el=91909 expp: 30
el=45289 expp: 8 el=94351 expp: 10
el=45659 expp: 26 el=94573 expp: 18
el=48619 expp: 8 el=95239 expp: 18, 28
el=48989 expp: 20 el=96497 expp: 10
el=51283 expp: 14,16 el=98347 expp: 28
el=51431 expp: 20 el=98939 expp: 30
el=53281 expp: 16 el=99679 expp: 10, 22
el=55057 expp: 20 el=100049 expp: 14

This table shows the clear independence of the exponents of p-primarity
regarding the set of non-principal L. Give some examples:

(ii) Non-principal case L | 149. The instruction bnfisintnorm(K, 149k):
{P=polcyclo(37);K=bnfinit(P,1);for(k=1,2,print(bnfisintnorm(K,149^k)))}

yields an empty set for k = 1 (since L is not principal) and, for k = 2, it
gives (with x = ζ37) the 18 conjugates of the real integer:
-2*x^35-2*x^34-x^32-2*x^31+x^29-x^28-2*x^27-2*x^24-x^23+x^22-2*x^20-x^19

-x^17-2*x^16+x^14-x^13-2*x^12-2*x^9-x^8+x^7-2*x^5-x^4-2*x^2-2*x

since NK/K+
(L) is always principal. This allows an easy characterization.

(i) Principal case L | 32783. The principal L are rare (which comes from
density theorems); the first one is L = (ζ1137 + ζ337 + ζ37) where ` = 32783.
Thus in that case, in the relation L

bc(χ∗0)
χ∗0

= (gc(`)χ∗0), the number gc(`)χ∗0
must be a global 37th power (which explains that one shall find the expo-
nent of 37-primarity n0 = 32 equal to that of 37-irregularity in the table);
unfortunately, the data are too large to be given.
Nevertheless, the reader can easily compute factor(norm(Sn)) = 3278337·16·9

and use K = bnfinit(P, 1); idealfactor(K,Sn), which gives the 37th power of
a principal ideal L | 32783. We obtain the following excerpts of the table
(up to 106) of principal cases:
el=32783 expp:32 el=64381 expp:6,32 el=67489 expp:30,32
el=68821 expp:32 el=108929 expp:32 el=132313 expp:32
(...)
el=325379 expp:10,32 el=332039 expp:6,10,14,32 el=351797 expp:32
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el=364451 expp:28,32 el=387169 expp:32 el=396937 expp:32
(...)
el=960151 expp:32 el=973397 expp:32 el=983239 expp:32
el=1000777 expp:32 el=1002109 expp:2,32 el=1040959 expp:20,32

4.5.3. Densities of the exponents of p-primarity. The following program in-
tends to show that all exponents of p-primarity are obtained, with (per-
haps) some specific densities, taking sufficientely many ` ∈ Lp (each even
n ∈ [2, p − 3], such that gc(`)ωp−n is p-primary for some new `, is counted
in the (n/2)th component of the list Eel).
(i) Program (choose p; here the results are for p = 37):
{p=37;c=lift(znprimroot(p));P=polcyclo(p)+Mod(0,p);X=Mod(x,P);
Nel=0;Npp=0;Eel=List;for(j=1,(p-3)/2,listput(Eel,0,j));
for(i=1,1000,el=1+2*i*p;if(isprime(el)==1,g=znprimroot(el);Nel=Nel+1;
J=1;for(i=1,c-1,Ji=0;for(k=1,el-2,kk=znlog(1-g^k,g);e=lift(Mod(kk+i*k,p));
Ji=Ji-X^e);J=J*Ji);LJ=List;Jj=1;for(j=1,p-1,Jj=lift(Jj*J);
listinsert(LJ,Jj,j));for(m=1,(p-3)/2,n=2*m;Sn=Mod(1,P);
for(a=1,(p-1)/2,an=lift(Mod(a,p)^(n-1));Jan=component(LJ,an);sJan=Mod(0,P);
for(j=0,p-2,aj=lift(Mod(a*j,p));sJan=sJan+x^(aj)*component(Jan,1+j));
Sn=Sn*sJan);if(Sn==1,Npp=Npp+1;listput(Eel,1+component(Eel,n/2),n/2);
print(Nel," ",Npp," ",el," ",Eel)))))}

In the first column, one shall find the index i (in Nel) of the prime `i
considered; if some index i is missing, this means that E`i(p) = ∅. The
second integer gives the whole number of exponents of p-primarity obtained
at this step (in Npp); then the third one is `i (in el). In some cases, a prime
` gives rise to several exponents of p-primarity, as the following excerpt for
p = 37 shows:
Nel Npp el
2757 1298 1289303 [76,88,78,88, 72,77,81,66,82, 78,85,69,76,72,73,65,72]
2757 1299 1289303 [76,88,78,89*,72,77,81,66,82, 78,85,69,76,72,73,65,72]
2757 1300 1289303 [76,88,78,89, 72,77,81,66,83*,78,85,69,76,72,73,65,72]
2757 1301 1289303 [76,88,78,89, 72,77,81,66,83, 78,85,69,76,72,73,65,73*]

(ii) Results for p = 37. The end of the table for the selected interval is:
Nel Npp el
3015 1426 1414067 [83,95,84,91,80,80,86,83,92,83,97,76,83,78,85,74,76]
3015 1427 1414067 [83,95,84,91,80,80,86,83,92,83,97,76,83,78,86,74,76]
3027 1428 1419839 [83,95,84,91,80,80,86,83,92,83,98,76,83,78,86,74,76]
3030 1429 1420949 [83,95,84,91,80,80,86,83,92,83,98,76,83,78,86,75,76]
3032 1430 1421911 [83,95,85,91,80,80,86,83,92,83,98,76,83,78,86,75,76]
3033 1431 1422133 [83,95,86,91,80,80,86,83,92,83,98,76,83,78,86,75,76]
3042 1432 1428127 [83,96,86,91,80,80,86,83,92,83,98,76,83,78,86,75,76]

The penultimate column corresponds to the exponent of 37-irregularity n0 =
32; since there is no counterexamples to Vandiver’s conjecture, when this
component increases, this means that the new ` gives rise to a principal L
for which gc(`)ω5 is a 37th power.
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(iii) Results for p = 157. For p = 157 (exponents of p-irregularity 62, 110),
one finds the partial analogous information after 590 distinct primes ` ∈ Lp

tested (proving also Vandiver’s conjecture for a lot of times):
Nel Npp el
590 309 1161487 [9,3,2,6,8,3,1,4,5,10,3,1,3,1,6,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,5,
5,5,5,3,6,1,6,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,7]

590 310 1161487 [9,3,2,6,8,3,1,4,5,10,3,1,3,1,6,3,4,4,
2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,6,
5,5,5,3,6,1,6,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,7]

590 311 1161487 [9,3,2,6,8,3,1,4,5,10,3,1,3,1,6,3,4,4,
2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,6,
5,5,5,3,6,1,6,3,5,4,5,0,2,3,5,7,3,3,3,2,4,5,7,6,6,5,6,1,7,4,7]

The remaining column of zeros (for n/2 = 58) stops at the following lines:
Nel Npp el
602 318 1185979 [9,3,2,6,8,3,2,4,6,10,3,1,

3,1,6,4,4,4,2,2,1,2,5,5,3,2,2,1,5,7,6,3,2,1,
5,5,5,4,4,3,3,4,5,4,5,6,5,5,5,3,6,1,6,4,5,4,6,0,
2,3,5,7,3,3,3,3,4,5,7,6,6,5,6,1,7,4,7]

602 319 1185979 [9,3,2,6,8,3,2,4,6,10,3,1,
3,1,6,4,4,4,2,2,1,2,5,5,3,2,2,1,5,7,6,3,2,1,
5,5,5,4,4,3,3,4,5,4,5,6,5,5,5,3,6,1,6,4,5,4,6,1,
2,3,5,7,3,3,3,3,4,5,7,6,6,5,6,1,7,4,7]

602 320 1185979 [9,3,2,6,8,3,2,4,6,10,3,1,
3,1,6,4,4,4,2,2,1,2,5,5,3,2,2,1,5,7,6,3,2,1,
5,5,5,4,4,3,3,4,5,4,5,6,5,5,5,3,6,1,6,4,5,4,6,1,
2,4,5,7,3,3,3,3,4,5,7,6,6,5,6,1,7,4,7]

These numbers may depend on the orders of ωn and/or ωp−n, but this needs
to be clarified taking much ` ∈ Lp, since for p = 1 + 2 q, q prime, where
the elements of X+ are indistinguishable, there is some gap for few `. The
complete tables for p = 37, 157 and 59 = 1 + 2·29 may be downloaded from:
https://www.dropbox.com/s/vs5eq6ornqx5922/vandiver.97.157.pdf?dl=0.

4.5.4. Vandiver’s conjecture and p-adic regulator of K+. We return to the
case p = 37 and n0 = 32. We see that ω32 is a character of order 9, hence
a character of the real subfield k9 of degree 9, which is such that Tk9 6= 1
from the reflection relation (1); so, k9 admits a cyclic 37-ramified extension
of degree 37 which is not unramified. To verify, we use [13, Program I],
simplified for real fields, which indeed gives #Tk9 = 37 (nt must verify
pnt > pt, the exponent of T ; here nt = 2 would be sufficient):
{p=37;n=32;d=(p-1)/gcd(p-1,n);P=polsubcyclo(p,d);K=bnfinit(P,1);nt=6;
Kpn=bnrinit(K,p^nt);Hpn=component(component(Kpn,5),2);L=List;
e=component(matsize(Hpn),2);R=0;for(k=1,e-1,c=component(Hpn,e-k+1);
if(Mod(c,p)==0,R=R+1;listinsert(L,p^valuation(c,p),1)));
if(R>0,print("rk(T)=",R," K is not ",p,"-rational ",L));
if(R==0,print("rk(T)=",R," K is ",p,"-rational"))}
rk(T)=1 K is not 37-rational List([37])

https://www.dropbox.com/s/vs5eq6ornqx5922/vandiver.97.157.pdf?dl=0
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We find here another interpretation of the reflection theorem since we have
the typical formula:

#T+ = #C̀ + · #R+,

where the p-group R+ is the normalized p-adic regulator of K+ [16, Propo-
sition 5.2] (whence #Tχ = #C̀ χ ·#Rχ for all χ ∈X+); the above data shows
that the relation #Tχ0

= 37 comes from #Rχ0
= 37, which is not surprising:

Remark 4.10. We have the analytic formula #C̀ χ0
= #(Eχ0

/〈ηχ0
〉), where

η is a suitable cyclotomic unit; so a classical method (explained in [43,
Corollary 8.19], applied in [4, 8] and developped in [41, 42]) consists in
finding ` ∈ Lp such that ηχ0

is not a local pth power at ` proving Vandiver’s
conjecture at χ0; so when we find that Rχ0

6= 1 (with C̀ χ0
= 1), this means

that ηχ0
generates Eχ0

and is a local pth power at p by p-primarity. We
shall give in § 5.2.4 some insights in this direction to obtain new heuristics
for the probability of p-primarity of gc(`)χ∗0 to be in O(1)

p2
.

5. Heuristics – Probability of a counterexample

5.1. Standard probabilities. We may suppose in a first approximation
that, for a given p, the sets E`(p) of exponents of p-primarity of primes
` ∈ Lp, are random with the same behavior as for the set E0(p) of exponents
of p-irregularity. More precisely, assume, as in Washington’s book (see in
[43], the Theorem 5.17 and some statistical computations), that in terms of
probabilities one has, for given primes p and ` ∈ Lp (where N := p−3

2 ):

Prob(#E0(p) = j) =
(
N
j

)
·
(
1− 1

p

)N−j · (1p)j ,
Prob(#E`(p) = k) =

(
N
k

)
·
(
1− 1

p

)N−k · (1p)k,
this would imply that, for p given, E`(p) 6= ∅ for many ` ∈ Lp, but that
E`(p) = ∅ in a proportion close to e−

1
2 , which is in accordence with previous

tables. Then the probability, for p and ` given, of E0(p) ∩ E`(p) 6= ∅ with
cardinalities j ∈ [0, N ] and k ∈ [0, N ] fixed, is 1− (N − k)! · (N − j)!

N ! · (N − k − j)! . So, an

approximation of the whole probability of E0(p) ∩ E`(p) 6= ∅ is:

(12)
∑

j, k≥0

(
N
j

)(
N
k

)
·
(
1− 1

p

)2N−j−k · (1p)j+k · (1− (N−k)!·(N−j)!
N !·(N−k−j)!

)
.

The computations show that this expression is around 1
2 p , which does not

allow to conclude easily for a single `, but this does not take into account the
“infiniteness” of Lp giving, a priori, independent informations, but limited
by the Theorem 3.6 on periodicities due to the density theorem (see the
Weil interpretation of Jacobi sums defining Hecke Grössencharacters [46,
Theorem, p. 489] where the module of definition of our Jacobi sums is p2).
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5.2. New heuristics and probabilities. There are several reasons to say
that the generic probability 1

p must be replaced by a much lower one:

5.2.1. Results from K-theory. For some characters χ ∈ X+, of the form
χ =: ωp−(1+h), for small h = 2, 4, . . . , for p �h 0, one may prove that
C̀ ωp−(1+h) = 1, as the case of C̀ ωp−3 = 1 proved unconditionally by Kurihara
[26] (see [10, 39, 40, 3] among other references applying the same approach
via K-theory). Unfortunately these bounds are not usable in practice, but
demonstrate the existence of a fundamental general principle.

5.2.2. Archimedean aspects. At the opposite, for χ ∈ X+ of small order,
C̀ χ may be trivial because of the “archimedean” order of magnitude of the
whole class number of the subfield of K+ fixed by the kernel of χ (which
is proved for the quadratic case when p ≡ 1 (mod 4), the cubic case when
p ≡ 1 (mod 3), . . . ). Moreover, we have the ε-conjecture for p-class groups
of [9] that we state for the real abelian fields kd of constant degree d, of
discriminant D = pd−1, when p ≡ 1 (mod d) increases:

For all ε > 0 there exists Cε,p such that log(#C̀ kd) ≤ log(Cε,p) + ε · log(p),

which would give C̀ kd = 1 for log(p) >
log(Cε,p)

1− ε and any ε < 1. But this
does not apply for any p with “small” d and the constant Cε,p is not effective.

5.2.3. Heuristics about Gauss sums. The previous probabilities (12) assume
that when ` ∈ Lp varies, the sets E`(p) are random and independent, which
is not the case when p is irregular at some χ∗0 = ωp−n0 (χ0 = ωn0 ∈X+) as
we have seen when gc(`)χ∗0 is a global pth power. We assume the Hypothesis
3.5 giving bc(χ∗0) ∼ pe, e ≥ 1, and C̀ χ∗0 ' Z/peZ; to simplify the comments
hereafter, we assume that e = 1.
Fix ` ∈ Lp such that Lχ∗0 generates C̀ χ∗0 ' Z/pZ (thus gc(`)χ∗0 is not a
global pth power); put (Proposition 2.4):

gc(`)χ∗0 = 1 + β0(`) ·$p−n0 , β0(`) ∈ Zp[$],

where β0(`) is invertible modulo $ if and only if gc(`)χ∗0 is non-p-primary.
Whatever `′ ∈ Lp and L′ | `′, one has, from the computations done in
§ 4.5.1 (ii) gc(`

′)χ∗0 ≡ gc(`)
r
χ∗0

(mod p), r ∈ [0, p − 1] (r = 0 if L′χ∗0
is p-

principal, i.e., gc(`
′)χ∗0 ∈ K

×p), giving:

(13) gc(`
′)χ∗0 =: 1 + β0(`

′) ·$p−n0 , β0(`
′) ≡ r · β0(`) (mod $).

Contrary to the classical idea that β0(`) (mod $) follow standard probabil-
ities 1

p (even under the condition gc(`)χ∗0 /∈ K
×p), we propose the following

heuristic:
For each χ ∈ X+, the congruential values modulo p at χ∗ = ω χ−1 of the
Gauss sums (more precisely of the ψ−c(c) · gc(`) as product J1 · · · Jc−1 of
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Jacobi sums), are uniformly distributed (or at least with explicit non-trivial
densities), when ` ∈ Lp varies.

Because of the density theorems on the ideal classes when ` varies in Lp,
we must examine two cases concerning the χ-components of C̀ , for χ ∈X+,
when there exists χ0 = ωn0 ∈X+ such that C̀ χ∗0 ' Z/pZ:
(a) χ 6= χ0 and C̀ χ∗ = 1. The numerical experiments show that when

` ∈ Lp varies, gc(`)χ∗ = 1 +β(`) ·$p−n, with random β(`) (mod $) (prob-
abilities O(1)

p depending on the orders of the characters).
(b) χ = χ0 and C̀ χ∗0 6= 1. If gc(`)χ∗0 is p-primary for some given non-

principal Lχ∗0 , then from (13) all the gc(`
′)χ∗0 are p-primary, whatever the

class of L′χ∗0 (p possibilities) because β0(`′) ≡ 0 (mod $). So, n0 is always
an exponent of p-primarity and E0(p) ∩ E`(p) 6= ∅ for all ` ∈ Lp, which
corresponds to C̀ χ0

6= 1 and the non-cyclicity of C̀ (p)
χ∗0

(Theorem 3.6).

Thus, to have analogous densities of p-primarity on Lp (as for the p-
principal case (a)), β0(`) ≡ 0 (mod $) (under the condition gc(`)χ∗0 /∈ K

×p)
must occur p times less, giving a probability in O(1)

p2
instead of O(1)

p ; it is
even possible that such a circumstance be of probability 0 depending on
more precise properties of Gauss or Jacobi sums; for this, the computation
of β(`) should be very interesting (see [42] where, for any ` ≡ 1 (mod p),
the coefficients di,k of Ji :=

∑p−1
k=0 di,k ζ

k
p , with

∑p−1
k=0 di,k = 1, are studied).

Otherwise, their behaviour should be excessively disturbed and, in an algo-
rithmic framework, we suggest that the congruential properties of the Gauss
sums (mod p) “determine” the properties of the p-class group ofK instead of
the contrary, and perhaps imply the cyclicity of each C̀ (p)

χ∗ or gc(`)χ∗0 ∈ K
×p

as soon as gc(`)χ∗0 ≡ 1 (mod p), what we intend to examine hereafter.

5.2.4. Use of pth power residue symbols and cyclotomic units. We refer to
[43, § 8.3] for the classical p-adic interpretation of the numbers #C̀ χ, for
χ ∈X+, as indices (Eχ : Fχ), where F is the group of cyclotomic units.
We shall need the following pth power criterion [12, II.6.3.8]:

Lemma 5.1. Let α ∈ K× be a pseudo-unit (i.e., the pth power of an ideal
prime to p). Then α ∈ K×p if and only if α is p-primary and locally a pth
power at any set S of places q of K whose classes generate (over Z) the
p-class group C̀ (i.e., α ∈ K×pq for all q ∈ S where Kq is the q-completion
of K). If K( p

√
α)/Q is Galois, the condition becomes 〈c̀ (S )〉Z[G] = C̀ .

Proof. Consider the non-trivial direction in the Galois case. SoK( p
√
α)/K is

unramified and S -split; thus, due to the Galois condition, all the conjugates
of q ∈ S split and the Galois group of K( p

√
α)/K corresponds, by class field

theory, to the quotient C̀ /〈c̀ (S )〉Z[G], trivial by assumption. �
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Theorem 5.2. Let χ0 = ωn0 ∈ X+ with n0 ∈ E0(p) and C̀ χ∗0 ' Z/peZ,

e ≥ 1 (i.e., bc(χ∗0) ∼ pe). Let η := ζ
1−c
2

p
1− ζcp
1− ζp

be the canonical cyclotomic

unit, where c is a primitive root modulo p (cf. [43, Proposition 8.11]).
(i) There exist an infinite subset Lp(χ0) ⊆ Lp of primes ` such that the
G-module generated by the p-class of L | ` is C̀ χ0

⊕ C̀ χ∗0 .
(ii) Then C̀ χ0

6= 1 if and only if gc(`)χ∗0 is locally a pth power at p but not
at L, or if and only if ηχ0

is locally a pth power at p and L | ` (` ∈ Lp(χ0)).

Proof. (i) In the G-monogenous case, the ideals L are of the form (z) ·A ·A′,
z ∈ K×, where c̀ (A) generates C̀ χ0

and c̀ (A′) generates C̀ χ∗0 . If for instance
C̀ χ0

' C̀ χ∗0 ' Z/pZ, these prime ideals L have density
(
1− 1

p

)2; otherwise,
if C̀ χ0

= 1 and C̀ χ∗0 ' Z/pZ, the density is 1− 1
p .

(ii) Define the pth power residue symbol
(
α
L

)
:= α

`−1
p (mod L), for any

L | ` ∈ Lp and any α ∈ K× prime to L. By abuse of notation, we shall
write

(
α
p

)
= 1 if α is p-primary.

Consider α = gc(`)χ∗0 , where
(
gc(`)χ∗0

)
= L

bc(χ∗0)
χ∗0

. This gives rise to a
counterexample to Vandiver’s conjecture at χ0 if and only if α is p-primary
(i.e.,

(
α
p

)
= 1) since c̀ (Lχ∗0) is of order pe; it follows that

(
α
L

)
6= 1, otherwise,

from Lemma 5.1, α = gc(`)χ∗0 should be a global pth power (contradiction).
Consider α = ηχ0

. It is well-known that bc(χ∗0) ≡ 0 (mod p) is equivalent
to the p-primarity of ηχ0

; thus a counterexample to Vandiver’s conjecture
at χ0, equivalent to ηχ0

∈ Epχ0
, is equivalent to

(ηχ0
L

)
= 1 since

(ηχ0
p

)
= 1.

Whence, with a prime L | ` fulfilling the point (i) of the theorem:

C̀ χ0
6= 1⇔

(
gc(`)χ∗

0

L

)
6= 1 &

(
gc(`)χ∗

0

p

)
= 1⇔

(
ηχ0

L

)
=
(
ηχ0

p

)
= 1. �

If Prob
((

gc(`)χ∗

L

)
6= 1

)
is close to 1, this suggests a probability in O(1)

p2

for the p-primarity of gc(`)χ∗ (χ ∈ X+ and ` ∈ Lp) if the two symbols of
ηχ are independent with probabilities O(1)

p
. So it is necessary to compute

this symbol
(
gc(`)χ∗

L

)
since gc(`)χ∗ and L are non-independent data. For

χ0 = ωn0 , n0 ∈ E0(p), the primes ` of the theorem are not effective, but
experiments with random ` seems sufficient for statistics. Then a first con-
dition for

(
gc(`)χ∗

0

L

)
= 1 is that gc(`)χ∗0 be the pth power of an `-ideal, which

is fulfilled since bc(χ∗0) ≡ 0 (mod p). Then, from the general program com-
puting gc(`)χ∗0 in Sn (not modulo p), we divide this integer by the maximal
power ` v, so that there exists a prime ideal L | ` which does not divide this
new integer (still denoted Sn and pth power of an `-ideal); the computation
reduces to R prime to L (in R) whose symbol

(
R
L

)
(in u) is immediate.



TEST OF VANDIVER’S CONJECTURE WITH GAUSS SUMS 27

{p=37;n=32;print("p=",p," n=",n);
c=lift(znprimroot(p));P=polcyclo(p);X=Mod(x,P);for(i=1,100,el=1+2*i*p;
if(isprime(el)!=1,next);g=znprimroot(el);M=(el-1)/p;
J=1;for(i=1,c-1,Ji=0;for(k=1,el-2,kk=znlog(1-g^k,g);e=lift(Mod(kk+i*k,p));
Ji=Ji-X^e);J=J*Ji);LJ=List;Jj=1;for(j=1,p-1,Jj=lift(Jj*J);
listinsert(LJ,Jj,j));Sn=1;for(a=1,p-1,an=lift(Mod(a,p)^(n-1));
Jan=component(LJ,an);sJan=Mod(0,P);for(j=0,p-2,aj=lift(Mod(a*j,p));
sJan=sJan+X^(aj)*component(Jan,1+j));Sn=Sn*sJan);Sn=lift(Sn);
s=valuation(Sn-1,p);v=valuation(Sn,el);Sn=Sn/el^v;ro=g^M;
for(b=1,p-1,r=lift(ro^b);R=0;for(k=0,p-2,R=R+component(Sn,k+1)*r^k);
if(valuation(R,el)==0,y=R;break));u=lift(Mod(y,el)^M);
print("p=",p," el=",el," v=",v," u=",u);
if(s!=0,print("Sn local pth power at P"));
if(Mod(v,p)==0 & u==1,print("Sn local pth power at L"));
if(Mod(v,p)!=0 || u!=1,print("Sn NON local pth power at L"));
if(Mod(v,p)==0 & u==1 & s>=1,print("Sn GLOBAL pth power")))}

p=37 n=32
el=149 v=259 u=102 Sn NON local pth power at L
el=223 v=259 u=132 Sn NON local pth power at L
(...)
el=6883 v=259 u=6850 Sn NON local pth power at L
el=7253 v=259 u=4947 Sn NON local pth power at L

But with the primes ` ∈ {32783, 64381, 67489, . . .} the program writes, for
instance for ` = 32783:
el=32783 v=259 u=1 Sn local pth power at P
el=32783 v=259 u=1 Sn local pth power at L
el=32783 v=259 u=1 Sn GLOBAL pth power

We found u = 1 for the following ` (including the underlined numbers cor-
responding to primes ` /∈ Lp(χ0) such that gc(`)χ∗0 ∈ K

×p or L p-principal):
` ∈ {22571, 32783, 46103, 53503, 57943, 64381, 67489, 68821, 79847, 83177,
96497, 98939, 104933, 108929, 117883, 132313, 146521, 146891, 151553,
151849, 158657, 158731, 167759, 172717, 197359, 198839, 207497, . . .}
confirming existence and rarity of primes ` in the intervale [149, 207497]
such that u = 1 by accident (i.e., gc(`)χ∗0 /∈ K

×p or L non-p-principal).

For n = 22 /∈ E0(37), we found u = 1 for the few examples (up to 2 · 105):
` ∈ {2221, 2887, 3923, 49211, 51283, 69709, 147779, 164503, 170497,
179969, 192697, 197803, . . .},
but gc(`)χ∗ is not the pth power of an ideal, whence it is never in K×pL . One
finds an exponent of p-primarity 22 for ` = 3331, then 14, 16 for ` = 51283,
10 for ` = 147779, and 28 for ` = 164503. In the exceptional case ` = 3331,
gc(`)χ∗ is p-primary.
A similar program computing the two symbols of ηχ0

gives all expected
results (distribution, independence as χ ∈X+ and ` ∈ Lp vary).
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5.2.5. Classical heuristics on class groups. A first important reason for a
very rare occurrence of the non-cyclic case for C̀ (p)

χ∗ may come from classical
heuristics on p-class groups, assuming that they can be applied to ray class
groups as C̀ (p)

χ∗ when it is, for instance, of order p2.
Whatever the (numerous) references used on this subject and independently
of some improvements or questions on the relevance of the formulas giving
the probability Prob(rkp(C) = r) for such a p-group C, we observe that
the quotient of the two probabilities for r = 2 and r = 1 (for instance
under the condition #C = p2) is at most O(1)

p giving probabilities in O(1)
p2

to

have C̀ (p)
χ∗ ' (Z/pZ)2. As Nguyen Quang Do pointed out to me, this may

come, algebraically, from the relation H2(C̀ χ∗, (V/W )χ∗) ' Fp, assuming
the uniform randomness of the exact sequences (proof of Theorem 3.6):
1 → (V/W )χ∗' Fp → C̀ (p)

χ∗ → C̀ χ∗' Fp → 1, knowing that the non-cyclic
case corresponds to the single cohomology class 0.

5.2.6. Heuristics from p-ramification theory. Another observation concerns
the groups Tχ for χ ∈ X+ and the formula #Tχ = #C̀ χ · #Rχ with the
equivalence (1) of reflection, C̀ χ∗ 6= 1 if and only if Tχ 6= 1 (illustrated
in the § 4.5.4). Thus it is interesting to estimate in what proportions the
relation #C̀ χ · #Rχ 6= 1 is due to C̀ χ or Rχ.
Of course, it is impossible to experiment with the cyclotomic fields K; so,
since this problem must be considered as general and may result from some
insights in p-ramification theory as done in a number of our articles (see
[17] and its bibliography), we give first a poor example with real quadratic
fields and some p ≥ 3.
For each of the ND real quadratic field of discriminant D ∈ [bD,BD], for
which T 6= 1 (counted in Nt), we compute the proportions of cases for which
this is due to #C̀ or #R; we privilegiate the case C̀ 6= 1 (counted in Nh)
even if the two groups C̀ and R are both non-trivial; this may give a slightly
larger proportion but a much faster program:

{p=3;bD=10^6;BD=10^6+5*10^4;ND=0;Nh=0;Nt=0;
for(D=bD,BD,e=valuation(D,2);M=D/2^e;if(core(M)!=M,next);
if((e==1 || e>3)||(e==0 & Mod(M,4)!=1)||(e==2 & Mod(M,4)==1),next);
m=D;if(e!=0,m=D/4);ND=ND+1;P=x^2-m;K=bnfinit(P,1);Kpn=bnrinit(K,p^2);
C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2);
Hpn1=component(Hpn,1);vptor=valuation(Hpn0/Hpn1,p);if(vptor>=1,
Nt=Nt+1;C8=component(K,8);h=component(component(C8,1),1);
vph= valuation(h,p);if(vph>=1,Nh=Nh+1)));print("[",bD,", ",BD,"]");print
("p=",p," ND=",ND," Nt=",Nt," Nh=",Nh," Nh/Nt=",Nh/Nt+0.," 1/p=",1./p)}

It appears that the proportion increases for intervals with large discrimi-
nants and becomes close to 1

p :
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[bD, BD]=[1000000, 1050000]
p=3 ND=15204 Nt=7308 Nh=2050 Nh/Nt=0.28051450 1/p=0.33333333
p=5 ND=15204 Nt=3522 Nh=634 Nh/Nt=0.18001135 1/p=0.20000000
p=7 ND=15204 Nt=2464 Nh=331 Nh/Nt=0.13433441 1/p=0.14285714
p=11 ND=15204 Nt=1497 Nh=97 Nh/Nt=0.06479625 1/p=0.09090909
[bD, BD]=[10000000, 10050000]
p=3 ND=15198 Nt=7516 Nh=2161 Nh/Nt=0.28751995 1/p=0.33333333
p=5 ND=15198 Nt=3597 Nh=720 Nh/Nt=0.20016680 1/p=0.20000000
p=7 ND=15198 Nt=2443 Nh=347 Nh/Nt=0.14203847 1/p=0.14285714
p=11 ND=15198 Nt=1512 Nh=122 Nh/Nt=0.08068783 1/p=0.09090909
[bD, BD]=[100000000, 100100000]
p=3 N=30410 Nt=15133 Nh=4456 Nh/Nt=0.29445582 1/p=0.33333333

For cyclic cubic fields with primes p ≡ 1 (mod 3) (to get two irreducible
p-adic characters of degree 1) we obtain analogous results with the same
rough calculation (e.g., we may have C̀ χ1 6= 1 and Rχ1 6= 1 or Rχ2 6= 1),
but this does not affect the statistics (f ∈ [bf,Bf] denotes the conductor):

{p=7;bf=10^5;Bf=5*10^5;Nf=0.0;Nh=0;Nt=0;for(f=bf,Bf,e=valuation(f,3);
if(e!=0 & e!=2,next);F=f/3^e;if(Mod(F,3)!=1||core(F)!=F,next);F=factor(F);
D=component(F,1);d=component(matsize(F),1);for(j=1,d-1,l=component(D,j);
if(Mod(l,3)!=1,break));for(b=1,sqrt(4*f/27),if(e==2 & Mod(b,3)==0,next);
A=4*f-27*b^2;if(issquare(A,&a)==1,if(e==0,if(Mod(a,3)==1,a=-a);
P=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);if(e==2,if(Mod(a,9)==3,a=-a);
P=x^3-f/3*x-f*a/27);Nf=Nf+1;K=bnfinit(P,1);Kpn=bnrinit(K,p^2);
C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2);
Hpn1=component(Hpn,1);vptor=valuation(Hpn0/Hpn1,p);
if(vptor>=1,Nt=Nt+1;C8=component(K,8);h=component(component(C8,1),1);
vph=valuation(h,p);if(vph>=1,Nh=Nh+1)))));print("[",bf,", ",Bf,"]");
print("p=",p," Nf=",Nf," Nt=",Nt," Nh=",Nh," Nh/Nt=",Nh/Nt," 1/p=",1./p)}

[bf, Bf]=[50000, 100000]
p=7 Nf=7928 Nt=2302 Nh=344 Nh/Nt=0.14943527 1/p=0.14285714
[bf, Bf]=[100000, 500000]
p=7 Nf=63427 Nt=18533 Nh=2690 Nh/Nt=0.14514649 1/p=0.14285714
[bf, Bf]=[100000, 500000]
p=13 Nf=63427 Nt=9979 Nh=754 Nh/Nt=0.07555867 1/p=0.07692307
[bf, Bf]=[100000, 500000]
p=19 Nf=63427 Nt=6850 Nh=389 Nh/Nt=0.05678832 1/p=0.05263157
[bf, Bf]=[100000, 500000]
p=31 Nf=63427 Nt=4316 Nh=139 Nh/Nt=0.03220574 1/p=0.03225806

Thus, the fact that, in general, Rχ is much often non-trivial than C̀ χ, in a
computable proportion, is a positive argument for Vandiver’s conjecture.

5.2.7. Folk heuristic. Consider the general Gauss sum under the expression:

τ(ψ) = −
`−2∑
k=0

ζkp · ξ
gk

` (relation (6), where g is a primitive root modulo `),
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and put k = a p+ b, 0 ≤ a ≤ `−1
p − 1, 0 ≤ b ≤ p− 1. Then one gets easily:

(14) τ(ψ) = −
p−1∑
b=0

ζbp ·
[
TrQ(ξ`)/F`(ξ`)

]σ
gb ,

where F` is the cyclic subextension of degree p of Q(ξ`) and where σgb is the

automorphism acting trivially on ζp and such that ξ` 7→ ξg
b

` , which gives an
exact system of representatives for Gal(F`/Q).
From Remark 3.4 (ii), we know that F` is obtained as the decomposition over
Q of the extension K( p

√
α)/K, with α = τ(ψ)p ∈ Z[ζp], and it is immediate

to see that the p-class group of F` is trivial because of Chevalley’s formula on
invariant classes giving here #C̀ Gal(F`/Q)

F`
= 1 since ` is the unique ramified

prime in F`/Q (see a survey in [18, Remark 3.10]).
The first observation is that the p-class group of F` does not depend on that
of K as ` varies ! Indeed, this context is neither more nor less than class
field theory over Q giving the existence of a unique cyclic extension F` of
conductor ` ≡ 1 (mod p), for which one considers the set of conjugates of
the relative trace of ξ` which moreover defines a normal basis of F`; then the
unique link with the arithmetic ofK is the linear combination (14) involving
the traces to built α, but the character of 〈α〉Z[G]K

×p/K×p is ω which gives
a “poor” information. Thus, the relationship of α = τ(ψ)p (whence of τ(ψ))
with class field theory overK (i.e., with p-classes and units ofK) is tenuous,
possibly empty; which is quite the opposite for the twists gc(`) because of
the relation αc−sc = gc(`)

p and the fact that the gc(`) are radicals defining
non-trivial (arithmetically) cyclic extensions of degree p of K+.
In another direction, suggested by the work of Lecouturier [28] among oth-
ers, consider the non-Galois extension F̃` := Q(

p
√
α̃), where α̃ = `; of course,

K(
p
√
α̃)/K is a cyclic extension of degree p (undecomposed over a strict sub-

field of K), ramified at the p− 1 primes L | ` and at p if and only if ` 6≡ 1

(mod p2). Then [28] shows on the contrary that the p-class group of F̃`
strongly depends on the arithmetic of K while the radical α̃ does not.

This second observation comes from the fact that, for M̃ := K(
p
√
α̃):

#C̀ Gal(M̃/K)

M̃
= #C̀ K ·

pp−2+δ

(EK : EK ∩NM̃/K(M̃×))
≤ #C̀ K · p

p−1
2 ,

where δ = 1 or 0 according as p ramifies or not and where ζp is norm for
δ = 0; but the non-abelian Galois structure yields various non-trivial p-class
groups for F̃` as ` varies, and genera theory implies rkp(C̀ F̃`) ≥ 1 for all `
(for the metabelian genera theory, see [25]). However, for M = K( p

√
α):

#C̀ Gal(M/K)
M = #C̀ K ·

pp−2

(EK : EK ∩NM/K(M×))
≤ #C̀ K · p

p−1
2 ,
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but in this case, M/K decomposes into F` and only the isotopic component
for the unit character is concerned, which gives in fact a trivial part of the
Chevalley’s formula (contrary to the metabelian case M̃/Q).
So the “folk heuristic” shall be to say that, because of F` defined by the
radical α = τ(ψ)p, the p-adic properties of the Gauss sums are independent
of the arithmetic of K (i.e., random) as ` varies (despite the apparent com-
plexity of the radical α = τ(ψ)p), while the properties of F̃` are strongly
dependent (despite the obvious simplicity of the radical α̃ = `). In other
words we have probably some dualities about the arithmetic complexity of
Kummer theory in the comparison “radicals versus extensions”.

5.3. Additive p-adic statistics. Of course, we are only concerned with
the multiplicative p-adic properties of the Gauss sums τ(ψ) and mainly of
the twists gc(`), and these are given by their χ∗-components for χ ∈X+.
Nevertheless, the additive properties seem to follow more explicit rules,
which is an interesting information about the numerical repartition and the
independence as ` varies, and this probably has an impact on the multi-
plicative properties regarding the results of § 4.5.
We shall examine the case of the twists, gc(`) (more precisely of ψ−c(c) gc(`)
as product of Jacobi sums), then the case of the original Gauss sums τ(ψ)
from the arithmetic of the fields F`.

5.3.1. The Z-rank of the family
(
ψ−c(c) gc(`)

)
`∈Lp

. Put, for p and c fixed:

(15) J(`) := ψ−c(c) gc(`) = ψ−c(c) τ(ψ)c−σc = J1 · · · Jc−1 (see (11))

written on the basis {1, ζp, . . . , ζp−2p }, under the form J(`) =
p−2∑
k=0

ak(`) ζ
k
p ,

the integers ak(`) being considered modulo p. A first information, about
the p-adic repartition of the J(`) as ` varies, is to compute the Fp-rank of
the Fp-matrix

(
ak(`)

)
k,`

. The following program gives systematically:

RankFp
(
ak(`)

)
k,`

= p− 4,

for all the primes p ≥ 7 tested (rank 1 for p = 3 and rank 2 for p = 5).
We have verified it up to p ≤ 300, an interval which contains 14 irregular
primes. The program gives p, the Fp-rank of the matrix (in rank) and the
least `p (in elp) for which the sub-matrix built from {` ∈ Lp, ` ≤ `p} has
rank p− 4.
{forprime(p=7,500,c=lift(znprimroot(p));P=polcyclo(p);M=matrix(1,p-1);r=0;
for(i=1,10^8,el=1+2*i*p;if(isprime(el)==0,next);g=znprimroot(el);J=Mod(1,p);
for(i=1,c-1,Ji=0;for(k=1,el-2,kk=znlog(1-g^k,g);e=lift(Mod(kk+i*k,p));
Ji=Ji-x^e);J=J*Ji);J=lift(Mod(J,P));V=vector(p-1,j,component(J,j));
MM=concat(M,V);rr=matrank(MM);if(rr==r,next);r=rr;M=MM;if(r==p-4,
print("p=",p," r=",r," elp=",el);break)))}
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p rank elp p rank elp p rank elp p rank elp
7 3 113 11 7 397 13 9 599 17 13 1259
71 67 42743 73 69 48473 79 75 50087 83 79 65239
151 147 247943 157 153 273181 163 159 294053 167 163 305611

We have J(`) ≡ 1 (mod p), whence
∑p−2

k=0 ak(`) ≡ 1 (mod p), and we can
write J(`) = 1 +

∑p−2
k=1 ak(`) (ζkp − 1) depending on p− 2 parameters; then,

due to the relations J(`)1+s−1 ≡ 1 (mod p) and J(`)eω ∈ K×p (because
ω(c−sc) ≡ 0 (mod p)), this yields the three relations of “derivation” (p ≥ 7):

p−2∑
k=1

kδ · ak(`) ≡ 0 (mod p), δ ∈ {1, 2, 4}, for any ` ∈ Lp.

This explains a Fp-rank at most p−4, but we have no proof of the fact that
the rank is not less than p− 4.
The order of magnitude of `p seems to be O(1) p2 log(p2), but the program
slows down very much as p increases, which prevents to be more precise;
give now the end of the computations with an estimation of the O(1):
p elp O(1) p elp O(1) p elp O(1) p elp O(1)
211 517373 1.0856 223 628861 1.1693 227 604729 1.0816 229 631583 1.1082
233 642149 1.0849 239 695491 1.1116 241 684923 1.0750 251 784627 1.1269
257 862493 1.1766 263 819509 1.0631 269 928051 1.1461 271 906767 1.1019
277 925181 1.0719 281 1055437 1.1853 283 979747 1.0834 293 988583 1.0136

5.3.2. Repartition of the conjugates of the traces TrQ(ξ`)/F`(ξ`). Let ZF` be
the ring of integers of F` and let ZF`/pZF` be the residue ring modulo p.
These residue rings are isomorphic to Fpp or to Fpp, but there is no canonical
map between them as ` ∈ Lp varies. Thus, in the expression (14) giving

τ(ψ) = −
p−1∑
b=0

ζbp ·
[
TrQ(ξ`)/F`(ξ`)

]σ(b), where σ(b) := σgb and ψ(g) = ζp, the

images in ZF`/pZF` of the conjugates of the Tr(ξ`) := TrQ(ξ`)/F`(ξ`) may
be easily analysed and compared, for ` ∈ Lp, by means of the image R` in
Fp[x] of the polynomial:

Q` =
∏

σ∈Gal(F`/Q)

(
x− Tr(ξ`)

σ
)
∈ Z[x].

Proposition 5.3. Let `1, `2 ∈ Lp and let τ(ψ1), τ(ψ2) be the corresponding
Gauss sums normalized via ψ1(g1) = ψ2(g2) = ζp. Let F = F`1F`2.
If R`1 6= R`2 , then for all σ ∈ Gal(FK/Q), τ(ψ2) 6≡ τ(ψ1)

σ (mod ppZFK).

Proof. Suppose there exists σ ∈ Gal(FK/Q) such that τ(ψ2) ≡ τ(ψ1)
σ

(mod ppZFK); we recall that τ(ψ1)
σ = ζσ τ(ψe1), ζσ ∈ µp, e ∈ Z/pZ. Then:

τ(ψ2) = −
p−1∑
b=0

ζbp · Tr(ξ`2)σ2(b) and τ(ψ1)
σ = −

p−1∑
b=0

ζbp · Tr(ξ`1)π(σ1(b)),

where π is a permutation of the σ1(b). Using TrQ(ξ`i )/Q
(ξ`i) = −1, we get:
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τ(ψ2) = 1−
p−1∑
b=1

(ζbp−1) ·Tr(ξ`2)σ2(b), τ(ψ1)
σ = 1−

p−1∑
b=1

(ζbp−1) ·Tr(ξ`1)π(σ1(b)),

which gives:

τ(ψ1)
σ−τ(ψ2) =

p−1∑
b=1

(ζbp−1)·
(
Tr(ξ`2)σ2(b)−Tr(ξ`1)π(σ1(b))

)
≡ 0(mod ppZFK).

Since the ζbp − 1, b ∈ [1, p − 1], define a Z-basis of pZK , then a ZF -basis
of ZFK , this relation implies Tr(ξ`2)σ(b) ≡ Tr(ξ`1)π(σ(b)) (mod p) for all b,
which yields R`1 = R`2 in Fp[x] (contradiction). �

Since τ(ψ2) 6≡ τ(ψ1)
σ (mod pp) for all σ implies gc(`2) 6≡ gc(`2)

σ (mod pp)
for all σ (except for the ω-components because ω(c− σc) ≡ 0 (mod p)), we
can say that the number of distinct polynomials R`, ` ∈ Lp, gives a partial
idea of the repartition modulo p of the sets E`(p) as ` varies.
The following program, computing the monic polynomial R = R` ∈ Fp[x]
returns: el = `, the residue degree f = f of p in F`/Q, and R.
{p=7;B=5*10^3;el=1;while(el<B,el=el+2*p;if(isprime(el)==0,next);
g=znprimroot(el);h=g^p;g=lift(g);h=lift(h);P=polcyclo(el);z=Mod(x,P);
Q=1;e=1;for(k=1,p,Tr=0;e=e*g;for(j=1,(el-1)/p,e=e*h;e=lift(Mod(e,el));
Tr=Tr+z^e);Q=Q*(T-Tr));Q=component(lift(Q),1);R=0;
for(i=0,p,C=component(Q,i+1);C=lift(Mod(C,p));R=R+x^i*C);
F=znorder(Mod(p,el));f=1;v=valuation(F,p);w=valuation(el-1,p);
if(w==v,f=p);print("el=",el," f=",f," R=",R))}

Give a short excerpt of the table of the R` for p = 7 with ` ∈ [1, 5·103]:
el=29 f=7 R=x^7 + x^6 + 2*x^5 + 5*x + 1
el=43 f=1 R=x^7 + x^6 + 3*x^5 + 3*x^3 + 6*x^2
el=71 f=7 R=x^7 + x^6 + 5*x^5 + 3*x^4 + 2*x^3 + 6*x^2 + 4
el=113 f=7 R=x^7 + x^6 + x^5 + 2*x^4 + 4*x^3 + 2*x^2 + 6
(...)
el=4831 f=7 R=x^7 + x^6 + 2*x^5 + 5*x^4 + 3*x^3 + 6*x^2 + 3*x + 1
el=4943 f=7 R=x^7 + x^6 + 3*x^5 + x^4 + x^3 + 3*x + 5
el=4957 f=7 R=x^7 + x^6 + 4*x^5 + 2*x^4 + 5*x^3 + 3*x^2 + 2*x + 1
el=4999 f=7 R=x^7 + x^6 + 4*x^3 + 5*x^2 + 2*x + 6

It is hopeless to write wide lists of polynomials R` for large p, but any
experiment suggests a random distribution of the coefficients (except that
of xp−1 since TrQ(ξ`)/Q(ξ`) = −1).
We verify that for p = 3 the six possible polynomials are of the form R`.
For p = 5 there are 150 possible polynomials. For p = 7, there are 17192
possible polynomials. But to establish the list of the distinct polynomials
R`, the program becomes very slow as ` increases:
(i) For p = 5, we obtain the following end of the calculations (two days of
computer; it seems that only 35 distinct polynomials R` are available):
{p=5;B=10^7;L=List;N=0;el= 1;while(el<B,el=el+2*p;if(isprime(el)==0,next);
P=polcyclo(el);g=znprimroot(el);h=g^p;Q=1;e=1;for(k=1,p,Tr=0;e=e*g;
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for(j=1,(el-1)/p,e=e*h;e=lift(Mod(e,el));Tr=Tr+x^e);Tr=Mod(Tr,P);
Q=Q*(T-Tr));Q=component(lift(Q),1);R=0;for(i=0,p,C=component(Q,i+1);
C=lift(Mod(C,p));R=R+x^i*C);t=0;for(m=1,N,S=component(L,m);
if(S==R,t=1;break));if(t==0,listput(L,R);N=N+1;print(N," ",el," ",R)))}
(...)
32 5591 x^5 + x^4 + 4*x^3 + x^2 + 4*x + 2
33 6211 x^5 + x^4 + x^3 + x^2 + x
34 6271 x^5 + x^4 + 2*x^3 + 4*x^2 + 3*x + 4
35 13451 x^5 + x^4

(ii) For p = 7, ` up to 17977, we get painfully a little more than 250
distinct R`, but the exact number is unknown.

Remarks 5.4. (i) One verifies (using the program of § 4.5.1) that, as ex-
pected, if two primes ` give the same R, the lists of exponents of p-primarity
are identical (e.g., p = 5, R = x5 +x4 +4 obtained for ` = 1151, 1601, 1951,
3001, 3251, 3851, 4651, 4751, up to 5000, with exponent of p-primarity 2).
(ii) If n0 ∈ E`(p) ∩ E0(p) when the class of L | ` generates C̀ χ∗0 , then we
get gc(`)χ∗0 ≡ 1 (mod p) for all ` ∈ Lp (see § 4.5); this gives (non-linear)
relations modulo p between the conjugates of the traces TrQ(ξ`)/F`(ξ`) for
all ` ∈ Lp, which may seem excessive.
(iii) It is clear that a large number of polynomials R` strengthens Van-
diver’s conjecture since the corresponding J(`) = ψ−c(c) gc(`) (see (15))
cover sufficiently possibilities modulo p, especially since we know that the
Fp-rank associated to the family of

(
J(`)

)
`∈Lp

is probably always p−4, but
these informations are not “equivalent”. Moreover, an assumption about
the order of magnitude of Np := #{R`, ` ∈ Lp} is not necessary to obtain
Vandiver’s conjecture; indeed, a single suitable ` may ensure a positive test
for Vandiver’s conjecture as shown by the table given in § 4.4.2.

We propose the following heuristic, about the sets E`(p) of exponents of
p-primarity, using the number Np:

Heuristic 5.5. For any given p, the probability of E`(p) = ∅, for a single
` ∈ Lp, is (1 + o(1)) · e−

1
2 ; the probability of at least a counterexample to

Vandiver’s conjecture is O(1)
(
1 − e−

1
2

)Np , with Np := #{R`, ` ∈ Lp},
where R` =

∏
σ∈Gal(F`/Q)

(
x− TrQ(ξ`)/F`(ξ`)

σ
)
seen in Fp[x].

It will be necessary to confirm these facts, to estimate Np and prove the
independence of the p-adic properties of the sets of traces as ` varies, in
which case Vandiver’s conjecture is very credible. Such a goal may perhaps
be accessible by specialists of analytic number theory.

5.4. Consequences of a failure of Vandiver’s conjecture. We have
seen that under the p-primarity of gc(`)χ∗0 for the exponent of p-irregularity
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n0, the corresponding component of the list counting the p-primarities, in-
creases at each step. For instance, if for p = 37 the exponent n0 = 32 of 37-
irregularity was an exponent of p-primarity, the last line of the data § 4.5.3
would be the awful result (16th component equal to 75 + 1432 = 1507):

L = [83, 96, 86, 91, 80, 80, 86, 83, 92, 83, 98, 76, 83, 78, 86,1507, 76].
Let x(`) be the mean value of the components of the list L and let N` be
the number of primes ` tested at this step. Then from the above, x(`) ≈ 84

and this would give a 16th component x0(`) ≈ x(`) · p−12 as ` → ∞ (here,
75+1432

84 ≈ 17.94).

Then we may estimate x(`) very approximatively equal to 2N
p where N is

the number of exponents of p-primarity obtained in the selected interval of
primes `, and we may put N` ≈ O(1) ·N ; whence x(`) ≈ 2

p ·N` · (1 +O(1))

giving the pathological component x0(`) ≈ N` · (1 +O(1)).

6. Conclusion

Under these experiments and heuristics, the existence of sets E`(p), disjoint
from E0(p), or probably the existence of primes ` ∈ Lp such that E`(p) = ∅
(from the numerical results § 4.4.2), may occur conjecturally for all p.
Let us define a “main algorithm”, associated to the test of Vandiver’s con-
jecture for p, as the passage from ` to the next `′ in Lp, the crucial step
being the computation of the Jacobi sums (1 ≤ i ≤ c− 1):

Ji = −
∑

x∈F`\{0,1}
ζi·lg(x)+lg(1−x)
p & J ′i = −

∑
x′∈F`′\{0,1}

ζi·lg
′(x′)+lg′(1−x′)

p ,

where lg and lg′ are the discrete logarithms for the primes ` and `′; then
we have ψ−c(c) · gc(`) = J1 · · · Jc−1. Since the Jacobi sums have, a priori,
no p-adic “algebraic link”, this suggests randomness and applies for many
independent primes `. Another possibility of “algorithm” should be the
computation of the conjugates of the traces TrQ(ξ`)/F`(ξ`) as ` ∈ Lp varies,
giving the coefficients of the Gauss sums, the fields Q(µ`) being, a priori,
independent of the arithmetic of K.

Remark 6.1. There are two constraints, for Gauss and Jacobi sums that we
have considered, but they only concern the auxiliary prime numbers ` ∈ Lp:
(i) The p-classes (finite in number) of ideals L | ` for ` ∈ Lp are all repre-
sented with standard densities.
(ii) The ideal factorization of τ(ψ)p, ψ : F×` → µp, is related to congruences
modulo the conjugates of a prime ideal L | ` and is canonical (this yields
to Stickelberger’s theorem and its consequences [43, § 15.1], [6, 46]); the
reference [35] may give some help for the annihilation of C̀ (p)

χ∗0
. A similar

context is that of the `-adic Γ-function of Morita (do not confuse p and `,
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often permuted in the literature). However, since we consider characters
ψ of order p, the p-adic congruential properties of Gauss sums (or Jacobi
sums) do not follow any law (in our opinion and according to classical
literature), what explains that the negation of the distribution properties
(i.e., randomness), for at least one irregular prime p, implies a very tricky
complexity of the above “algorithms”, as the fact that E`(p) ∩ E0(p) 6= ∅
(or the weaker property E`(p) 6= ∅), for all ` ∈ Lp, which comes from the
non-cyclicity of C̀ (p)

χ∗0
for some χ∗0.

These fundamental p-adic properties of Gauss sums may have crucial con-
sequences in various domains:

Vandiver’s conjecture is often strongly necessary (e.g., in [7] about the
Galois cohomology of Fermat curves, in [38] for the root numbers of the
Jacobian varieties of Fermat curves, then in several papers on Galois p-
ramification theory as in [36, 37], or [44, 45] in relation with modular forms,
then in numerous papers and books on the theory of deformations of Ga-
lois representations as in [2, 31], Iwasawa’s theory context as in [5] for
µ-invariants in Hida families). In a geometrical viewpoint, the Riemann
hypothesis for Fermat curves [43, § 6.1] gives a basic link with Jacobi sums.

Then it may be legitimate to think that all these numerous basic congruen-
tial aspects are (logically) governing principles of a wide part of algebraic
number theory, as follows, beyond the case of the pth cyclotomic field (not
to mention all the geometrical aspects as the theory of elliptic curves where
some analogies can be found, and all the generalizations of the present
abelian case over a number field k 6= Q):

Gauss and Jacobi sums, Hecke Grössencharacters −→ Stickelberger element
−→ p-adic L-functions −→ Herbrand theorem & Main theorems on abelian
fields −→ annihilation of the p-torsion group T of real abelian fields −→
universal isomorphism T ' H2(GSp ,Zp)∗ −→ p-rationality of number fields
(T = 1) −→ cohomological obstructions in Galois theory −→ · · ·
Which gives again an example of a basic p-adic problem, analogous to those
we have analysed about various deep conjectures: Greenberg’s conjectures
(in Iwasawa theory over totally real fields [19] and on representation theory
[21]), p-rationalities of a number field as p → ∞, Ankeny–Artin–Chowla
conjecture fromthe conjectural existence of a p-adic Brauer–Siegel theorem
[17] . . . All these questions being related to the deep invariant T that may
be considered as an ultimate information beyond Leopoldt’s conjecture.

As shown by the numerous evidences given in § 5.2, Vandiver’s conjecture
may come, for p� 0, from Borel–Cantelli heuristic, on exceptional features
of Gauss sums of probabilities much less than O(1)

p2
; but this point of view

allows cases of failure of the conjecture, which is not satisfactory for the
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theoretical fundations of the above subjects. Possibly, there is an universal
property of the sets E`(p) coming from the fact that all ` ∈ Lp intervene.

To be very optimistic (but not very rigorous), one can perhaps say that Van-
diver’s conjecture is true because it has been verified for sufficiently many
prime numbers [4, 8]. In a more serious statement, we may assert that Van-
diver’s conjecture holds for almost all primes; the precise finite cardinality
of the set of counterexamples (∅ or not) is (in our opinion) not of algebraic
nature nor enlightened by class field theory, Galois cohomology or Iwasawa’s
theory, but is perhaps accessible by the way of analytical/geometrical tech-
niques or depends on a more general hypothetic “complexity theory” in
number theory.
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