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TEST OF VANDIVER’S CONJECTURE

WITH GAUSS SUMS – HEURISTICS

GEORGES GRAS

Abstract. The link between Vandiver’s conjecture and Gauss sums
is well-known since the papers of Iwasawa (1975) and Anglès–Nuccio
(2010); this context has been considered by many authors with various
purposes (Iwasawa theory, Galois cohomology, Fermat curves,...). We
give again the interpretation of Vandiver’s conjecture in terms of the
minus part of the torsion group of the Galois group of the maximal
abelian p-ramified pro-p-extension of the pth cyclotomic field, that we
had published at the Laval University (1984). Then we provide a spe-
cific use of Gauss sums allowing a numerical test of Vandiver’s conjec-
ture (cf. Theorem 4.5 using both the set of exponents of p-irregularity
and the sets of exponents of p-primarity of a suitable twist of Gauss
sums giving Jacobi sums of characters of order p). Then we propose
new heuristics for its rightness. We show that a counterexample to
Vandiver’s conjecture leads to a strange phenomenon on the congruen-
tial properties modulo p of Gauss sums and to an unusual complexity
of algorithms. All the techniques used are basic and classic. Many
tables are given to strength our arguments; the corresponding PARI
programs may be copy and past by the reader.
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1. Introduction

Let K = Q(µp) be the field of pth roots of unity for a given prime p > 2
and let K+ be its maximal real subfield. We denote by Cℓ and Cℓ+ the
p-class groups of K and K+, respectively, then by Cℓ− the relative p-class
group. Let E and E+ be the groups of units of K and K+; we know that
E = E+ ⊕ µp.

The Vandiver (or Kummer–Vandiver) conjecture asserts that Cℓ+ is trivial.
This statement is equivalent to say that the group of real cyclotomic units
is of prime to p index in E+ [24, Theorem 8.14]. See numerical results using
this property in [3, 6].

Many heuristics are known about this conjecture; see Washington’s book
[24, § 8.3, Corollary 8.19] for some history and criteria, then for probabilistic
arguments. We have also given a probabilistic study in [10, II.5.4.9.2]. All
these heuristics lead to the fact that the number of primes p less than p0,
giving a counterexample, can be of the form c · log(log(p0)), c < 1. These
reasonings, giving the possible existence of infinitely many counterexamples
to Vandiver’s conjecture, are based on standard probabilities associated
with the Borel–Cantelli heuristic, but many recent p-adic conjectures (on
class groups and units) may contradict such approaches.

In this paper, we shall give numerical experiments in another direction
using Gauss sums and Stickelberger annihilation of relative classes, together
with a weaker form of the main theorem on abelian fields. Such a link
of Vandiver’s conjecture with Gauss sums and Galois p-ramification has
been given first by Iwasawa [18] and applied by many authors in various
directions (e.g., [1, 5, 13, 16, 17, 21]); we shall give a short survey about
this in Section 3.
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More precisely, we shall use the reflection principle to interprete a coun-
terexample to Vandiver’s conjecture in terms of non-trivial “p-primary rela-
tive pseudo-units” stemming from Gauss sums of the form

∑

x∈F×

ℓ

ψ(x) ξxℓ , for

ψp = 1, ξℓ of order ℓ ≡ 1 (mod p); this shall give the main test verifying
the validity of the conjecture for a given p (Theorem 4.5 and Corollaries).
Indeed, if #Cℓ+ ≡ 0 (mod p), there exists a class γ = cℓ(A) ∈ Cℓ−, of order
p, such that Ap = (α), with α p-primary (to give the unramified exten-
sion K( p

√
α)/K, decomposed over K+ into the cyclic unramified extension

L+/K+ predicted by class field theory); since α can be obtained explicitely
by means of twists of the above Gauss sums, giving products of Jacobi
sums, we show that some assumption of independence, of the congruential
properties (mod p) of these Jacobi sums, is an obstruction to any counterex-
ample to Vandiver’s conjecture or, at least, that the probability of such a

counterexample is at most O(1)
p2

.

This method is different from those needing to prove that some cyclotomic
units are not global pth powers, which does not give obvious probabilistic
approaches.

Finally, we propose new heuristics (to our knowledge) and give substantial
numerical experiments which confirm them. All the PARI [20] programs
can be copy and paste by the reader for any further experience.

Definitions & Notations 1.1. Let K := Q(µp) and G = Gal (K/Q).

(i) Let ζp be a primitive pth root of unity. We denote by ω the character
of Teichmüller of G (i.e., the p-adic character with values in µp−1(Qp) such

that ζsp = ζ
ω(s)
p for all s ∈ G).

(ii) An irreducible p-adic character of G is of the form θ = ωk, 1 ≤ k ≤ p−1;
we denote by 1 the unit character. We denote by X+ the set of even
characters χ 6= 1 (i.e., χ = ωn, n ∈ [2, p − 3] even).

(iii) If θ = ωm, we put θ∗ := ωθ−1 = ωp−m. This defines an involution on
the group of characters which applies X+ onto the set X− of odd characters
distinct from ω.

(iv) For any character θ, we denote by eθ :=
1

p−1

∑

s∈G
θ(s−1) s the associated

idempotent in Zp[G]. Thus s · eθ = θ(s) · eθ for all s ∈ G.

(v) For a finite Zp[G]-module M , we put Mθ := M eθ . The operation of
the complex conjugation s−1 ∈ G gives rise to the obvious definition of the
components M+ and M− such that M =M+ ⊕M−.

(vi) We denote by rkp(A) the p-rank of any abelian group A (i.e., the Fp-
dimension of A/Ap).

(vii) Let F be a subgroup of K×; for α ∈ F , considered modulo K×p, we
denote, by abuse, by αθ a representative of αeθ ∈ Fθ := (FK×p/K×p)θ.
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(viii) For χ =: ωn ∈ X+, denote by b(χ∗) = 1
p

p−1
∑

a=1
(χ∗)−1(sa) a (where

sa ∈ G is the Artin automorphism of a) the generalized Bernoulli number

B1,(χ∗)−1 = B1,ωn−1 ; it is an element of Zp congruent modulo p to
Bn

n
, where

Bn is the ordinary Bernoulli number of even index n ∈ [2, p − 3] (see [24,
Proposition 4.1, Corollary 5.15]).

(ix) The index of p-irregularity i(p) is the number of even n ∈ [2, p−3] such
that Bn ≡ 0 (mod p); see [24, § 5.3 & Exercise 6.6] giving statistics and

the heuristic i(p) = O
( log(p)
log(log(p))

)

.

Hypothesis 1.2. To simplify and to be realistic in an heuristic point of
view, we assume that each Cℓχ∗ is trivial or cyclic of order p, for all χ ∈ X+;

in other words, we assume that Cℓ− ≃ (Z/pZ)i(p).

Indeed, we know that #Cℓχ∗ ≡ 0 (mod p2) has probability less than O(1)
p2

,

especially for the case rkp(Cℓχ∗) ≥ 2, which may be considered as giving
a finite number of counterexamples to Vandiver’s conjecture, what can be
discarded for our purpose, the general case giving only technical compli-
cations. The main theorem on abelian fields gives, under our assumption,
b(χ∗) ∼ p for each non-trivial component Cℓχ∗ , where ∼ means “equality up
to a p-adic unit factor”, but leads, in fact, to the classical Herbrand theo-
rem “p | Cℓχ∗ implies p | b(χ∗)” (the numerical results [3, 6] are in complete
accordance with this viewpoint).

2. Pseudo-units – Notion of p-primarity

Definitions 2.1. (i) We call pseudo–unit any α ∈ K×, prime to p, such
that (α) is the pth power of an ideal of K.

(ii) We say that an arbitrary α ∈ K×, prime to p, is p-primary if the
Kummer extension K( p

√
α )/K is unramified at the unique prime ideal p

above p in K (but possibly ramified elsewhere).

Remarks 2.2. (i) Let A be the group of pseudo–units of K; then we have
the exact sequence (where pCℓ := {γ ∈ Cℓ, γp = 1}):

1 −→ E/Ep −−−→ AK×p/K×p −−−→ pCℓ −→ 1,

giving rkp(AK
×p/K×p) =

p− 1

2
+ rkp(Cℓ).

(ii) The general condition of p-primarity for any α ∈ K× (prime to p but not
necessarily pseudo-unit) is “ α congruent to a pth power modulo pp = (p) p ”
(e.g., [10, Ch. I, § 6, (b)], Theorem 6.3). Since in any case, we can suppose
α ≡ 1 (mod p), the above condition is then equivalent to α ≡ 1 (mod pp)
(indeed, x ≡ 1 (mod p) implies xp ≡ 1 (mod pp)).

For the pseudo-units, the p-primarity may be precised as follows:
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Proposition 2.3. Let α ∈ K× be a pseudo–unit. Then α is p-primary if
and only if it is a local pth power at p.

Proof. One direction is trivial. Suppose that K( p
√
α )/K is unramified at p;

since α is a pseudo-unit, this extension is unramified as a global extension
and is contained in the p-Hilbert class field H of K. The Frobenius auto-
morphism in H/K of the principal ideal p = (1 − ζp) is trivial; so p splits
totally in H/K, thus in K( p

√
α )/K, proving the proposition. �

There is another analogous case when α, prime to p, is not necessarily a
pseudo-unit, but when we look at the p-primarity of αθ for θ 6= 1, ω:

Proposition 2.4. Let α ≡ 1 (mod p) ∈ K× and let m ∈ [2, p − 2]. Let
θ = ωm, and consider αθ. Then αθ ≡ 1 (mod pm) and αθ is p-primary if
and only if αθ ≡ 1 (mod p), in which case αθ ≡ 1 (mod pm+p−1 = (p)pm).

Proof. Consider the Dwork uniformizing parameter ̟ in Zp[µp] which has
the following properties:

(i) ̟p−1 = −p,
(ii) s(̟) = ω(s) ·̟, for all s ∈ G.

Put αθ = 1 + ̟ku, where u is a unit of Zp[̟] and k ≥ 1; let u0 ∈ Z\pZ
such that u ≡ u0 (mod ̟). Since αs

θ = α
θ(s)
θ in K×/K×p, we get, for all

s ∈ G:

1 + s(̟k)u0 = 1 + ωk(s)̟ku0

≡ (1 +̟ku0)
θ(s) ≡ 1 + ωm(s)̟ku0 (mod ̟k+1),

which implies k ≡ m (mod p−1) and αθ = 1+̟k u, k ∈ {m,m+p−1, . . .}.
The p-primarity condition for αθ is αθ ≡ 1 (mod ̟p) giving the obvious
direction since ̟p ∼ p̟. Suppose αθ ≡ 1 (mod ̟p−1); so k = m does not
work since m ≤ p− 2, and necessarily k is at least m+ p− 1 ≥ p+ 1 since
m ≥ 2 (which is also the local pth power condition). �

We shall apply this with θ = χ∗ = ωp−n, n ∈ [2, p − 3] even, and for some
α ≡ 1 (mod p) deduced from Gauss sums.

3. Abelian p-ramification – Gauss sums

3.1. Vandiver’s conjecture and abelian p-ramification. Let T be the
torsion group of the Galois group of the maximal abelian p-ramified (i.e.,
unramified outside p) pro-p-extension Hpr of K; since Leopoldt’s conjecture

holds for abelian number fields, we have Gal(Hpr/K) ≃ Z
p+1
2

p ⊕ T where
the Galois group Γ of the compositum of the Zp-extensions of K is such

that Γ = Γ+ ⊕ Γ−, with Γ+ ≃ Zp and Γ− ≃ Z
p−1
2

p (for more information,
see [10, 11, 14] and their references).
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Write T = T+⊕T− and defineHpr
− ⊆ Hpr,Hpr

+ ⊆ Hpr so that Gal(Hpr
+ /K) ≃

Zp ⊕ T+ and Gal(Hpr
− /K) ≃ Z

p−1
2

p ⊕ T−. Note that Hpr
+ /K is decomposed

over K+ to give the maximal abelian p-ramified pro-p-extension of K+. We
then have the following interpretation [10, Proposition III.4.2.2]:

Theorem 3.1. The Vandiver conjecture Cℓ+ = 1 is equivalent to T− = 1.

Proof. We will briefly prove this famous "global" reflection result as follows:

The Kummer radical of the compositum of the cyclic extensions of degree p
of K contained in Hpr

− is generated (modulo K×p) by the obvious part E+ of

real units, giving a p-rank p−3
2 , then by the real p-unit η+ := ζp+ζ

−1
p −2, and

by the pseudo-units α+ comming from Cℓ+, which gives the p-rank of this
radical equal to p−1

2 + rkp(Cℓ+). Since rkp(Gal(Hpr
− /K)) = p−1

2 + rkp(T−),
we get rkp(T−) = rkp(Cℓ+). �

The proof for the isotypic components is similar, taking the θ or θ∗-compo-
nents for each object which yields [10, Theorem II.5.4.5]:

(1) rkp(Tθ∗) = rkp(Cℓθ).
In particular, if χ ∈ X+, we shall say that Vandiver’s conjecture holds at χ
(i.e., Cℓχ = 1) if and only if Tχ∗ = 1.

Remarks 3.2. (i) One says that K is p-rational if T = 1 (the definition is the
same for any number field fulfilling the Leopoldt conjecture at p; see [11] for
more details and programs testing the p-rationality of any field). For the
pth cyclotomic field K this is equivalent to its p-regularity [9, Théorème
4.1] (the relation T− = 1 may be interpreted as the conjectural “relative
p-rationality” of K). We have conjectured that any given field is p-rational
for all p≫ 0.

(ii) At each unramified cyclic extension L+ of degree p of K+ is associated
a p-primary pseudo-unit α ∈ (K×/K×p)− such that L+K = K( p

√
α). Put

(α) = Ap, where the p-class of A is in Cℓ−; moreover A is not p-principal,
otherwise α should be, up to a pth power factor, a unit ε ∈ (E/Ep)−, which
gives ε ∈ µp (absurd). In the same way, if G operates via χ on Gal(L+/K+)
then by Kummer duality G operates via χ∗ on 〈α〉K×p.

We shall prove that such pseudo-units α may be found by means of suitable
twists gc(ℓ) of the Gauss sums (Lemma 4.4).

3.2. Vandiver’s conjecture and Gauss sums. Recall the formula (see
[10, Corollary III.2.6.1, Remark III.2.6.5] for more details and references):

#T− =
#Cℓ−

#

(

Zp log(I)
/

Zp log(U)
)

−

,

where I is the group of prime to p ideals of K and U is the group of principal
local units of Qp(µp) which is equal to 1 +̟Zp[̟]. If A ∈ I, let e be such
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that Ae = (α), then log(A) := 1
e log(α) where log is the p-adic logarithm;

taking the minus part, log(A) becomes well-defined.

We obtain for all χ ∈ X+ (noting that Tω = Cℓω = 1):

(2) #Tχ∗ =
#Cℓχ∗

#
(

Zp log(I)
/

Zp log(U)
)

χ∗

·

The following reasonning (from [13, § 3]) gives another, but similar, inter-
pretation of the result of Iwasawa [18]. Consider the Stickelberger element:

S :=
1

p

p−1
∑

a=1
a s−1

a ∈ Q[G];

it is such that S . eχ∗ = b(χ∗) . eχ∗ := B1,(χ∗)−1 . eχ∗ for all χ ∈ X+;

then if χ =: ωn, χ∗ = ωp−n for which #Cℓχ∗ corresponds to the ordi-
nary Berrnoulli numbers Bn giving the “exponents of p-irregularity n” when
Bn ≡ 0 (mod p) (see Definition 1.1 (viii)).

Let L 6= p be a prime ideal of K, let FL of characteristic ℓ be its residue
field and let ψ be a character of order p of F×

L . We define the Gauss sum:

(3) τ(ψ) := −
∑

x∈FL

ψ(x) ξ
tr(x)
ℓ ∈ Z[µpℓ],

where ξℓ is a primitive ℓth root of unity and tr the trace in FL/Fℓ. We have
the fundamental relation in K (see [24, §§ 6.1, 6.2, 15.1]):

(4) L pS = τ(ψ)p Z[ζp],

Remark 3.3. Since various choices of L, ξℓ and ψ, from a given ℓ, corre-
spond to Galois conjugations and/or products by a pth root of unity, we
denote simply τ(ψ) such a Gauss sum, where ψ is for instance the canonical
character of order p; for convenience, we shall have in mind that ℓ defines
such a τ(ψ) (and some other forthcoming objects) in an obvious way.

Taking the logarithms in (4), we obtain, for all χ ∈ X+: 1

S . eχ∗ . log(L) = b(χ∗) . log(L) . eχ∗ = log(τ(ψ)) . eχ∗ .

Then pvp(b(χ
∗)) Zp log(L) . eχ∗ = Zp log(τ(ψ)) . eχ∗ , thus, from (2):

#Tχ∗ =
pvp(b(χ

∗))

#
(

Zplog (G)
/

pvp(b(χ
∗)) log (U)

)

χ∗

,

where G is the group generated by all the Gauss sums. So, the Vandiver con-
jecture at χ ∈ X+ (i.e., Tχ∗ = 1) is equivalent to

(

Zp log (G)/log(U)
)

χ∗
= 1,

1 Only log(τ (ψ)p) makes sense in Zp[ζp], but allows to define log(τ (ψ)) ∈ Zp[ζp] via
the functional property of the logarithm.
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and is obviously fulfilled if b(χ∗) is a p-adic unit. The whole Vandiver con-
jecture is equivalent to the fact that the images of the Gauss sums in U
generate the minus part of this Zp-module.

It will appear that one can restrict ourselves to primes ℓ ≡ 1 (mod p), what
we shall suppose in the sequel.

More precisely, assume the Hypothesis 1.2 and let χ ∈ X+ be such that
b(χ∗) ∼ p (i.e., #Cℓχ∗ = p); thus Tχ∗ = 1 if and only if there exists a prime
number ℓ such that the corresponding log(τ(ψ)χ∗) generates log(Uχ∗) =
log(1 +̟p−nZp[̟]) (Proposition 2.4).

There is also the fact that the Gauss sums, considered modulo pth powers
and computed modulo p, are indexed by infinitely many ℓ; in other words
there are some non-obvious periodicities in the numerical results as ℓ varies.
This may be explained as follows under the Hypothesis 1.2:

Proposition 3.4. Let Cℓ(p) := I/{(x), x ≡ 1 (mod p)} be the ray class
group of modulus (p)Z[ζp]. Then for any χ ∈ X+, we have the following
properties:

(i) #Cℓ(p)χ∗ = p · #Cℓχ∗ ∈ {p, p2}.
(ii) The condition Cℓχ = 1 is equivalent to the cyclicity of Cℓ(p)χ∗ .

Proof. We have the exact sequence 1 → (V/W )χ∗ → Cℓ(p)χ∗ → Cℓχ∗ → 1,

where V := {x ∈ K×, x ≡ 1(mod p)}, W := {x ∈ K×, x ≡ 1(mod p)},
giving (i). The statement (ii) is obvious if Cℓχ∗ = 1. Suppose #Cℓχ∗ = p;

then Cℓχ = 1 is equivalent to Tχ∗ = 1 which implies the cyclicity of Cℓ(p)χ∗ .

Reciprocally, if Cℓ(p)χ∗ is cyclic, there exists an ideal A such that Ap
χ∗ = (αχ∗)

with αχ∗ 6≡ 1 (mod p) and αχ∗ defines the radical of the unique p-ramified
(but not unramified) cyclic extension of degree p of K decomposed over K+

(its Galois group defines the cyclic group Tχ). �

As soon as L′ | ℓ′ and L | ℓ are such that L′ ∈ L · (1 + pZ[ζp]) formula (4)
shows that the χ∗-components of the logarithms of the two Gauss sums are
congruent modulo p. But this does not give any obvious rule between ℓ′

and ℓ.

4. Gauss sums associated to primes ℓ ≡ 1 (mod p)

Let L be the set of primes ℓ totally split in K (i.e., ℓ ≡ 1 (mod p)). For
ℓ ∈ L , let L | ℓ in K and let ψ : F×

ℓ −→ µp be of order p; if g is a primitive
root modulo ℓ, we put ψ(g) = ζp. Let ξℓ be a primitive ℓ-th root of unity;
then the Gauss sum associated to ℓ may be written in Z[µp ℓ]:

(5) τ(ψ) := −
∑

x∈F×

ℓ

ψ(x) · ξxℓ = −
ℓ−2
∑

k=0
ζkp · ξgkℓ .
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4.1. Practical computation of gc(ℓ) := τ(ψ)c−σc . Let c ≥ 2 be a primi-
tive root modulo p; to get an element of K, one must use the twisted version
τ(ψ)c−σc , where σc ∈ Gal(Q(µp ℓ)/Q) is the Artin automorphism of c (its
restriction to K is sc ∈ G). We put:

(6) gc(ℓ) := τ(ψ)c−σc .

This notation using ℓ ∈ L is justified by the Remark 3.3, then formulas (3)
and (4), giving, for all χ ∈ X+:

(7) LSc = gc(ℓ)Z[ζp] & L
(c−χ∗(sc))·b(χ∗)
χ∗ = gc(ℓ)χ∗ Z[ζp]

where Sc := (c−sc)·S ∈ Z[G] is the corresponding twist of the Stickelberger
element and where gc(ℓ) ∈ Z[ζp] as one checks easily. For simplicity, put:

(8) bc(χ
∗) := (c− χ∗(sc)) · b(χ∗) ∼ b(χ∗).

Then:

(9) L
bc(χ∗)
χ∗ = gc(ℓ)χ∗ Z[ζp].

In the above definition (6) of gc(ℓ), τ(ψ)
σc = τ(ψc) · ζ(c), where ζ(c) ∈ µp;

but for all χ 6= 1, ζ(c)eχ∗ = 1, which defines gc(ℓ)χ∗ without ambiguity.

Lemma 4.1. Let ℓ ∈ L be given. Then gc(ℓ) is, up to the product by a pth
root of unity, a product of Jacobi sums and gc(ℓ) ≡ 1 (mod p).

Proof. The classical formula [24, § 6.1] on Jacobi sums (for ψ ψ′ 6= 1) is:

J(ψ,ψ′) := τ(ψ) · τ(ψ′) · τ(ψ ψ′)−1 = −
∑

x∈Fℓ\{0,1}
ψ(x) · ψ′(1− x).

By induction, we obtain:

τ(ψ)c = J1 · · · Jc−1 · τ(ψc), where Ji = −
∑

x∈Fℓ\{0,1}
ψi(x) · ψ(1 − x).

Concerning the congruence, we have:

τ(ψ) = −
∑

x∈F×

ℓ

ψ(x) · ξxℓ ≡ −
∑

x∈F×

ℓ

ξxℓ (mod p);

but since ℓ is prime,
∑

x∈F×

ℓ

ξxℓ = −1, whence the result for gc(ℓ). �

Thus, in the numerical computations, we shall use the relation gc(ℓ)χ∗ =
(J1 · · · Jc−1)χ∗ for any χ ∈ X+.

Definitions 4.2. (i) We call set of exponents of p-primarity, of a prime
ℓ ∈ L , the set Eℓ(p) of even integers n ∈ [2, p − 3] such that gc(ℓ)ωp−n is
p-primary (see Definition 2.1 (ii)).

(ii) We call set of exponents of p-irregularity, the set E0(p) of even integers
n ∈ [2, p − 3] such that Bn ≡ 0 (mod p) (i.e., b(ωp−n) ≡ 0 (mod p); see
Definition 1.1 (viii)).
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Remark 4.3. Let χ =: ωn ∈ X+. If gc(ℓ)χ∗ is p-primary this does not
give necessarily a counterexample to Vandiver’s conjecture for the following
possible reasons considering the expression Sc eχ∗ = bc(χ

∗) eχ∗ (recall that
bc(χ

∗) = (c− χ∗(sc)) · b(χ∗) ∼ b(χ∗)):

(i) The number bc(χ
∗) is a p-adic unit, so gc(ℓ)χ∗ is not the pth power

of an ideal and leads to a ℓ-ramified Kummer extension of K+ (i.e., the
character χ∗ = ωp−n does not correspond to an exponent of p-irregularity).
For instance, the program below gives, for p = 11 (c = 2), ℓ = 23, the
exponent of 11-primarity n = 2 so that α := gc(ℓ)χ∗ is the integer (where
x = ζ11):

16313053108*x^9 + 14568599738*x^8 + 15188534416*x^7 + 12440402458*x^6

+ 11144637196*x^5 + 19451005706*x^4 + 16080428144*x^3 + 12836788646*x^2

+ 12505300522*x + 12784005125

for which K( 11
√
α)/K is a cyclic extension of degree 11 of K decomposed

over K+ into L+/K+ only ramified at 23; then α is a product of prime
ideals above 23 and is not a 11th power, since:

NK/Q(α) = 134768284860588469651366402896654188603790598857406250

9928993915940186470356144025219775950324148244807 = 2375.

Its decomposition in K is (α) = L9
1 · L10

2 · L12
3 · L3

4 · L5
5 · L15

6 · L6
7 · L8

8 · L7
9.

(ii) The number bc(χ
∗) is divisible by p, but the ideal Lχ∗ is p-principal and

then gc(ℓ)χ∗ is a pth power in K× (numerical examples in § 4.5.2).

So, a necessary and sufficient condition for a counterexample to Vandiver’s
conjecture is that there exists χ ∈ X+ such that bc(χ

∗) ≡ 0 (mod p), and
ℓ ∈ L such that gc(ℓ)χ∗ be p-primary, non-pth power in K× (this shall be
precised in Lemma 4.4 to give Theorem 4.5).

4.2. Program. For p ∈ [3, 199] and for the least ℓ ∈ L , the following pro-
gram computes gc(ℓ) in Mod(J,P), with P = polcyclo(p), where the product
J of Jacobi sums is written in Z[x]; c is a primitive root modulo p. We shall
take into account the relation J1+s−1 ≡ 1 (mod p).

Taking n = 2 ∗m, we consider χ = ωn & χ∗ = ωp−n. Then the polynomials
Jj give the powers Jj modulo p, j = 1, . . . , p − 1, in LJ.

The computation of gc(ℓ)χ∗ is given in Sn =
∏p−1

a=1 sa(J
an−1

) from the formula

gc(ℓ)χ∗ =
∏p−1

a=1 sa(gc(ℓ))
ωn−p(a) =

∏p−1
a=1 sa(gc(ℓ)

an−1
) up to a pth power

factor; then an−1 is computed modulo p in an and then Jan is given by
component(LJ, an). Finaly the conjugate sa(J

an) is computed in sJan via
the conjugation x 7→ xa in Jan, whence the product in Sn.

{forprime(p=3,200,c=lift(znprimroot(p));P=polcyclo(p)+Mod(0,p);

X=Mod(x,P);L=1;while(isprime(L)==0,L=L+2*p);g=znprimroot(L);

print("p=",p," L=",L," c=",c," g=",g);J=1;for(i=1,c-1,Ji=0;

for(k=1,L-2,kk=znlog(1-g^k,g);e=lift(Mod(kk+i*k,p));Ji=Ji-X^e);J=J*Ji);
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d=p-2;LJ=List;Jj=1;for(j=1,p-1,Jj=lift(Jj*J);listinsert(LJ,Jj,j));

for(m=1,(p-3)/2,n=2*m;Sn=Mod(1,P);for(a=1,(p-1)/2,

an=lift(Mod(a,p)^(n-1));Jan=component(LJ,an);sJan=Mod(0,P);

for(j=0,d,aj=lift(Mod(a*j,p));sJan=sJan+x^(aj)*component(Jan,1+j));

Sn=Sn*sJan);if(Sn==1,print(" exponents of p-primarity: ",n))))}

p=3 L=7 c=2 g=3

p=5 L=11 c=2 g=2

p=7 L=29 c=2 g=2

p=11 L=23 c=3 g=5 exponents of p-primarity: 2

p=13 L=53 c=2 g=2

p=17 L=103 c=3 g=5

p=19 L=191 c=4 g=19

p=23 L=47 c=2 g=5

p=29 L=59 c=2 g=2 exponents of p-primarity: 2

p=31 L=311 c=7 g=17

p=37 L=149 c=2 g=2

p=41 L=83 c=6 g=2

p=43 L=173 c=9 g=2 exponents of p-primarity: 26

p=47 L=283 c=2 g=3

p=53 L=107 c=2 g=2 exponents of p-primarity: 34, 10

p=59 L=709 c=3 g=2

p=61 L=367 c=2 g=6

p=67 L=269 c=4 g=2

p=71 L=569 c=2 g=3

p=73 L=293 c=5 g=2

p=79 L=317 c=2 g=2

p=83 L=167 c=3 g=5

p=89 L=179 c=3 g=2

p=97 L=389 c=5 g=2 exponents of p-primarity: 26

p=101 L=607 c=2 g=3 exponents of p-primarity: 10

p=103 L=619 c=5 g=3

p=107 L=643 c=2 g=11

p=109 L=1091 c=6 g=2 exponents of p-primarity: 14, 86

p=113 L=227 c=3 g=2

p=127 L=509 c=3 g=2

p=131 L=263 c=2 g=5 exponents of p-primarity: 16

p=137 L=823 c=3 g=3 exponents of p-primarity: 78

p=139 L=557 c=2 g=2

p=149 L=1193 c=2 g=3

p=151 L=907 c=6 g=2

p=157 L=1571 c=5 g=2 exponents of p-primarity: 94

p=163 L=653 c=2 g=2 exponents of p-primarity: 42

p=167 L=2339 c=5 g=2 exponents of p-primarity: 122

p=173 L=347 c=2 g=2

p=179 L=359 c=2 g=7 exponents of p-primarity: 138

p=181 L=1087 c=2 g=3 exponents of p-primarity: 114, 164

p=191 L=383 c=19 g=5

p=193 L=773 c=5 g=2 exponents of p-primarity: 108, 172

p=197 L=3547 c=2 g=2 exponents of p-primarity: 62

p=199 L=797 c=3 g=2
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The program tests the “first” prime ℓ ∈ L and we shall see § 4.4.2 that it is
sufficient to try another ℓ to be successful in testing Vandiver’s conjecture.

4.3. Reciprocal study. Recall, from Remark 4.3, that, for all χ ∈ X+,

(gc(ℓ)χ∗) = LSc eχ∗ = L
bc(χ∗)
χ∗ and that the three conditions:

(a) bc(χ
∗) ≡ 0 (mod p),

(b) gc(ℓ)χ∗ is p-primary,

(c) gc(ℓ)χ∗ is not a pth power,

give rise to a counterexample to Vandiver’s conjecture.

We still assume the Hypothesis 1.2 to obtain the reciprocal (to be put in
relation with Proposition 3.4):

Lemma 4.4. Let χ ∈ X+ be such that Cℓχ 6= 1 (i.e., we assume to have a
counterexample to Vandiver’s conjecture). Then Cℓχ∗ 6= 1, bc(χ

∗) ∼ p, and
there exists a totally split prime ideal L such that Lχ∗ represents a generator

of Cℓχ∗; afterwards LSc eχ∗ = L
bc(χ∗)
χ∗ = (αχ∗), where αχ∗ is unique, thus

equal to gc(ℓ)χ∗ which is p-primary (i.e., gc(ℓ)χ∗ ≡ 1 (mod p)) and not a
pth power in K×.

Proof. The claim Cℓχ∗ 6= 1 is the consequence of the reflection theorem.

From the Chebotarev theorem in H/Q, there exists a prime ℓ and L | ℓ
in H such that (in terms of Frobenius)

(H/Q

L

)

generates the subgroup of

Gal(H/K) corresponding to Cℓχ∗ by class field theory. So ℓ splits completely

in K/Q (i.e., ℓ ∈ L ) and the ideal L of K under L is (as well as Lχ∗) a
representative of a generator of Cℓχ∗.

Necessarily bc(χ
∗) = p u for a p-adic unit u, and L

pu
χ∗ = (αχ∗); since Eχ∗ = 1

(except for χ∗ = ω excluded), αχ∗ is unique and not a pth power; in terms
of Gauss sums, Lpu

χ∗ = (gc(ℓ)χ∗) (see (7)), thus αχ∗ = gc(ℓ)χ∗ .

The p-primarity of αχ∗ is necessary to obtain the corresponding unramified
Kummer extension K

(

p
√
αχ∗

)

of degree p of K, decomposed over K+ into
the unramified extension associated to Cℓχ by class field theory, whence the
p-primarity of gc(ℓ)χ∗ . �

4.4. The test of Vandiver’s conjecture. Drawing the consequences of
the above, we shall get the main test for Vandiver’s conjecture.

4.4.1. Main theorem. Recall that L is the set of primes ℓ ≡ 1 (mod p).

A necessary and sufficient condition, to have a counterexample to Vandiver’s
conjecture (under the Hypothesis 1.2), is that there exists χ ∈ X+, such
that bc(χ

∗) ∼ p, and ℓ ∈ L such that gc(ℓ)χ∗ := τ(ψ)c−σc (cf. (6), (7)) is
p-primary and not a pth power (i.e., Lχ∗ non-p-principal):
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Theorem 4.5. Let ℓ ∈ L and let Eℓ(p) be the set of exponents of p-
primarity of ℓ (i.e., the even n ∈ [2, p−3], such that gc(ℓ)ωp−n ≡ 1 (mod p)),
and let E0(p) be the set of exponents of p-irregularity of K (i.e., the even
n ∈ [2, p − 3], such that p divides the nth Bernoulli number Bn).

Then, if Eℓ(p) ∩ E0(p) = ∅, the Vandiver conjecture holds for K.

Proof. Consider, for χ =: ωn ∈ X+, and χ∗ = ωp−n, the relation (7) giving

L
bc(χ∗)
χ∗ = (gc(ℓ)χ∗), and examine the two possibilities for n ∈ [2, p−3] even:

(i) If n is not an exponent of p-irregularity (i.e., bc(χ
∗) 6≡ 0 (mod p) or

Bn 6≡ 0 (mod p)), then Cℓχ∗ = 1 and Cℓχ = 1 from reflection theorem (we
also have Tχ∗ = 1, see § 3.2).

(ii) If n is an exponent of p-irregularity, then bc(χ
∗) ∼ p, giving, for some

p-adic unit u, Lpu
χ∗ = (gc(ℓ)χ∗); if Lχ∗ is p-principal, then gc(ℓ)χ∗ is a global

pth power, hence p-primary (absurd by assumption). So Lχ∗ defines a class
of order p in Cℓχ∗ for which gc(ℓ)χ∗ is not p-primary, whence Cℓχ = 1 by

Kummer duality since K( p
√

gc(ℓ)χ∗)/K is ramified at p. �

Corollary 4.6. Let ℓ ∈ L . If, for all χ ∈ X+, the numbers gc(ℓ)χ∗ are
not p-primary (i.e., Eℓ(p) = ∅), then the Vandiver conjecture is true for p.

4.4.2. Minimal prime ℓ ∈ L such that Eℓ(p) = ∅. The following program
examines, for each p, the successive prime numbers ℓi ∈ L , i ≥ 1, and
returns the first one, ℓN (in L with its index N), such that EℓN (p) = ∅.
Its existence is of course a strong conjecture, but the numerical results are
extremely favorable to the existence of such primes; which strengthens the
conjecture of Vandiver. Moreover, since the integer i(p) = #E0(p) is rather

small regarding p, as doubtless for #Eℓ(p), and can be both in O
( log(p)
log(log(p))

)

,

the intersection of Eℓ(p) ∩ E0(p) may be easily empty if these sets are inde-
pendent; the experiments give the impression that the sets Eℓ(p) are random
when ℓ varies and have no link with E0(p)

{forprime(p=3,700,c=lift(znprimroot(p));P=polcyclo(p)+Mod(0,p);X=Mod(x,P);

N=0;for(i=1,99,L=1+2*i*p;if(isprime(L)!=1,next);N=N+1;g=znprimroot(L);

J=1;for(i=1,c-1,Ji=0;for(k=1,L-2,kk=znlog(1-g^k,g);e=lift(Mod(kk+i*k,p));

Ji=Ji-X^e);J=J*Ji);d=p-2;LJ=List;Jj=1;for(j=1,p-1,Jj=lift(Jj*J);

listinsert(LJ,Jj,j));T=1;for(m=1,(p-3)/2,n=2*m;Sn=Mod(1,P);

for(a=1,(p-1)/2,an=lift(Mod(a,p)^(n-1));Jan=component(LJ,an);sJan=Mod(0,P);

for(j=0,d,aj=lift(Mod(a*j,p));sJan=sJan+x^(aj)*component(Jan,1+j));

Sn=Sn*sJan);if(Sn==1,T=0;break));if(T==1,print(p," ",L," ",N);break)))}

For p < 400, we only write the primes p, ℓN for which N > 1:

p L N p L N p L N p L N p L N

11 67 2 197 4729 2 409 4091 2 499 1997 1 601 25243 5

29 233 2 211 10973 4 419 839 1 503 3019 1 607 20639 3

43 431 2 223 6691 2 421 4211 1 509 4073 2 613 6131 1

53 743 2 227 5903 2 431 863 1 521 16673 1 617 30851 3



14 GEORGES GRAS

97 971 2 229 5039 2 433 5197 2 523 6277 2 619 17333 3

101 809 2 233 1399 2 439 4391 1 541 9739 1 631 6311 1

109 2399 2 251 4519 2 443 887 1 547 5471 1 641 1283 1

131 1049 3 277 4987 3 449 3593 1 557 24509 3 643 10289 2

137 1097 2 337 6067 3 457 21023 3 563 7883 1 647 9059 1

157 7537 5 349 8377 2 461 9221 2 569 6829 1 653 1307 1

163 5869 3 367 3671 2 463 5557 1 571 5711 1 659 1319 1

167 7349 3 383 16087 4 467 2803 1 577 3463 2 661 14543 3

179 1433 2 389 14783 2 479 3833 1 587 8219 1 673 2693 1

181 1811 2 397 6353 2 487 1949 1 593 1187 1 677 5417 1

193 1931 2 401 10427 4 491 983 1 599 4793 1 683 4099 2

The comparison with the table of exponents of p-irregularity does not show
any relation. Moreover, this much stronger test of Vandiver’s conjecture
does not need the knowledge of E0(p).

4.5. What happens when ℓ ∈ L varies with E0(p) 6= ∅ ? Let n0 even be
an exponent of p-irregularity under the Hypothesis 1.2, and put χ0 = ωn0 ;
then #Cℓχ∗

0
= p and bc(χ

∗
0) = pu, for a p-adic unit u.

4.5.1. About the p-class of L | ℓ. Let ℓ ∈ L with L | ℓ, and let Lχ∗

0
where

χ∗
0 = ωp−n0 . There are two cases as we have seen previously:

(i) Lχ∗

0
is p-principal; since bc(χ

∗
0) = p u, gc(ℓ)χ∗

0
is a pth power in K×,

whence gc(ℓ)χ∗

0
is p-primary and n0 ∈ Eℓ(p), but this does not lead to an

unramified cyclic extension of degree p of K+ of character χ0;

(ii) Lχ∗

0
is not p-principal; thus it defines the non-trivial group Cℓχ∗

0
and

Vandiver’s conjecture holds at χ0 = ωn0 if and only if gc(ℓ)χ∗

0
is not p-

primary. If gc(ℓ)χ∗

0
≡ 1 (mod p), whatever the ideal L′

χ∗

0
, L′ | ℓ′ ∈ L , we

have L′
χ∗

0
= (zχ∗

0
) · Lr

χ∗

0
, with z ∈ K× and r ∈ [0, p − 1], so that:

L′pu
χ∗

0
= (zpuχ∗

0
) · Lrpu

χ∗

0
& gc(ℓ

′)χ∗

0
≡ gc(ℓ)

r
χ∗

0
≡ 1 (mod p).

Whence, the index n0 of p-irregularity is a common exponent of p-primarity

for all ℓ ∈ L , giving E0(p) ∩
(

⋂

ℓ∈L

Eℓ(p)
)

6= ∅.
Thus we can state from Theorem 4.5 (under Hypothesis 1.2):

Corollary 4.7. As soon as there exist distinct ℓ1, . . . , ℓN ∈ L , N ≥ 1,
such that Eℓ1(p) ∩ · · · ∩ EℓN (p) = ∅, the Vandiver conjecture holds.

So it is fundamental to see if the sets Eℓ(p) are independent (or not) of the
choice of ℓ ∈ L .

We analyse the case of p = 37 whose exponent of p-irregularity is n0 = 32
giving #Cℓω5 = 37 and compute (in expp) the sets Eℓ(37) when ℓ ∈ L

varies. We shall see that the results do no seem to depend on the order of
magnitude of ℓ (the number of exponents of p-primarity grows in the same
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proportion as, classically, for the exponents of p-irregularity); if n0 ∈ Eℓ(37),
this means that Lχ∗ is necessarily p-principal:

{p=37;c=lift(znprimroot(p));P=polcyclo(p)+Mod(0,p);X=Mod(x,P);

for(i=1,100,L=1+2*i*p;if(isprime(L)==1,g=znprimroot(L);

print("L=",L," g=",g);J=1;for(i=1,c-1,Ji=0;for(k=1,L-2,kk=znlog(1-g^k,g);

e=lift(Mod(kk+i*k,p));Ji=Ji-X^e);J=J*Ji);d=p-2;LJ=List;Jj=1;

for(j=1,p-1,Jj=lift(Jj*J);listinsert(LJ,Jj,j));for(m=1,(p-3)/2,n=2*m;

Sn=Mod(1,P);for(a=1,(p-1)/2,an=lift(Mod(a,p)^(n-1));

Jan=component(LJ,an);sJan=Mod(0,P);for(j=0,d,aj=lift(Mod(a*j,p));

sJan=sJan+x^(aj)*component(Jan,1+j));Sn=Sn*sJan);

if(Sn==1,print(" exponent of p-primarity: ",n)))))}

L=149 g=2 L=3331 g=3 expp: 22

L=223 g=3 L=3701 g=2

L=593 g=3 L=3923 g=2

L=1259 g=2 L=4219 g=2 expp: 18,16

L=1481 g=3 expp: 30 L=4441 g=21

L=1777 g=5 L=4663 g=3

L=1999 g=3 L=5107 g=2

L=2221 g=2 L=5477 g=2

L=2591 g=7 expp: 34 L=6143 g=5 expp: 28

L=2887 g=5 L=6217 g=5

L=3109 g=6 L=6661 g=6

L=3257 g=3 L=6883 g=2

---------------------------------------------------------------------

L=742073 g=3 expp: 12 L=768343 g=11 expp: 18

L=742369 g=7 L=768491 g=10

L=742591 g=3 L=768787 g=2 expp: 20

L=743849 g=3 L=769231 g=11 expp: 24

L=743923 g=3 expp: 16 L=769453 g=2 expp: 30

L=744071 g=22 L=772339 g=3

L=744811 g=10 L=773153 g=3 expp: 14

L=744959 g=13 expp: 10 L=774337 g=5 expp: 28

L=745033 g=10 expp: 16 L=774929 g=3 expp: 18

L=745181 g=2 L=775669 g=10 expp: 18

L=745477 g=2 L=776483 g=2

L=745699 g=2 L=776557 g=2 expp: 20

L=746069 g=2 L=777001 g=31 expp: 18,28

L=746957 g=2 L=778111 g=11

L=747401 g=3 L=778333 g=2 expp: 28

L=747919 g=3 L=778777 g=5

L=748807 g=6 expp: 22 L=779221 g=2

L=749843 g=2 expp: 34 L=779591 g=7

L=750287 g=5 L=779887 g=10 expp: 18

L=750509 g=2 expp: 14,22 L=780257 g=3 expp: 8

L=751027 g=3 L=780553 g=10

L=751841 g=3 expp: 14,16,24 L=781367 g=5 expp: 34

L=752137 g=10 expp: 8 L=781589 g=2 expp: 32

L=752359 g=3 expp: 18 L=782107 g=2

L=752581 g=2 expp: 16 L=782329 g=13 expp: 18



16 GEORGES GRAS

L=752803 g=2 expp: 22,32 L=782921 g=3 expp: 20

L=753617 g=3 L=783143 g=5

L=753691 g=11 expp: 16 L=783661 g=2

L=753839 g=7 expp: 4,22 L=784327 g=3

L=754283 g=2 L=784697 g=3

L=755171 g=6 L=784919 g=7

L=755393 g=3 expp: 22 L=785363 g=2

L=756281 g=3 expp: 2 L=786251 g=2

L=756799 g=15 expp: 18 L=786547 g=2

L=757243 g=2 L=787139 g=2 expp: 20

L=757909 g=2 expp: 16 L=787361 g=6

L=758279 g=7 L=787879 g=6 expp: 10,18,20

L=758501 g=2 expp: 18 L=788027 g=2 expp: 34

L=759019 g=2 L=789137 g=3 expp: 24

L=759167 g=5 expp: 12 L=790099 g=2

L=759463 g=3 L=791209 g=7

L=759833 g=3 expp: 4 L=791431 g=12

L=760129 g=11 L=791801 g=3

L=760499 g=2 L=792023 g=5 expp: 32

L=762053 g=2 L=792689 g=3

L=762571 g=10 L=793207 g=5

L=763237 g=2 L=795427 g=2

L=764051 g=2 L=795649 g=22 expp: 2,32

L=764273 g=3 L=795797 g=2

L=764717 g=2 expp: 2 L=795871 g=3

L=765383 g=5 L=796759 g=3

L=765827 g=2 expp: 34 L=796981 g=7

L=766049 g=3 expp: 22 L=797647 g=3

L=766937 g=3 expp: 34 L=797869 g=10

L=767381 g=2 expp: 18 L=798461 g=2

L=767603 g=5 expp: 34 L=798757 g=2

L=767677 g=5 L=800089 g=7 expp: 20

For ℓ = 149, 223, 593, 1259, 1777, . . ., Eℓ(37) = ∅, which proves the Vandiver
conjecture for p = 37 a great lot of times. For ℓ = 1481 one finds a p-
primarity for χ∗ = ω7 (χ = ω30 6= ω32). Corollary 4.7 applies at will.

Remark 4.8. We remark that χ0 = ω32 gives χ∗
0 = ω5 which is a character

of K, not the character of a strict subfield (the class of order 37 does not
come from a strict subfield); then χ = ω30 is a character of the real subfield
k6 of degree 6 which gives rise to a ℓ-ramified (i.e., unramified outside ℓ
since the 37-primarity gives the non-ramification of p) cyclic extension of
degree p of k6. If the exponent of p-irregularity had been 30 instead of 32,
this would have given an unramified cyclic extension of degree p of k6, i.e.,
#Cℓk6 = 37.

It remains to give statistics about the p-principality (or not) of the Lχ∗

0

when ℓ ∈ L varies. In the particular case p = 37, Lχ∗

0
is p-principal if and
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only if L is principal since the exponent of p-irregularity n0 = 32 is unique
and the class number of K equal to h = 37.

4.5.2. Table of the classes of L for p = 37. We give a table with a generator
of L in the principal cases (indicated by ∗). Otherwise, the class of L is of
order 37 in K. The exponents of p-primarity are denoted expp and we only
write the cases where Eℓ(37) 6= ∅:
{p=37;c=lift(znprimroot(p));P=polcyclo(p);K=bnfinit(P,1);P=P+Mod(0,p);

X=Mod(x,P);Lsplit=List;N=0;for(i=1,2000,L=1+2*i*p;if(isprime(L)==1,

N=N+1;listinsert(Lsplit,L,N)));for(j=1,N,L=component(Lsplit,j);

F=bnfisintnorm(K,L);if(F!=[],print("L=",L," ",component(F,1)));

g=znprimroot(L);J=1;for(i=1,c-1,Ji=0;for(k=1,L-2,kk=znlog(1-g^k,g);

e=lift(Mod(kk+i*k,p));Ji=Ji-X^e);J=J*Ji);d=p-2;LJ=List;

Jj=1;for(j=1,p-1,Jj=lift(Jj*J);listinsert(LJ,Jj,j));for(m=1,(p-3)/2,

n=2*m;Sn=Mod(1,P);for(a=1,(p-1)/2,an=lift(Mod(a,p)^(n-1));

Jan=component(LJ,an);sJan=Mod(0,P);for(j=0,d,aj=lift(Mod(a*j,p));

sJan=sJan+x^(aj)*component(Jan,1+j));Sn=Sn*sJan);

if(Sn==1,print("L=",L," expp:",n))))}

L=1481 expp: 30 L=56167 expp: 10,14,26

L=2591 expp: 34 L=57203 expp: 34

L=3331 expp: 22 L=58313 expp: 28

L=4219 expp: 16,18 L=58757 expp: 16,18

L=6143 expp: 28 L=58831 expp: 24,30

L=7993 expp: 16,20 L=59497 expp: 28

L=8363 expp: 8 L=61051 expp: 10

L=9769 expp: 20 L=62383 expp: 2

L=10657 expp: 4,18,26 L=62753 expp: 2

L=12433 expp: 20 L=63493 expp: 2

L=13099 expp: 28 *L=64381 expp: 6,32 [x^20+x^9+x]

L=14431 expp: 4,14,22 L=66749 expp: 30

L=17021 expp: 6 *L=67489 expp: 30,32 [x^24-x^3-x^2]

L=17909 expp: 30 L=67933 expp: 6

L=18131 expp: 22 *L=68821 expp: 32 [x^15-x^9+x^4]

L=19463 expp: 6 L=69931 expp: 12

L=20129 expp: 6 L=71411 expp: 4

L=21017 expp: 2,4 L=72817 expp: 28

L=21313 expp: 18 L=74149 expp: 2

L=21757 expp: 8 L=75407 expp: 10

L=22349 expp: 8 L=75629 expp: 12, 20

L=23459 expp: 6 L=76961 expp: 14

L=23977 expp: 26 L=78737 expp: 28

L=25087 expp: 26 L=79181 expp: 10

L=25457 expp: 30 L=80513 expp: 16, 26

L=29009 expp: 8,24 L=81031 expp: 18, 34

L=30859 expp: 2 L=82067 expp: 34

*L=32783 expp: 32 [x^11+x^3+x] L=83621 expp: 34

L=33301 expp: 30 L=83843 expp: 2

L=33967 expp: 26 L=84731 expp: 6
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L=36187 expp: 8 L=85027 expp: 26

L=37889 expp: 16 L=86729 expp: 22

L=38629 expp: 22 L=86951 expp: 8

L=40627 expp: 30 L=87691 expp: 24

L=40849 expp: 6 L=91243 expp: 22, 34

L=42773 expp: 4 L=91909 expp: 30

L=45289 expp: 8 L=94351 expp: 10

L=45659 expp: 26 L=94573 expp: 18

L=48619 expp: 8 L=95239 expp: 18, 28

L=48989 expp: 20 L=96497 expp: 10

L=51283 expp: 14,16 L=98347 expp: 28

L=51431 expp: 20 L=98939 expp: 30

L=53281 expp: 16 L=99679 expp: 10, 22

L=55057 expp: 20 L=100049 expp: 14

This table shows the clear independence of the exponents of p-primarity
regarding the set of non-principal L. Give some examples:

(i) Principal case L | 32783. The principal L are rare (which comes from
density theorems); the first one is L = (ζ1137 + ζ337 + ζ37) where ℓ = 32783.

Thus in that case, in the relation L
bc(χ∗

0)
χ∗

0
= (gc(ℓ)χ∗

0
), the number gc(ℓ)χ∗

0

must be a 37th power (which explain that one shall find the exponent of
37-primarity equal to that of 37-irregularity in any table); infortunately, the
data are too large to be given. Nevertheless, the reader can easily compute
factor(norm(Sn)) = 3278337·16·9 and use K = bnfinit(P, 1); idealfactor(K,Sn),
which gives the 37th power of a principal ideal L | 32783.
(ii) Non-principal case L | 149. The instruction bnfisintnorm(K, 149k):

{P=polcyclo(37);K=bnfinit(P,1);for(k=1,2,print(bnfisintnorm(K,149^k)))}

yields an empty set for k = 1 (since L is not principal) and, for k = 2, it
gives (with x = ζ37) the 18 conjugates of:

-2*x^35-2*x^34-x^32-2*x^31+x^29-x^28-2*x^27-2*x^24-x^23+x^22-2*x^20

-x^19-x^17-2*x^16+x^14-x^13-2*x^12-2*x^9-x^8+x^7-2*x^5-x^4-2*x^2-2*x

since NK/K+
(L) is always principal. This allows an easy characterization.

4.5.3. Densities of the exponents of p-primarity. The following program in-
tends to show that all exponents of p-primarity are obtained, with some
specific densities, taking sufficientely many ℓ ∈ L (each even n ∈ [2, p− 3],
such that gc(ℓ)ωp−n is p-primary for some new ℓ, is counted in the (n/2)th
component of the list EL).

At the beginning of the list, one finds the index i of the prime ℓi considered;
if some index i is missing, this means that Eℓi(p) = ∅. The second integer
gives the whole number of exponents of p-primarity obtained at this step;
then the third one is ℓi. In some cases, a prime ℓ gives rise to several
exponents of p-primarity, as the following excerpt shows:
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2757 1298 1289303 [76,88,78,88, 72,77,81,66,82, 78,85,69,76,72,73,65,72]

2757 1299 1289303 [76,88,78,89*,72,77,81,66,82, 78,85,69,76,72,73,65,72]

2757 1300 1289303 [76,88,78,89, 72,77,81,66,83*,78,85,69,76,72,73,65,72]

2757 1301 1289303 [76,88,78,89, 72,77,81,66,83, 78,85,69,76,72,73,65,73*]

(i) Program:

{p=37;c=lift(znprimroot(p));P=polcyclo(p)+Mod(0,p);X=Mod(x,P);

NL=0;Npp=0;EL=List;for(j=1,(p-3)/2,listput(EL,0,j));

for(i=1,1000,L=1+2*i*p;if(isprime(L)==1,g=znprimroot(L);NL=NL+1;

J=1;for(i=1,c-1,Ji=0;for(k=1,L-2,kk=znlog(1-g^k,g);e=lift(Mod(kk+i*k,p));

Ji=Ji-X^e);J=J*Ji);d=p-2;LJ=List;Jj=1;for(j=1,p-1,Jj=lift(Jj*J);

listinsert(LJ,Jj,j));for(m=1,(p-3)/2,n=2*m;Sn=Mod(1,P);

for(a=1,(p-1)/2,an=lift(Mod(a,p)^(n-1));Jan=component(LJ,an);sJan=Mod(0,P);

for(j=0,d,aj=lift(Mod(a*j,p));sJan=sJan+x^(aj)*component(Jan,1+j));

Sn=Sn*sJan);if(Sn==1,Npp=Npp+1;listput(EL,1+component(EL,n/2),n/2);

print(NL," ",Npp," ",L," ",EL)))))}

(ii) Results for p = 37. The end of the table for the selected interval is:

3012 1423 1413179 [83,94,84,91,80,80,86,82,92,82,97,76,83,78,85,74,76]

3012 1424 1413179 [83,94,84,91,80,80,86,82,92,83,97,76,83,78,85,74,76]

3014 1425 1413623 [83,95,84,91,80,80,86,82,92,83,97,76,83,78,85,74,76]

3015 1426 1414067 [83,95,84,91,80,80,86,83,92,83,97,76,83,78,85,74,76]

3015 1427 1414067 [83,95,84,91,80,80,86,83,92,83,97,76,83,78,86,74,76]

3027 1428 1419839 [83,95,84,91,80,80,86,83,92,83,98,76,83,78,86,74,76]

3030 1429 1420949 [83,95,84,91,80,80,86,83,92,83,98,76,83,78,86,75,76]

3032 1430 1421911 [83,95,85,91,80,80,86,83,92,83,98,76,83,78,86,75,76]

3033 1431 1422133 [83,95,86,91,80,80,86,83,92,83,98,76,83,78,86,75,76]

3042 1432 1428127 [83,96,86,91,80,80,86,83,92,83,98,76,83,78,86,75,76]

The penultimate column corresponds to the exponent of 37-irregularity n0 =
32; since there is no counterexamples to Vandiver’s conjecture, when this
component increases, this means that the new ℓ gives rise to a principal L
for which gc(ℓ)ω5 is a 37th power.

(iii) Results for p = 157. For p = 157 (exponents of p-irregularity 62, 110),
one finds the partial analogous information after 590 distinct primes ℓ ∈ L

tested (proving also Vandiver’s conjecture for a lot of times):

581 305 1140449 [9,3,2,6,8,3,1,4,5,9,3,1,3,1,5,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,5,

5,5,5,3,6,1,5,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,6]

583 306 1142333 [9,3,2,6,8,3,1,4,5,9,3,1,3,1,5,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,5,

5,5,5,3,6,1,5,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,7]

586 307 1150183 [9,3,2,6,8,3,1,4,5,9,3,1,3,1,6,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,5,

5,5,5,3,6,1,5,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,7]

586 308 1150183 [9,3,2,6,8,3,1,4,5,9,3,1,3,1,6,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,5,

5,5,5,3,6,1,6,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,7]
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590 309 1161487 [9,3,2,6,8,3,1,4,5,10,3,1,3,1,6,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,5,

5,5,5,3,6,1,6,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,7]

590 310 1161487 [9,3,2,6,8,3,1,4,5,10,3,1,3,1,6,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,6,

5,5,5,3,6,1,6,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,7]

590 311 1161487 [9,3,2,6,8,3,1,4,5,10,3,1,3,1,6,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,6,

5,5,5,3,6,1,6,3,5,4,5,0,2,3,5,7,3,3,3,2,4,5,7,6,6,5,6,1,7,4,7]

The remaining column of zeros (for n/2 = 58) stops at the following lines:

602 318 1185979 [9,3,2,6,8,3,2,4,6,10,3,1,

3,1,6,4,4,4,2,2,1,2,5,5,3,2,2,1,5,7,6,3,2,1,

5,5,5,4,4,3,3,4,5,4,5,6,5,5,5,3,6,1,6,4,5,4,6,0,

2,3,5,7,3,3,3,3,4,5,7,6,6,5,6,1,7,4,7]

602 319 1185979 [9,3,2,6,8,3,2,4,6,10,3,1,

3,1,6,4,4,4,2,2,1,2,5,5,3,2,2,1,5,7,6,3,2,1,

5,5,5,4,4,3,3,4,5,4,5,6,5,5,5,3,6,1,6,4,5,4,6,1,

2,3,5,7,3,3,3,3,4,5,7,6,6,5,6,1,7,4,7]

602 320 1185979 [9,3,2,6,8,3,2,4,6,10,3,1,

3,1,6,4,4,4,2,2,1,2,5,5,3,2,2,1,5,7,6,3,2,1,

5,5,5,4,4,3,3,4,5,4,5,6,5,5,5,3,6,1,6,4,5,4,6,1,

2,4,5,7,3,3,3,3,4,5,7,6,6,5,6,1,7,4,7]

One sees that these numbers depend on the orders of ωn and/or ωp−n, but
this needs to be clarified taking a great lot of primes ℓ. The complete tables
for p = 37 and p = 157 (40 pages) may be downloaded from:
https://www.dropbox.com/s/vs5eq6ornqx5922/vandiver.97.157.pdf?dl=0

4.5.4. Vandiver’s conjecture and p-adic regulator of K+. We return to the
case p = 37 and n0 = 32. From the relation (1), we see that ω32 is a char-
acter of order 9, hence a character of the real subfield k9 of degree 9, which
is such that Tk9 6= 1; so, k9 admits a cyclic 37-ramified extension of degree
37 which is not unramified. To verify, we use [11, Program I], simplified for
real fields, which indeed gives #Tk9 = 37 (take nt large enough):

{p=37;n=32;d=(p-1)/gcd(p-1,n);P=polsubcyclo(p,d);K=bnfinit(P,1);nt=6;

Kpn=bnrinit(K,p^nt);Hpn=component(component(Kpn,5),2);L=List;

e=component(matsize(Hpn),2);R=0;for(k=1,e-1,c=component(Hpn,e-k+1);

if(Mod(c,p)==0,R=R+1;listinsert(L,p^valuation(c,p),1)));

if(R>0,print("rk(T)=",R," K is not ",p,"-rational ",L));

if(R==0,print("rk(T)=",R," K is ",p,"-rational"))}

rk(T)=1 K is not 37-rational List([37])

We find here another interpretation of the reflection theorem since we have
the typical formula #T+ = #Cℓ+ ·#R, where the p-group R is the normalized
p-adic regulator of K+ [14, Proposition 5.2]; thus the above data shows that
the relation #T+ = 37 comes from #R = 37, which is not surprising:

https://www.dropbox.com/s/vs5eq6ornqx5922/vandiver.97.157.pdf?dl=0
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Remark 4.9. We have the analytic formula #Cℓχ0 = #(Eχ0/〈ηχ0〉), where η is
a suitable cyclotomic unit; so a classical method (explained in [24, Corollary
8.19] and applied in [3, 6]) consists in finding ℓ ∈ L such that ηχ0 is not a
local pth power at ℓ proving Vandiver’s conjecture at χ0; so when we find
that R 6= 1 (more precisely Rχ0 6= 1), this means that ηχ0 generates Eχ0

and is a local pth power at p by p-primarity (whence #R ≡ 0 (mod p)).

5. Heuristics – Probability of a counterexample

5.1. Standard probabilities. We may suppose in a first approximation
that, for a given p, the sets Eℓ(p) of exponents of p-primarity of primes
ℓ ∈ L , are random with the same behavior as for the set E0(p) of exponents
of p-irregularity. More precisely, assume, as in Washington’s book (see in
[24], Theorem 5.17 and some statistical computations), that in terms of

probabilities one has, for given primes p and ℓ ∈ L (where N := p−3
2 ):

Prob(#E0(p) = j) =
(N
j

)

·
(

1− 1
p

)N−j ·
(

1
p

)j
,

Prob(#Eℓ(p) = k) =
(N
k

)

·
(

1− 1
p

)N−k ·
(

1
p

)k
,

this would imply that, for p given, Eℓ(p) 6= ∅ for many ℓ ∈ L , but that

Eℓ(p) = ∅ in a proportion close to e−
1
2 , which is in accordence with previous

tables. Then the probability, for p and ℓ given, of E0(p) ∩ Eℓ(p) 6= ∅ with

cardinalities j ∈ [0, N ] and k ∈ [0, N ] fixed, is 1− (N − k)! · (N − j)!

N ! · (N − k − j)!
. So, an

approximation of the whole probability of E0(p) ∩ Eℓ(p) 6= ∅ is:

(10)
∑

j, k≥0

(N
j

)(N
k

)

·
(

1− 1
p

)2N−j−k ·
(

1
p

)j+k ·
(

1− (N−k)!·(N−j)!
N !·(N−k−j)!

)

.

The computations show that this expression is around 1
2 p , which does not

allow to conclude easily for a single ℓ, but this does not take into account the
infiniteness of L giving, a priori, independent information. The following
program shows a rapid convergence as t grows taking j and k independent
in [0, t]:

{p=1000003;N=(p-3)/2;for(t=1,30,S=0.0;for(k=0,t,Pk=binomial(N,k)*

(1-1/p)^(N-k)*(1/p)^k;for(j=0,t,S=S+Pk*binomial(N,j)*(1-1/p)^(N-j)*(1/p)^j*

(1-factorial(N-k)*factorial(N-j)/(factorial(N)*factorial(N-k-j)))));

print(t," ",S," ",0.5/p," ",0.5/p-S))}

S = 4.9999687501 × 10−7, 1
2p

= 4.9999850000 × 10−7, 1
2p

− S = 1.6249892292 × 10−12.

for t = 18.

5.2. New heuristics. There are several reasons to say that the generic
probability 1

p must be replaced by a much lower one:

(i) For some characters χ = ωn =: ωp−(1+h) ∈ X+, h = 2, 4, . . ., when
p≫h 0, one may prove that Cℓωp−(1+h) = 1, as the case of Cℓωp−3 = 1 proved
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unconditionally by Kurihara (see [19, 8, 22, 23, 2] among other authors
applying the same approach via K-theory) 2; the order of ωn is:

p− 1

gcd (p− 1, h)
=

p− 1

h′
, h′ | h

(see the data of § 4.5.3 for p = 37 and 157).

(ii) At the opposite, for χ ∈ X+ of small order, Cℓχ may be trivial because
of the “archimedean” order of magnitude of the whole class group of the
subfield of K+ fixed by the kernel of χ (proved for the quadratic case when
p ≡ 1 (mod 4), the cubic case when p ≡ 1 (mod 3), . . . ). Moreover, we
have the ǫ-conjecture of [7], for p-class groups, that we state for the real
abelian fields kd of constant degree d, of discriminant D = pd−1, when p
increases:

For all ǫ > 0 there exists Cǫ,p such that log(#Cℓkd) ≤ log(Cǫ,p) + ǫ · log(p),

which would give Cℓkd = 1 for log(p) >
log(Cǫ,p)

1− ǫ
and any ǫ < 1.

(iii) The previous probabilities (10) assume that when ℓ ∈ L varies, the sets
Eℓ(p) are random and independent, which is not the case when p is irregular
at some χ∗

0 = ωp−n0 (for χ0 = ωn0 ∈ X+) as we have seen; to simplify we
assume the Hypothesis 1.2 giving bc(χ

∗
0) = p u, where u is a p-adic unit.

Fix ℓ ∈ L such that Lχ∗

0
generates Cℓχ∗

0
≃ Z/pZ; put (Proposition 2.4):

gc(ℓ)χ∗

0
= 1 + β0(ℓ) ·̟p−n0 , β0(ℓ) ∈ Zp[̟],

where β0(ℓ) is invertible modulo ̟ if and only if gc(ℓ)χ∗

0
is non-p-primary.

Whatever ℓ′ and L′ | ℓ′, one has, from the computations done in § 4.5.1 (ii)
gc(ℓ

′)χ∗

0
≡ gc(ℓ)

r
χ∗

0
(mod p), r ∈ Z/pZ, giving:

(11) gc(ℓ
′)χ∗

0
=: 1 + β0(ℓ

′) ·̟p−n0 , β0(ℓ
′) ≡ r · β0(ℓ) (mod ̟).

Contrary to the classical idea that the values of β0(ℓ) modulo ̟ follow
standard probabilities 1

p , the heuristic that we propose is the following:

For each χ ∈ X+, the congruential values, at χ∗ = ω χ−1, of the Gauss
sums (more precisely of the gc(ℓ) as product J1 · · · Jc−1 of Jacobi sums),
are independent of the p-class of L | ℓ and are uniformly (or at least with
explicit non-trivial densities) distributed, when ℓ ∈ L varies.

Because of the density theorems on the ideal classes, we must examine two
cases concerning the χ-components of Cℓ, for χ ∈ X+, when there exists
χ0 = ωn0 ∈ X+ such that Cℓχ∗

0
≃ Z/pZ:

2 I thank Christian Maire for pointing out to me the reference [2] improving the bounds
of Soulé. Unfortunately these bounds are not usable in practice, but demonstrate the
existence of a fundamental general principle
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(a) χ 6= χ0 and Cℓχ∗ = 1. The numerical experiments show that when
ℓ ∈ L varies, gc(ℓ)χ∗ ≡ 1+β(ℓ)·̟p−n (mod p), with random β(ℓ) (mod ̟)

in Z/pZ (probabilities O(1)
p depending on the orders of the characters).

(b) χ = χ0 and Cℓχ∗

0
≃ Z/pZ. If gc(ℓ)χ∗

0
is p-primary for some given non-

principal Lχ∗

0
, then from (11) all the gc(ℓ

′)χ∗

0
are p-primary, whatever the

class of L′
χ∗

0
(p possibilities) because β0(ℓ) ≡ 0 (mod ̟). So, n0 is always

an exponent of p-primarity and E0(p) ∩ Eℓ(p) 6= ∅ for all ℓ ∈ L (which

corresponds to the non-cyclicity of Cℓ(p)χ∗

0
).

Thus, to have the same density of p-primarity on L (as for the p-principal
case (a)), β0(ℓ) ≡ 0 (mod ̟) must occur p times less, giving the probability

in O(1)
p2

instead of O(1)
p ; it is even possible that such a circumstance be of

probability 0 depending on more precise properties of Gauss sums. Other-
wise, their behaviour should be excessively disturbed and in an algorithmic
framework, we suggest that the congruential properties of the Gauss sums
(mod p) “determine” the properties of the p-class group of K instead of the

contrary, and perhaps imply the cyclicity of each Cℓ(p)χ∗ (see Proposition 3.4).

Of course, the probabilities O(1)
p and O(1)

p2
are to be precised regarding the

orders of the characters.

Otherwise, under the assumption gc(ℓ)χ∗

0
p-primary, the corresponding com-

ponent n0 of the list counting the p-primarities, increases at each step. For
instance, if for p = 37 the exponent n0 = 32 of 37-irregularity was an expo-
nent of p-primarity, then the last line of the data § 4.5.3 would be the awful
result about the 16th component (equal to 75 + 1432 = 1507):

L=[83,96,86,91,80,80,86,83,92,83,98,76,83,78,86,1507,76]

Let x(ℓ) be the mean value of the components of the list L and let Nℓ be
the number of primes ℓ tested at this step. Then from the above, x(ℓ) ≈ 84

and this would give a 16th component x0(ℓ) ≈ x(ℓ) · p−1
2 as ℓ → ∞ (here,

75+1432
84 ≈ 17.94). Then we may estimate x(ℓ) very approximatively equal

to 2N
p where N is the number of exponents of p-primarity obtained in the

selected interval of primes ℓ, and we may put Nℓ ≈ O(1) ·N ; whence x(ℓ) ≈
2
p ·Nℓ · (1+O(1)) giving the pathological component x0(ℓ) ≈ Nℓ · (1+O(1)).

6. Conclusion

Under these experiments and heuristics, the existence of sets Eℓ(p), disjoint
from E0(p), or probably the existence of primes ℓ ∈ L such that Eℓ(p) = ∅
(see the numerical results § 4.4.2), may occur conjecturally for all p.

Let us define the “main algorithm”, associated to the test of Vandiver’s
conjecture for p, as the passage from ℓ to the next ℓ′ in L , the crucial step
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being the computation of the Jacobi sums (1 ≤ i ≤ c− 1):

Ji = −
∑

x∈Fℓ\{0,1}
ζ i·lg(x)+lg(1−x)
p & J ′

i = −
∑

x′∈Fℓ′\{0,1}
ζ i·lg

′(x′)+lg′(1−x′)
p ,

where lg and lg′ are the discrete logarithms for ℓ and ℓ′; then we have
gc(ℓ) = J1 · · · Jc−1. Since the gc(ℓ) have, a priori, no “algebraic link”, this
suggests randomness and applies for many independent primes ℓ.

Remark 6.1. There are two constraints, for the Gauss sums and Jacobi
sums that we have considered, but they only concern the auxiliary numbers
ℓ ∈ L :

(i) The ideal factorization of τ(ψ) is related to congruences modulo the con-
jugates of a prime ideal L | ℓ and is canonical (this yields to Stickelberger’s
theorem [24, § 15.1], [4]).

(ii) The p-classes (finite in number) of ideals L | ℓ for ℓ ∈ L are all repre-
sented with standard densities (Lemma 4.4).

However, since we consider characters ψ of order p, the p-adic congruential
properties of Gauss sums (or Jacobi sums) do not follow any law (in our
opinion and according to classical literature), what explains that the nega-
tion of the distribution properties, for at least one irregular prime p, implies
a very tricky complexity of the algorithm, as the fact that Eℓ(p)∩E0(p) 6= ∅
for all ℓ ∈ L (or the weaker property Eℓ(p) 6= ∅ for all ℓ ∈ L ), which comes

from the non-cyclicity of some Cℓ(p)χ∗

0
.

This may have crucial consequences in various domains:

(i) In a geometrical viewpoint, the Riemann hypothesis for Fermat curves
[24, § 6.1] gives a basic link with Jacobi sums;

(ii) Vandiver’s conjecture is often strongly necessary (e.g., in [5] about the
Galois cohomology of the homology of Fermat curves, then in several papers
on Galois p-ramification theory as in [21]).

Then it may be legitimate to think that all these numerous basic congruen-
tial aspects are (logically) governing principles of a wide part of algebraic
number theory beyond the case of the pth cyclotomic field (not to mention
all the geometrical aspects):

Gauss and Jacobi sums −→ Stickelberger element −→ p-adic L-functions
−→ Herbrand theorem & Main theorems on abelian fields −→ annihila-
tion of the p-torsion group T = H2(GSp ,Zp)

∗ of real abelian fields −→
p-rationality of number fields (T = 1) −→ cohomological obstructions for
Galois theory −→ · · ·
Which gives again an example of a basic p-adic problem analogous to
those we have analysed for various conjectures: Greenberg’s conjectures
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(in Iwasawa theory over totally real fields and representation theory), p-
rationalities of a number field as p varies, existence of a p-adic Brauer–Siegel
theorem (see [15] and its bibliography).

The truth of Vandiver’s conjecture may come, for p ≫ 0, from Borel–

Cantelli heuristics on properties of probabilities much less than O(1)
p2

, but

this point of view allows cases of failure of Vandiver’s conjecture, which is
not satisfactory for the theoretical fondations of the above subjects. Possi-
bly, there is an universal property of the sets Eℓ(p) coming from the impor-
tant fact that all primes ℓ ∈ L intervene for each p.

To be very optimistic (but not very rigorous), one can perhaps say that
Vandiver’s conjecture is true because it has been verified for sufficiently
many prime numbers [3, 6]. In a more serious statement, we may assert
that Vandiver’s conjecture holds for almost all primes; the precise finite
cardinality of the set of counterexamples (∅ or not) is (in our opinion) not
of algebraic nature nor enlightened by class field theory or Iwasawa’s theory,
but is perhaps accessible by the way of analytical techniques or depends on
an hypothetic “complexity theory” in algebraic number theory.
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