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TEST OF VANDIVER’S CONJECTURE

WITH GAUSS SUMS – HEURISTICS

GEORGES GRAS

Abstract. The link between Vandiver’s conjecture and Gauss sums is
well-known since the papers of Iwasawa (1975), Anglès–Nuccio (2010)
and has been considered by many authors with various purposes (e.g.,
Iwasawa theory). In this article, we give again the interpretation of
Vandiver’s conjecture in terms of the minus part of the torsion group
of the Galois group of the maximal abelian p-ramified pro-p-extension
of the pth cyclotomic field, that we had published at the Laval Univer-
sity (1984), in relation with the result of Iwasawa. Then we provide
a specific use of Gauss sums that allows a new numerical test of Van-
diver’s conjecture (see Theorem 4.5 using both the set of exponents
of p-irregularity and the set of exponents of p-primarity of the Gauss
sum associated to a totally split prime number). Then we propose new
favorable heuristics for its rightness. We show that a counterexample
to Vandiver’s conjecture leads to a totally strange phenomenon on the
congruential properties of Gauss sums and to an unusual complexity of
some classical algorithms. Some tables with PARI programs are given
to strength our arguments.
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1. Introduction

Let K = Q(µp) be the field of pth roots of unity for the prime p > 2 and
let K+ be its maximal real subfield. We denote by Cℓ and Cℓ+ the p-class
groups of K and K+, respectively, then by Cℓ− the relative p-class group.
Then let E and E+ be the groups of units of K and K+, respectively; we
know that E = E+ ⊕ µp.

The Vandiver (or Kummer–Vandiver) conjecture asserts that Cℓ+ is trivial.
This statement is equivalent to say that the group of real cyclotomic units
is of prime to p index in E+ [18, Theorem 8.14]. See numerical results for
instance in [2, 3].

Many heuristics are known about this conjecture; see Washington’s book
[18, § 8.3, Corollary 8.19] for some history and criteria, then for probabilistic
arguments. We have also given a probabilistic study in [6, II.5.4.9.2]. All
these heuristics lead to the fact that the number of primes p less than p0,
giving a counterexample, can be of the form c · log(log(p0)), c < 1.

These reasonings, giving the possible existence of infinitely many coun-
terexamples to Vandiver’s conjecture, are based on standard probabilities
associated with the Borel–Cantelli heuristic, but many recent p-adic con-
jectures (on class groups and units) may contradict such approaches.

In this paper, we shall give numerical experiments in another direction using
Gauss sums and Stickelberger annihilation of relative classes, together with
the Thaine–Ribet–Mazur–Wiles–Kolyvagin–Greither main theorem on cy-
clotomic fields. Such a link with Gauss sums has been given first by Iwasawa
[14] and applied by many authors in various directions (e.g., [1, 9, 12, 13]).
We shall give a short survey about this in Section 3.

Then we shall use the reflection principle to interprete a counterexample
to Vandiver’s conjecture in terms of non-trivial “p-primary relative pseudo-
units” stemming from Gauss sums; this shall give the main test verifying
the validity of the conjecture for a given p (Theorem 4.5).
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More precisely, if #Cℓ+ ≡ 0 (mod p), there exists a class γ = cℓ(A) ∈ Cℓ−,
of order p, such that Ap = (α), with α p-primary (to give the unramified
extension K( p

√
α)/K, decomposed over K+ into the cyclic unramified ex-

tension L+/K+ predicted by class field theory); since α can be obtained
explicitely by means of infinitely many Gauss sums associated to the prime
numbers ℓ ≡ 1 (mod p), we show that some assumtion of independence, of
the congruential properties of these Gauss sums, is an obstruction to any
counterexample to Vandiver’s conjecture or, at least, that the probability

of such a counterexample is at most O(1)
p2

.

This method is different from those needing to prove that some cyclotomic
units are not global pth powers, which is more complicated and does not
give natural probabilistic approaches.

Finally, we propose (see § 5.2), from the properties of these Gauss sums, new
heuristics (to our knowledge) and give substantial numerical experiments
which confirms them. All the PARI [16] programs can be copy and paste
by the reader for any further experience.

Definitions & Notations 1.1. Let K := Q(µp) and G = Gal (K/Q).

(i) We denote by ω the character of Teichmüller of G (i.e., the p-adic char-

acter with values in µp−1(Qp) such that ζs = ζω(s) for all ζ ∈ µp and
s ∈ G).

(ii) An irreducible p-adic character of G is of the form θ = ωn, 1 ≤ n ≤ p−1;
we denote by 1 the unit character (n = p− 1).

(iii) If θ = ωn, we put θ∗ := ωθ−1 = ωp−n.

(iv) For any character θ, we denote by eθ :=
1

p−1

∑

s∈G
θ(s−1) s the associated

idempotent in Zp[G].

(v) For a finite Zp[G]-module M , we shall write Mθ := M eθ for the θ-
component of M . This gives rise to the obvious definition of parity of
the characters and that of the components M+ and M− such that M =
M+ ⊕M−.

(vi) We denote by rkp(A) the p-rank of any abelian group A (i.e., the Fp-
dimension of A/Ap).

(vii) Let F be a subgroup of K×; for numbers α ∈ F , considered modulo
K×p, we denote, by abuse, by αθ the element αeθ of Fθ := (FK×p/K×p)θ.

(viii) For χ = ωn 6= 1, n even, denote by b(χ∗) = 1
p

p−1
∑

a=1
(χ∗)−1(sa) a the

generalized Bernoulli number B1,(χ∗)−1 = B1,ωn−1 ; it is an element of Zp

congruent modulo p to
Bn

n
, where Bn is the ordinary Bernoulli number of

index n [18, Proposition 4.1, Corollary 5.15].
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(ix) The index of p-irregularity i(p) is the number of even n ∈ [2, p − 3]
such that Bn ≡ 0 (mod p) (see [18, § 5.3] for some statistics about i(p)).

Working Hypothesis 1.2. To simplify and to be realistic in an heuristic
point of view, we assume that each Cℓχ∗ is trivial or cyclic of order p, for the

even characters χ 6= 1; in other words, we assume that Cℓ− ≃ (Z/pZ)i(p).

Indeed, we know that #Cℓχ∗ ≡ 0 (mod p2) has probability less than O(1)
p2

,

and may be considered as giving a finite number of counterexamples to
Vandiver’s conjecture, what can be discarded for our purpose.

The Thaine–Ribet–Mazur–Wiles–Kolyvagin main theorem on abelian fields
is in K:

#Cℓχ∗ = pvp(b(χ
∗))

(the p-part of b(χ∗)), giving, under our assumption, b(χ∗) ∼ p for each
non-trivial component Cℓχ∗, where ∼ means “equality up to a p-adic unit
factor”. But this main theorem is not necessary in our context and leads to
the classical Herbrand theorem “p | Cℓχ∗ implies p | b(χ∗)” (the numerical
results [2, 3] are in complete accordance with this viewpoint).

2. Pseudo-units – Notion of p-primarity

Definitions 2.1. (i) We call pseudo–unit any α ∈ K×, prime to p, such
that (α) is the pth power of an ideal of K.

(ii) We say that an arbitrary α ∈ K×, α prime to p, is p-primary if the
Kummer extension K( p

√
α )/K is unramified at the unique prime ideal p

above p in K (but possibly ramified elsewhere).

Remarks 2.2. (i) Let A be the group of pseudo–units of K; then we have
the exact sequence (where pCℓ := {γ ∈ Cℓ, γp = 1}):

1 −→ E/Ep −−−→ AK×p/K×p −−−→ pCℓ −→ 1,

giving rkp(AK
×p/K×p) =

p− 1

2
+ rkp(Cℓ).

(ii) The general condition of p-primarity for any α ∈ K× (prime to p but not
necessarily pseudo-unit) is “α congruent to a pth power modulo pp = (p) p ”
(e.g., [6, Ch. I, § 6, (b)]). Since in any case, we can suppose α ≡ 1 (mod p),
the above condition is then equivalent to α ≡ 1 (mod pp) (indeed, x ≡ 1
(mod p) implies xp ≡ 1 (mod pp)).

For the pseudo-units, the p-primarity may be precised as follows:

Proposition 2.3. Let α ∈ K× be a pseudo–unit. Then α is p-primary if
and only if it is a local pth power at p.
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Proof. One direction is trivial. Suppose that K( p
√
α )/K is unramified at p;

since α is a pseudo-unit, this extension is unramified as a global extension
and is contained in the p-Hilbert class field HK of K. The Frobenius
automorphism of p = (1 − ζp) in HK/K, where ζp is a primitive pth root
of unity, is trivial; so p splits totally in HK/K, thus in K( p

√
α )/K, proving

the proposition. �

There is another analogous case when α, prime to p, is not necessarily a
pseudo-unit, but when we look at the p-primarity of αθ for θ 6= 1, ω:

Proposition 2.4. Let α ≡ 1 (mod p) ∈ K× and let m ∈ [2, p − 2]. Let
θ = ωm, and consider αθ. Then αθ ≡ 1 (mod pm) and αθ is p-primary if
and only if αθ ≡ 1 (mod p), in which case αθ ≡ 1 (mod pm+p−1 = (p)pm).

Proof. Consider the Dwork uniformizing parameter ̟ in Zp[µp] which has
the following properties (see, e.g., [6, Exercise II.1.8.3]):

(i) ̟p−1 = −p,
(ii) s(̟) = ω(s) ·̟, for all s ∈ G.

We shall prove first that αθ = 1 + ̟mβ, β ∈ Zp[̟], then that αθ is
p-primary (i.e., β ≡ 0 (mod ̟p−m)) if and only if β ≡ 0 (mod ̟p−1).

Put αθ = 1 +̟ku, where u is a unit of Zp[̟] and k ≥ 1; let u0 ∈ Z\pZ
such that u ≡ u0 (mod ̟). Since αs

θ = α
θ(s)
θ , we get, for all s ∈ G:

1 + s(̟k)u0 = 1 + ωk(s)̟ku0

≡ (1 +̟ku0)
θ(s) ≡ 1 + ωm(s)̟ku0 (mod ̟k+1),

which implies k ≡ m (mod p−1) and αθ = 1+̟k u, k ∈ {m,m+p−1, . . .},
with m ∈ [2, p − 2].

The p-primarity condition for αθ is αθ ≡ 1 (mod ̟p) giving the obvious
direction since ̟p ∼ p̟. Suppose αθ ≡ 1 (mod ̟p−1); so k = m does not
work since m ≤ p− 2, and necessarily k is at least m+ p− 1 ≥ p+ 1 since
m ≥ 2 (which is also the local pth power condition). �

We shall apply this with θ = χ∗ = ωp−n, n even, n ∈ [2, p − 3], and for
some α ≡ 1 (mod p) deduced from Gauss sums.

3. Link with p-ramification and Gauss sums

3.1. Vandiver’s conjecture and abelian p-ramification. Let T be the
torsion group of the Galois group of the maximal abelian p-ramified (i.e.,
unramified outside p) pro-p-extension Hpr of K (for more information, see
[6, 7, 10]).
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Write T = T+ ⊕ T−; then we difine, in an obvious way, Hpr
− ⊆ Hpr (fixed

by T+) and Hpr
+ ⊆ Hpr (fixed by T−). Considering any character θ of G,

we have, from the reflection theorem [6, Theorem II.5.4.5]:

(1) rkp(Tθ∗) = rkp(Cℓθ),
which gives the following interpretation:

Theorem 3.1. The Vandiver conjecture Cℓ+ = 1 is equivalent to T− = 1.

Proof. We shall justify this well-known “global” reflection result as follows
(the proof for the isotypic components being similar, taking the θ or θ∗-
components for each object).

The Kummer radical of the compositum of the cyclic extensions of degree p
of K contained in Hpr

− is generated (modulo K×p) by the obvious part E+

of real units, giving a p-rank p−3
2 , then by the real p-unit η+ := ζp+ζ

−1
p −2,

and by the pseudo-units α+ comming from Cℓ+, which gives the p-rank of
this radical equal to p−1

2 + rkp(Cℓ+).
Since rkp(Gal(Hpr

− /K)) = p−1
2 + rkp(T−) (p−1

2 corresponds to the composi-
tum of the non-cyclotomic Zp-extensions), we get rkp(T−) = rkp(Cℓ+). �

Remark 3.2. At each unramified cyclic extension L+ of degree p of K+ is
associated a p-primary pseudo-unit α ∈ K×\K×p such that α1+s−1 ∈ K×p

and such that L+K = K( p
√
α). Put (α) = Ap, where A is an ideal of K

such that A1+s−1 is p-principal (i.e., the image of its class in Cℓ is trivial);
moreover A is not p-principal, otherwise α should be, up to a pth power
factor, a unit ε ∈ E such that ε1+s−1 ∈ Ep, which gives ε ∈ µp (absurd).
In the same way, if G operates via χ on Gal(L+/K+) then by Kummer
duality G operates via χ∗ on 〈α〉K×p.

We shall prove that such pseudo-units α may be found by means of Gauss
sums (Lemma 4.4).

3.2. Vandiver’s conjecture and Gauss sums. Recall the formula (see
[6, Corollary III.2.6.1, Remark III.2.6.5] for more details and references):

#T− =
#Cℓ−

#

(

Zp log(I)
/

Zp log(U)
)

−

,

where I is the group of prime to p ideals of K; if A ∈ I, let e be such that
Ae = (α), then log(A) := 1

e log(α) where log is the p-adic logarithm, then U
is the group of principal local units of Qp(µp) which is equal to 1+̟ Zp[̟].
Taking the minus part, log(A) becomes well-defined.

We obtain for all even χ (noting that Tω = Cℓω = 1):

#Tχ∗ =
#Cℓχ∗

#

(

Zp log(I)
/

Zp log(U)
)

χ∗

·
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Mention the following reasonning (from [9, § 3]) giving another interpreta-

tion of the result of Iwasawa [14]. Let S :=
1

p

p−1
∑

a=1
a s−1

a ∈ Q[G] be the Stick-

elberger element of K; it is such that S . eχ∗ = b(χ∗) . eχ∗ := B1,(χ∗)−1 . eχ∗

for all even χ 6= 1; then if χ = ωn, χ∗ = ωp−n for which #Cℓχ∗ corresponds to
the ordinary Berrnoulli numbers Bn giving the “exponents of p-irregularity
n” when Bn ≡ 0 (mod p) (see Definition 1.1 (viii)).

Now we know that for any prime ideal L of K, L 6= p, we have the funda-
mental relation in K (see [18, §§ 6.1, 6.2, 15.1]):

(2) L pS = τ(ψ)p Z[ζp],

where τ(ψ) is the Gauss sum:

(3) τ(ψ) := −
∑

x∈FL

ψ(x) ξ
tr(x)
ℓ ,

where FL is the residue field of L, ψ a character of order p of F×
L , ξℓ a

primitive ℓth root of unity for ℓ = L ∩ Z, and tr the trace in FL/Fℓ. Since
the choices of L, ψ and ξℓ, from a given ℓ, correspond to Galois conjugations,
we denote simply τ(ψ) such a Gauss sum; this has some importance since
once the prime ideal L and ξℓ are fixed, up to conjugation, we shall consider
the powers ψc of ψ, for c prime to p, and the Gauss sums τ(ψc).

Taking the logarithms in (2) and dividing by p we obtain:

S . eχ∗ . log(L) = b(χ∗) . log(L) . eχ∗ = log(τ(ψ)) . eχ∗ , for all even χ 6= 1.

Then pvp(b(χ
∗)) Zplog(L) . eχ∗ = Zplog(τ(ψ)) . eχ∗ , thus:

#Tχ∗ =
pvp(b(χ

∗))

#

(

Zplog (G)
/

pvp(b(χ
∗)) log (U)

)

χ∗

,

where G is the group generated by all the Gauss sums. So, the Van-
diver conjecture for the χ-component of Cℓ (i.e., Tχ∗ = 1) is equivalent
to

(

Zp log (G)/log(U)
)

χ∗
= 1, and the whole Vandiver conjecture is equiva-

lent to the fact that the images of the Gauss sums in U generate the minus
part of this Zp-module.

More precisely, assume the Hypothesis 1.2 and let χ even be such that
b(χ∗) ∼ p; thus Tχ∗ = 1 if and only if there exists at least a prime number ℓ
such that the corresponding τ(ψ)χ∗ generates Uχ∗ ≃ 1+̟p−nZp[̟], which
needs only congruences modulo p; indeed, from Proposition 2.4 all is clear
(we shall prove that this is equivalent to a property of non-p-primarity of
a particular elements deduced from τ(ψ)χ∗ in a suitable context, giving an
explicit test for Vandiver’s conjecture).
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4. Gauss sums associated to ideals L of residue degree 1

Let ℓ be a prime number totally split in K (i.e., ℓ ≡ 1 (mod p)). Let L | ℓ
in K and let ψ : F×

L ≃ F×
ℓ −→ µp be a character of order p; if g is a

primitive root modulo ℓ, one may put ψ(g) = ζp to define ψ on F×
ℓ . Let ξℓ

be a primitive ℓ-th root of unity; then the Gauss sum associated to ψ may
be written in Z[µp ℓ]:

τ(ψ) := −
∑

x∈F×

ℓ

ψ(x) · ξxℓ = −
ℓ−2
∑

k=0
ζkp · ξgkℓ .

4.1. Practical computation of τ(ψ)c−σc . Let c ≥ 2 be a primitive root
modulo p; to get an element of K, one must use the twisted version
τ(ψ)c−σc , where σc ∈ Gal(Q(µp ℓ)/Q) is the Artin automorphism of c (its
restriction to K is sc ∈ G). We put (still assuming ℓ ≡ 1 (mod p)):

(4) τc(L) := τ(ψ)c−σc for ψ : F×
ℓ −→ µp.

This notation using L | ℓ is justified by (2) and (3) giving, for all even χ:

(5) LSc = τc(L)Z[ζp] & L
(c−χ∗(sc))·b(χ∗)
χ∗ = τc(L)χ∗ Z[ζp]

where Sc := (c−σc)·S ∈ Z[G] is the corresponding twist of the Stickelberger
element and where τc(L) ∈ Z[ζp] as one checks easily. For simplicity, put:

(6) bc(χ
∗) := (c− χ∗(sc)) · b(χ∗) ∼ b(χ∗).

Lemma 4.1. Let ℓ ≡ 1 (mod p) prime and let L | ℓ be a prime ideal in K.
Then τc(L) is a product of Jacobi sums and τc(L) ≡ 1 (mod p).

Proof. We have the classical formula using Jacobi sums (for ψ ψ′ 6= 1):

J(ψ,ψ′) := τ(ψ) · τ(ψ′) · τ(ψ ψ′)−1 = −
∑

x∈Fℓ\{0,1}
ψ(x) · ψ′(1− x).

By induction, we obtain:

τ(ψ)c = J1 · · · Jc−1 · τ(ψc), where Ji = −∑

x∈Fℓ
ψi(x) · ψ(1− x).

Concerning the congruence, we have:

τ(ψ) = −
∑

x∈F×

ℓ

ψ(x) · ξxℓ ≡ −
∑

x∈F×

ℓ

ξxℓ (mod p);

but since ℓ is prime,
∑

x∈F×

ℓ

ξxℓ = −1, whence the result for τc(L). �

Put J = J1 · · · Jc−1. Then in the above definition (4) of τc(L), τ(ψ)
σc =

τ(ψc) · ζ(c), where ζ(c) ∈ µp; but for all χ 6= 1, ζ(c)eχ∗ = 1, which defines
τc(L)χ∗ := Jχ∗ without ambiguity.
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Definitions 4.2. (i) We call set of exponents of p-primarity, of a prime
ℓ ≡ 1 (mod p), the set Eℓ(p) := {n1, . . . , ns}, s ≥ 0, of even integers n in
[2, p− 3] such that τc(L)ωp−n is p-primary (this set does not depend on the
choice of L | ℓ).
(ii) We call set of exponents of p-irregularity, the set E0(p) := {ν1, . . . , νt},
t ≥ 0, of even integers ν in [2, p − 3] such that Bν ≡ 0 (mod p) (i.e.,
b(ωp−ν) ≡ 0 (mod p); see Definition 1.1 (viii)).

Remark 4.3. Let χ 6= 1 be even. If τc(L)χ∗ is p-primary this does not
give necessarily a counterexample to Vandiver’s conjecture for the following
possible reasons considering the expression Sc eχ∗ = bc(χ

∗) eχ∗ (recall that
bc(χ

∗) ∼ b(χ∗)):

(i) The number bc(χ
∗) is not divisible by p, so τc(L)χ∗ is not the pth power

of an ideal and leads to a ℓ-ramified Kummer extension of K+ (i.e., the
character χ∗ = ωp−n does not correspond to an exponent of p-irregularity).
For instance, the program below gives for p = 11 (c = 2), ℓ = 23, the
exponent of 11-primarity n = 2 so that α := τc(L)χ∗ is the integer (where
x = ζ11):

16313053108*x^9 + 14568599738*x^8 + 15188534416*x^7 + 12440402458*x^6

+ 11144637196*x^5 + 19451005706*x^4 + 16080428144*x^3 + 12836788646*x^2

+ 12505300522*x + 12784005125

for which K+( 11
√
α)/K+ is a cyclic extension of degree 11 of K+; then α is

a product of prime ideals above 23 and is not a 11th power, since:

NK/Q(α) = 134768284860588469651366402896654188603790598857406250

9928993915940186470356144025219775950324148244807 = 2375.

Its decomposition in K is (α) = L9
1 · L10

2 · L12
3 · L3

4 · L5
5 · L15

6 · L6
7 · L8

8 · L7
9.

(ii) The number bc(χ
∗) is divisible by p, but the ideal Lχ∗ is p-principal and

then τc(L)χ∗ is a pth power in K×.

So, the best necessary condition for a counterexample is that there exists an
even character χ 6= 1 such that τc(L)χ∗ is p-primary and bc(χ

∗) ≡ 0 (mod p)
(this shall be precised in Lemma 4.4 to give Theorem 4.5). The condition
is not sufficient because of the case where Lχ∗ is p-principal (which is not
easy to verify).

4.2. Program. For the least prime ℓ ≡ 1 (mod p), the following program
computes τc(L) in Mod(J,P), with P = polcyclo(p), where the product J of
Jacobi sums is written in Z[x]; c is a primitive root modulo p.

Taking n = 2 ∗m, we consider χ = ωn & χ∗ = ωp−n (p − n in pn). Then
the polynomials Jj give the powers Jj modulo p, j = 1, . . . , p − 1, in LJ.

The computation of τc(L)χ∗ is given in Sn =
∏p−1

a=1 sa(J
an−1

) from the for-

mula τc(L)χ∗ =
∏p−1

a=1 σa(τc(L))
ωn−p(a) =

∏p−1
a=1 σa(τc(L)

an−1

) up to a pth
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power factor; then an−1 is computed modulo p in an and then Jan is given
by component(LJ, an).

Finaly the conjugate sa(J
an) is computed in sJan via the conjugation x 7→ xa

in Jan, whence the product in Sn.

{forprime(p=3,200,c=lift(znprimroot(p));

P=polcyclo(p)+Mod(0,p);X=Mod(x,P);ell=1;

while(isprime(ell)==0,ell=ell+2*p);g=znprimroot(ell);

print("p=",p," ell=",ell," c=",c," g=",g);J=1;for(i=1,c-1,Ji=0;

for(k=1,ell-2,kk=znlog(1-g^k,g);e=lift(Mod(kk+i*k,p));Ji=Ji-X^e);J=J*Ji);

d=p-2;LJ=listcreate;Jj=1;for(j=1,p-1,Jj=lift(Jj*J);listinsert(LJ,Jj,j));

for(m=1,(p-3)/2,n=2*m;pn=p-n;Sn=Mod(1,P);

for(a=1,(p-1)/2,an=lift(Mod(a,p)^(n-1));Jan=component(LJ,an);sJan=0;

for(j=0,d,aj=lift(Mod(a*j,p));sJan=sJan+x^(aj)*component(Jan,1+j));

Sn=Sn*sJan);if(Sn==1,print(" exponents of p-primarity: ",n))))}

p=3 ell=7 c=1 g=3

p=5 ell=11 c=2 g=2

p=7 ell=29 c=2 g=2

p=11 ell=23 c=3 g=5 exponents of p-primarity: 2

p=13 ell=53 c=2 g=2

p=17 ell=103 c=3 g=5

p=19 ell=191 c=4 g=19

p=23 ell=47 c=2 g=5

p=29 ell=59 c=2 g=2 exponents of p-primarity: 2

p=31 ell=311 c=7 g=17

p=37 ell=149 c=2 g=2

p=41 ell=83 c=6 g=2

p=43 ell=173 c=9 g=2 exponents of p-primarity: 26

p=47 ell=283 c=2 g=3

p=53 ell=107 c=2 g=2 exponents of p-primarity: 34, 10

p=59 ell=709 c=3 g=2

p=61 ell=367 c=2 g=6

p=67 ell=269 c=4 g=2

p=71 ell=569 c=2 g=3

p=73 ell=293 c=5 g=2

p=79 ell=317 c=2 g=2

p=83 ell=167 c=3 g=5

p=89 ell=179 c=3 g=2

p=97 ell=389 c=5 g=2 exponents of p-primarity: 26

p=101 ell=607 c=2 g=3 exponents of p-primarity: 10

p=103 ell=619 c=5 g=3

p=107 ell=643 c=2 g=11

p=109 ell=1091 c=6 g=2 exponents of p-primarity: 14, 86

p=113 ell=227 c=3 g=2

p=127 ell=509 c=3 g=2

p=131 ell=263 c=2 g=5 exponents of p-primarity: 16

p=137 ell=823 c=3 g=3 exponents of p-primarity: 78

p=139 ell=557 c=2 g=2

p=149 ell=1193 c=2 g=3
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p=151 ell=907 c=6 g=2

p=157 ell=1571 c=5 g=2 exponents of p-primarity: 94

p=163 ell=653 c=2 g=2 exponents of p-primarity: 42

p=167 ell=2339 c=5 g=2 exponents of p-primarity: 122

p=173 ell=347 c=2 g=2

p=179 ell=359 c=2 g=7 exponents of p-primarity: 138

p=181 ell=1087 c=2 g=3 exponents of p-primarity: 114, 164

p=191 ell=383 c=19 g=5

p=193 ell=773 c=5 g=2 exponents of p-primarity: 108, 172

p=197 ell=3547 c=2 g=2 exponents of p-primarity: 62

p=199 ell=797 c=3 g=2

We shall see that, when the list of exponents of p-primarity is empty, this
implies Vandiver’s conjecture for p (Corollary 4.6). Moreover this program
only test the “first” prime ℓ and we shall see later that it is sufficient to try
another ℓ to be successfull.

4.3. Stickelberger element and Bernoulli numbers. Recall that from

§ 4.1 we have, for all even χ 6= 1, (τc(L)χ∗) = LSc eχ∗ = L
bc(χ∗)
χ∗ . We still

assume the Hypothesis 1.2.

Lemma 4.4. Let χ 6= 1 even be such that Cℓχ 6= 1 (i.e., we assume to have
a counterexample to Vandiver’s conjecture). Then Cℓχ∗ 6= 1 and there exists

a totally split prime ideal L such that LSc eχ∗ = (αχ∗), where αχ∗ is unique,
equal to τc(L)χ∗ which is p-primary (i.e., τc(L)χ∗ ≡ 1 (mod p)) and not a
pth power in K×.

Proof. The claim Cℓχ∗ 6= 1 is the consequence of the reflection theorem.
Let γ ∈ Cℓχ∗ be of order p. From the Chebotarev theorem in HK/Q, there

exists a prime ℓ such that (in terms of Frobenius)
(HK/Q

L′

)

is of order p, for
L′ | ℓ in HK . So ℓ splits completely in K/Q and the ideal L of K under L′

is (as well as Lχ∗) a representative of γ. Since bc(χ
∗) = p u for a p-adic unit

u, we can put Lpu
χ∗ = (αχ∗); since E− = 1 (except for χ∗ = ω excluded), αχ∗

is unique and not a pth power; in terms of Gauss sums, Lpu
χ∗ = (τc(L)χ∗)

(see (5)), thus αχ∗ = τc(L)χ∗ . The p-primarity of αχ∗ is necessary to obtain
the corresponding unramified Kummer extension K

(

p
√
αχ∗

)

of degree p of
K, decomposed over K+ into the unramified extension associated to Cℓχ by
class field theory, whence the p-primarity of τc(L)χ∗ for any ℓ ≡ 1 (mod p)
such that L | ℓ leads to a generator Lχ∗ of Cℓχ∗. �

4.4. Main test for Vandiver’s conjecture. Drawing the consequences
of the above (under the Hypothesis 1.2), we shall get the main test for
Vandiver’s conjecture.

4.4.1. Main theorem. A necessary condition to have a counterexample to
Vandiver’s conjecture, is that there exists an even character χ 6= 1 such
that bc(χ

∗) ∼ p and a prime number ℓ ≡ 1 (mod p) such that τc(L)χ∗ is
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p-primary, where L is any prime ideal of K dividing ℓ (the condition is
sufficient as soon as L is not p-principal). Thus the main statement for
K = Q(µp):

Theorem 4.5. Let ℓ be any prime number totally split in K/Q (i.e., ℓ ≡ 1
(mod p)). Let Eℓ(p) be the set of exponents of p-primarity of ℓ (i.e., the
even n ∈ [2, p − 3] such that τc(L)ωp−n ≡ 1 (mod p) for any choice of L | ℓ
in K), and let E0(p) be the set of exponents of p-irregularity of K (i.e., the
even n ∈ [2, p − 3] such that b(ωp−n) ≡ 0 (mod p) or Bn ≡ 0 (mod p)).

Then, if Eℓ(p) ∩ E0(p) = ∅, the Vandiver conjecture holds for K.

Proof. Consider, for χ = ωn 6= 1 even, and χ∗ = ωp−n, the relation (5)

giving L
bc(χ∗)
χ∗ = (τc(L)χ∗), and examine the two possibilities:

(i) If n is not an exponent of p-irregularity, then Cℓχ∗ = 1 and bc(χ
∗) 6≡ 0

(mod p), giving Tχ∗ = 1, whence Cℓχ = 1 (see § 3.2).
(ii) If n is an exponent of p-irregularity, then bc(χ

∗) ∼ p, giving, for some
p-adic unit u, L

pu
χ∗ = (τc(L)χ∗); if Lχ∗ is p-principal, then τc(L)χ∗ is a

global pth power, hence p-primary (absurd by assumption). So Lχ∗ is not
p-principal and defines the class of order p in Cℓχ∗ for which τc(L)χ∗ is not
p-primary,whence Cℓχ = 1 (Kummer duality with Hypothesis 1.2). �

Corollary 4.6. Let ℓ be a prime number totally split in K and L | ℓ in K.
If, for all even characters χ 6= 1, the numbers τc(L)χ∗ are not p-primary
(i.e., Eℓ(p) = ∅), then the Vandiver conjecture is true for p.

4.4.2. Research of the minimal prime ℓ allowing the test. The following pro-
gram examines, for each p, the successive prime numbers ℓi ≡ 1 (mod p),
for i = 1, . . . , N , and return the first one, ℓN (in ell), with its index N,
such that EℓN (p) = ∅. Its existence is of course a strong conjecture, but
the results are extremely favorable to the existence of infinitely many such
primes; which strengthens the conjecture of Vandiver.

Moreover, since the integer i(p) = #E0(p) is rather small regarding p (as
doubtless for #Eℓ(p)), the intersection of Eℓ(p) with E0(p) may be empty for
all ℓ. Warning: we shall see that if Eℓ(p) ∩ E0(p) 6= ∅ (i.e., existence of a
counterexample), this occurs for all ℓ, which is terrific since the experiments
give the impression that these two sets are independent, as well the sets
Eℓ(p) when ℓ varies.
{forprime(p=3,200,c=lift(znprimroot(p));P=polcyclo(p)+Mod(0,p);X=Mod(x,P);

N=0;for(i=1,99,L=1+2*i*p;if(isprime(L)!=1,next);N=N+1;g=znprimroot(L);

J=1;for(i=1,c-1,Ji=0;for(k=1,L-2,kk=znlog(1-g^k,g);e=lift(Mod(kk+i*k,p));

Ji=Ji-X^e);J=J*Ji);d=p-2;LJ=listcreate;Jj=1;for(j=1,p-1,Jj=lift(Jj*J);

listinsert(LJ,Jj,j));T=1;for(m=1,(p-3)/2,n=2*m;pn=p-n;Sn=Mod(1,P);

for(a=1,(p-1)/2,an=lift(Mod(a,p)^(n-1));Jan=component(LJ,an);sJan=0;

for(j=0,d,aj=lift(Mod(a*j,p));sJan=sJan+x^(aj)*component(Jan,1+j));

Sn=Sn*sJan);if(Sn==1,T=0;break));if(T==1,print(p," ",L," ",N);break)))}
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In the results, we only write the primes p, ℓN , for which N > 1:

p ell N p ell N

11 67 2 197 4729 2

29 233 2 211 10973 4

43 431 2 223 6691 2

53 743 2 227 5903 2

97 971 2 229 5039 2

101 809 2 233 1399 2

109 2399 2 251 4519 2

131 1049 3 277 4987 3

137 1097 2 337 6067 3

157 7537 5 349 8377 2

163 5869 3 367 3671 2

167 7349 3 383 16087 4

179 1433 2 389 14783 2

181 1811 2 397 6353 2

193 1931 2 401 10427 4

The comparison with the table of exponents of p-irregularity does not show
any relation with the above study. Moreover, this test of Vandiver’s con-
jecture does not need the knowledge of E0(p) since when this set is empty,
the existence of a suitable ℓ with Eℓ(p) = ∅ does exist in all circumstance
(in the selected interval).

4.5. What happens when ℓ varies ? Let n0 even in [2, p − 3] be an
exponent of p-irregularity under the Hypothesis 1.2, and put χ0 = ωn0 .

4.5.1. About the p-principality or not of L. Let L | ℓ, ℓ ≡ 1 (mod p), be
any totally split prime ideal, and let Lχ∗

0
where χ∗

0 = ωp−n0 . There are two
cases as we have seen in the proof of Theorem 4.5:

(i) The component Lχ∗

0
is p-principal; thus since bc(χ

∗
0) = p u, τc(L)χ∗

0
is a

pth power in K×, whence τc(L)χ∗

0
is p-primary, but this does not lead to

an unramified cyclic extension of degree p of K+ of character χ0;

(ii) The component Lχ∗

0
is not p-principal; thus it defines the non-trivial

component Cℓχ∗

0
and the Vandiver conjecture holds at χ = ωn0 if and only if

τc(L)χ∗

0
is not p-primary. In this case, if τc(L)χ∗

0
is p-primary, whatever the

ideal L′
χ∗

0
, L′ | ℓ′, we have L′

χ∗

0
= (zχ∗

0
)Lr

χ∗

0
, with z ∈ K× and r ∈ [0, p − 1],

so that:

L′pu
χ∗

0
= (zpuχ∗

0
)Lrpu

χ∗

0
& τc(L

′)χ∗

0
≡ τc(L)

r
χ∗

0
≡ 1 (mod p).

Whence a common exponent n0 of p-primarity giving
⋂

ℓ≡1(mod p)
Eℓ(p) 6= ∅.

So it is fundamental to see if the sets Eℓ(p) are in general independent (or
not) of the choice of the ideals L in a given class; from the density theorems,
there exist infinitely many ℓ for which the class of Lχ∗ has a given order (1
or p). We shall do this § 4.5.2.
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Now we analyse the case of p = 37 whose exponent of p-irregularity is
n0 = 32 giving #Cℓω5 = 37 and compute in expp) the sets Eℓ(37) when ℓ
varies; we shall see that the results do no seem to depend on the order of
magnitude of ℓ; if n0 ∈ Eℓ(37), this means that Lχ∗ is p-principal:

{p=37;c=lift(znprimroot(p));P=polcyclo(p)+Mod(0,p);X=Mod(x,P);

for(i=1,100,L=1+2*i*p;if(isprime(L)==1,g=znprimroot(L);

print("ell=",L," g=",g);J=1;for(i=1,c-1,Ji=0;for(k=1,L-2,kk=znlog(1-g^k,g);

e=lift(Mod(kk+i*k,p));Ji=Ji-X^e);J=J*Ji);d=p-2;LJ=listcreate;Jj=1;

for(j=1,p-1,Jj=lift(Jj*J);listinsert(LJ,Jj,j));for(m=1,(p-3)/2,n=2*m;

pn=p-n;Sn=Mod(1,P);for(a=1,(p-1)/2,an=lift(Mod(a,p)^(n-1));

Jan=component(LJ,an);sJan=0;for(j=0,d,aj=lift(Mod(a*j,p));

sJan=sJan+x^(aj)*component(Jan,1+j));Sn=Sn*sJan);

if(Sn==1,print(" exponent of p-primarity: ",n)))))}

ell=149 g=2 ell=3331 g=3 expp: 22

ell=223 g=3 ell=3701 g=2

ell=593 g=3 ell=3923 g=2

ell=1259 g=2 ell=4219 g=2 expp: 18,16

ell=1481 g=3 expp: 30 ell=4441 g=21

ell=1777 g=5 ell=4663 g=3

ell=1999 g=3 ell=5107 g=2

ell=2221 g=2 ell=5477 g=2

ell=2591 g=7 expp: 34 ell=6143 g=5 expp: 28

ell=2887 g=5 ell=6217 g=5

ell=3109 g=6 ell=6661 g=6

ell=3257 g=3 ell=6883 g=2

(...) (...)

ell=742073 g=3 expp: 12 ell=768343 g=11 expp: 18

ell=742369 g=7 ell=768491 g=10

ell=742591 g=3 ell=768787 g=2 expp: 20

ell=743849 g=3 ell=769231 g=11 expp: 24

ell=743923 g=3 expp: 16 ell=769453 g=2 expp: 30

ell=744071 g=22 ell=772339 g=3

ell=744811 g=10 ell=773153 g=3 expp: 14

ell=744959 g=13 expp: 10 ell=774337 g=5 expp: 28

ell=745033 g=10 expp: 16 ell=774929 g=3 expp: 18

ell=745181 g=2 ell=775669 g=10 expp: 18

ell=745477 g=2 ell=776483 g=2

ell=745699 g=2 ell=776557 g=2 expp: 20

ell=746069 g=2 ell=777001 g=31 expp: 18,28

ell=746957 g=2 ell=778111 g=11

ell=747401 g=3 ell=778333 g=2 expp: 28

ell=747919 g=3 ell=778777 g=5

ell=748807 g=6 expp: 22 ell=779221 g=2

ell=749843 g=2 expp: 34 ell=779591 g=7

ell=750287 g=5 ell=779887 g=10 expp: 18

ell=750509 g=2 expp: 14,22 ell=780257 g=3 expp: 8

ell=751027 g=3 ell=780553 g=10

ell=751841 g=3 expp: 14,16,24 ell=781367 g=5 expp: 34



TEST OF VANDIVER’S CONJECTURE WITH GAUSS SUMS 15

ell=752137 g=10 expp: 8 ell=781589 g=2 expp: 32

ell=752359 g=3 expp: 18 ell=782107 g=2

ell=752581 g=2 expp: 16 ell=782329 g=13 expp: 18

ell=752803 g=2 expp: 22,32 ell=782921 g=3 expp: 20

ell=753617 g=3 ell=783143 g=5

ell=753691 g=11 expp: 16 ell=783661 g=2

ell=753839 g=7 expp: 4,22 ell=784327 g=3

ell=754283 g=2 ell=784697 g=3

ell=755171 g=6 ell=784919 g=7

ell=755393 g=3 expp: 22 ell=785363 g=2

ell=756281 g=3 expp: 2 ell=786251 g=2

ell=756799 g=15 expp: 18 ell=786547 g=2

ell=757243 g=2 ell=787139 g=2 expp: 20

ell=757909 g=2 expp: 16 ell=787361 g=6

ell=758279 g=7 ell=787879 g=6 expp: 10,18,20

ell=758501 g=2 expp: 18 ell=788027 g=2 expp: 34

ell=759019 g=2 ell=789137 g=3 expp: 24

ell=759167 g=5 expp: 12 ell=790099 g=2

ell=759463 g=3 ell=791209 g=7

ell=759833 g=3 expp: 4 ell=791431 g=12

ell=760129 g=11 ell=791801 g=3

ell=760499 g=2 ell=792023 g=5 expp: 32

ell=762053 g=2 ell=792689 g=3

ell=762571 g=10 ell=793207 g=5

ell=763237 g=2 ell=795427 g=2

ell=764051 g=2 ell=795649 g=22 expp: 2,32

ell=764273 g=3 ell=795797 g=2

ell=764717 g=2 expp: 2 ell=795871 g=3

ell=765383 g=5 ell=796759 g=3

ell=765827 g=2 expp: 34 ell=796981 g=7

ell=766049 g=3 expp: 22 ell=797647 g=3

ell=766937 g=3 expp: 34 ell=797869 g=10

ell=767381 g=2 expp: 18 ell=798461 g=2

ell=767603 g=5 expp: 34 ell=798757 g=2

ell=767677 g=5 ell=800089 g=7 expp: 20

For ℓ = 149, 223, 593, 1259, 1777, . . ., Eℓ(37) = ∅, which proves the Vandiver
conjecture for p = 37. Consider a case where Eℓ(p) 6= ∅:
For ℓ = 1481 one finds a p-primarity for χ∗ = ω7 (χ = ω30 6= ω32); we
may think that for small primes p, some coincidences may be possible (i.e.,
Eℓ(p)∩E0(p) 6= ∅), despite the fact that this must arrive for all ℓ as we have
just seen.

We remark that χ0 = ω32 gives χ∗
0 = ω5 which is a character of K, not the

character of a strict subfield (in other words, the class of order 37 does not
come from a strict subfield); then χ = ω30 is a character of the real subfield
k6 of degree 6 of Q which gives rise to a ℓ-ramified (i.e., unramified outside
ℓ since the 37-primarity gives the non-ramification of p) cyclic extension of
degree p of k6 (in other words, if the exponent of p-irregularity had been
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30 instead of 32, this would have given an unramified cyclic extension of
degree p of k6, i.e., #Cℓk6 = 37). It remains the question of the principality
(or not) of the Lχ∗

0
, where χ∗

0 = ω5.

In the particular case p = 37, Lχ∗

0
is principal if and only if L is principal

since the exponent of p-irregularity n0 = 32 is unique with a class number
h = 37.

(i) Principal case. The principal L are rare; the first one is L = (x11+x3+x)
where ℓ = 32783 and x = ζ37.

Thus in that case, in the relation Lbc(χ∗

0) = (τc(L)χ∗

0
), τc(L)χ∗

0
must be a

37th power (which explain that one finds the exponent of 37-primarity equal
to that of 37-irregularity in the forthcomming table); but infortunately, the
data are too large to be given. Nevertheless, the reader can easily compute
factor(norm(Sn)) = 3278337·16·9 and use the instructions K = bnfinit(P, 1);
idealfactor(K,Sn), which give the 37th power of a principal ideal L | 32783.
(ii) Non-principal case L | 149. The instruction bnfisintnorm(K, 149k):

{P=polcyclo(37);K=bnfinit(P,1);for(k=1,2,print(bnfisintnorm(K,149^k)))}

yields an empty set for k = 1 (since L is not principal) and, for k = 2, it
gives the 18 conjugates of:

-2*x^35-2*x^34-x^32-2*x^31+x^29-x^28-2*x^27-2*x^24-x^23+x^22-2*x^20

-x^19-x^17-2*x^16+x^14-x^13-2*x^12-2*x^9-x^8+x^7-2*x^5-x^4-2*x^2-2*x

since NK/K+
(L) is always principal. This allows an easy characterization.

4.5.2. Table of the classes of L for p = 37. We give a table with a generator
of L in the principal cases (indicated by ∗). Otherwise, the class of L is of
order 37 in K. The exponents of p-primarity are denoted expp:

{p=37;c=lift(znprimroot(p));P=polcyclo(p);

K=bnfinit(P,1);P=P+Mod(0,p);X=Mod(x,P);

Lsplit=listcreate;N=0;for(i=1,2000,L=1+2*i*p;

if(isprime(L)==1,N=N+1;listinsert(Lsplit,L,N)));

for(j=1,N,L=component(Lsplit,j);F=bnfisintnorm(K,L);

if(F!=[],print("ell=",L," ",component(F,1)));g=znprimroot(L);

J=1;for(i=1,c-1,Ji=0;for(k=1,L-2,kk=znlog(1-g^k,g);

e=lift(Mod(kk+i*k,p));Ji=Ji-X^e);J=J*Ji);d=p-2;LJ=listcreate;

Jj=1;for(j=1,p-1,Jj=lift(Jj*J);listinsert(LJ,Jj,j));

for(m=1,(p-3)/2,n=2*m;pn=p-n;Sn=Mod(1,P);

for(a=1,(p-1)/2,an=lift(Mod(a,p)^(n-1));

Jan=component(LJ,an);sJan=0;for(j=0,d,aj=lift(Mod(a*j,p));

sJan=sJan+x^(aj)*component(Jan,1+j));Sn=Sn*sJan);

if(Sn==1,print("ell=",L," expp:",n))))}

ell=1481 expp: 30 ell=56167 expp: 10,14,26

ell=2591 expp: 34 ell=57203 expp: 34

ell=3331 expp: 22 ell=58313 expp: 28

ell=4219 expp: 16,18 ell=58757 expp: 16,18
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ell=6143 expp: 28 ell=58831 expp: 24,30

ell=7993 expp: 16,20 ell=59497 expp: 28

ell=8363 expp: 8 ell=61051 expp: 10

ell=9769 expp: 20 ell=62383 expp: 2

ell=10657 expp: 4,18,26 ell=62753 expp: 2

ell=12433 expp: 20 ell=63493 expp: 2

ell=13099 expp: 28 *ell=64381 expp: 6,32 [x^20+x^9+x]

ell=14431 expp: 4,14,22 ell=66749 expp: 30

ell=17021 expp: 6 *ell=67489 expp: 30,32 [x^24-x^3-x^2]

ell=17909 expp: 30 ell=67933 expp: 6

ell=18131 expp: 22 *ell=68821 expp: 32 [x^15-x^9+x^4]

ell=19463 expp: 6 ell=69931 expp: 12

ell=20129 expp: 6 ell=71411 expp: 4

ell=21017 expp: 2,4 ell=72817 expp: 28

ell=21313 expp: 18 ell=74149 expp: 2

ell=21757 expp: 8 ell=75407 expp: 10

ell=22349 expp: 8 ell=75629 expp: 12, 20

ell=23459 expp: 6 ell=76961 expp: 14

ell=23977 expp: 26 ell=78737 expp: 28

ell=25087 expp: 26 ell=79181 expp: 10

ell=25457 expp: 30 ell=80513 expp: 16, 26

ell=29009 expp: 8,24 ell=81031 expp: 18, 34

ell=30859 expp: 2 ell=82067 expp: 34

*ell=32783 expp: 32 [x^11+x^3+x] ell=83621 expp: 34

ell=33301 expp: 30 ell=83843 expp: 2

ell=33967 expp: 26 ell=84731 expp: 6

ell=36187 expp: 8 ell=85027 expp: 26

ell=37889 expp: 16 ell=86729 expp: 22

ell=38629 expp: 22 ell=86951 expp: 8

ell=40627 expp: 30 ell=87691 expp: 24

ell=40849 expp: 6 ell=91243 expp: 22, 34

ell=42773 expp: 4 ell=91909 expp: 30

ell=45289 expp: 8 ell=94351 expp: 10

ell=45659 expp: 26 ell=94573 expp: 18

ell=48619 expp: 8 ell=95239 expp: 18, 28

ell=48989 expp: 20 ell=96497 expp: 10

ell=51283 expp: 14,16 ell=98347 expp: 28

ell=51431 expp: 20 ell=98939 expp: 30

ell=53281 expp: 16 ell=99679 expp: 10, 22

ell=55057 expp: 20 ell=100049 expp: 14

This table shows the clear independence of the exponents of p-primarity
regarding the choice of non-principal L.

4.5.3. Densities of the exponents of p-primarity. The following program
may be used to see that all exponents of p-primarity are obtained, with
some specific densities, taking sufficientely many primes ℓ ≡ 1 (mod p)
and a L | ℓ (each even n ∈ [2, p − 3], such that τc(L)ωp−n is p-primary for
some new ℓ, is counted in the (n/2)th component of the list L).
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At the beginning of the list, one finds the index i of the prime ℓi considered;
if some index is missing, this means that for this ℓi, Eℓ(p) = ∅. The second
integer gives the number of exponents of p-primarity obtained at this step;
then the third one is ℓi. In some cases, a prime ℓ gives rise to several
exponents of p-primarity, as the following excerpt shows:

2757 1298 1289303 [76,88,78,88, 72,77,81,66,82, 78,85,69,76,72,73,65,72]

2757 1299 1289303 [76,88,78,89*,72,77,81,66,82, 78,85,69,76,72,73,65,72]

2757 1300 1289303 [76,88,78,89, 72,77,81,66,83*,78,85,69,76,72,73,65,72]

2757 1301 1289303 [76,88,78,89, 72,77,81,66,83, 78,85,69,76,72,73,65,73*]

(i) Program:

{p=37;c=lift(znprimroot(p));P=polcyclo(p)+Mod(0,p);X=Mod(x,P);

Nell=0;Npp=0;EL=listcreate;for(j=1,(p-3)/2,listput(EL,0,j));

for(i=1,1000,ell=1+2*i*p;if(isprime(ell)==1,g=znprimroot(ell);Nell=Nell+1;

J=1;for(i=1,c-1,Ji=0;for(k=1,ell-2,kk=znlog(1-g^k,g);e=lift(Mod(kk+i*k,p));

Ji=Ji-X^e);J=J*Ji);d=p-2;LJ=listcreate;Jj=1;for(j=1,p-1,Jj=lift(Jj*J);

listinsert(LJ,Jj,j));for(m=1,(p-3)/2,n=2*m;pn=p-n;Sn=Mod(1,P);

for(a=1,(p-1)/2,an=lift(Mod(a,p)^(n-1));Jan=component(LJ,an);sJan=0;

for(j=0,d,aj=lift(Mod(a*j,p));sJan=sJan+x^(aj)*component(Jan,1+j));

Sn=Sn*sJan);if(Sn==1,Npp=Npp+1;listput(EL,1+component(EL,n/2),n/2);

print(Nell," ",Npp," ",ell," ",EL)))))}

(ii) Results for p = 37. The end of the table for the selected interval is:

3012 1423 1413179 [83,94,84,91,80,80,86,82,92,82,97,76,83,78,85,74,76]

3012 1424 1413179 [83,94,84,91,80,80,86,82,92,83,97,76,83,78,85,74,76]

3014 1425 1413623 [83,95,84,91,80,80,86,82,92,83,97,76,83,78,85,74,76]

3015 1426 1414067 [83,95,84,91,80,80,86,83,92,83,97,76,83,78,85,74,76]

3015 1427 1414067 [83,95,84,91,80,80,86,83,92,83,97,76,83,78,86,74,76]

3027 1428 1419839 [83,95,84,91,80,80,86,83,92,83,98,76,83,78,86,74,76]

3030 1429 1420949 [83,95,84,91,80,80,86,83,92,83,98,76,83,78,86,75,76]

3032 1430 1421911 [83,95,85,91,80,80,86,83,92,83,98,76,83,78,86,75,76]

3033 1431 1422133 [83,95,86,91,80,80,86,83,92,83,98,76,83,78,86,75,76]

3042 1432 1428127 [83,96,86,91,80,80,86,83,92,83,98,76,83,78,86,75,76]

The penultimate column corresponds to the exponent of 37-irregularity
n0 = 32; since there is no counterexamples to Vandiver’s conjecture, when
this component increases, this means that the new ℓ gives rise to a principal
L for which τc(L)ω5 is a 37th power.

(iii) Results for p = 157. For p = 157 (exponents of p-irregularity 62, 110)
much time is necessary and one finds the partial analogous information
after 590 distinct primes ℓ tested (proving also Vandiver’s conjecture for a
lot of times):

581 305 1140449 [9,3,2,6,8,3,1,4,5,9,3,1,3,1,5,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,5,

5,5,5,3,6,1,5,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,6]

583 306 1142333 [9,3,2,6,8,3,1,4,5,9,3,1,3,1,5,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,5,
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5,5,5,3,6,1,5,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,7]

586 307 1150183 [9,3,2,6,8,3,1,4,5,9,3,1,3,1,6,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,5,

5,5,5,3,6,1,5,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,7]

586 308 1150183 [9,3,2,6,8,3,1,4,5,9,3,1,3,1,6,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,5,

5,5,5,3,6,1,6,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,7]

590 309 1161487 [9,3,2,6,8,3,1,4,5,10,3,1,3,1,6,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,5,

5,5,5,3,6,1,6,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,7]

590 310 1161487 [9,3,2,6,8,3,1,4,5,10,3,1,3,1,6,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,6,

5,5,5,3,6,1,6,3,5,4,5,0,2,3,5,7,3,3,3,2,4,4,7,6,6,5,6,1,7,4,7]

590 311 1161487 [9,3,2,6,8,3,1,4,5,10,3,1,3,1,6,3,4,4,

2,2,1,2,5,5,3,2,2,1,5,7,6,2,2,1,5,5,5,4,4,3,3,4,5,4,5,6,

5,5,5,3,6,1,6,3,5,4,5,0,2,3,5,7,3,3,3,2,4,5,7,6,6,5,6,1,7,4,7]

The remaining column of zeros (for n/2 = 58) stops at the following lines:

602 318 1185979 [9,3,2,6,8,3,2,4,6,10,3,1,

3,1,6,4,4,4,2,2,1,2,5,5,3,2,2,1,5,7,6,3,2,1,

5,5,5,4,4,3,3,4,5,4,5,6,5,5,5,3,6,1,6,4,5,4,6,0,

2,3,5,7,3,3,3,3,4,5,7,6,6,5,6,1,7,4,7]

602 319 1185979 [9,3,2,6,8,3,2,4,6,10,3,1,

3,1,6,4,4,4,2,2,1,2,5,5,3,2,2,1,5,7,6,3,2,1,

5,5,5,4,4,3,3,4,5,4,5,6,5,5,5,3,6,1,6,4,5,4,6,1,

2,3,5,7,3,3,3,3,4,5,7,6,6,5,6,1,7,4,7]

602 320 1185979 [9,3,2,6,8,3,2,4,6,10,3,1,

3,1,6,4,4,4,2,2,1,2,5,5,3,2,2,1,5,7,6,3,2,1,

5,5,5,4,4,3,3,4,5,4,5,6,5,5,5,3,6,1,6,4,5,4,6,1,

2,4,5,7,3,3,3,3,4,5,7,6,6,5,6,1,7,4,7]

One sees that these numbers seem to depend on the order
p− 1

gcd (p− 1, n)
of ωn,

but this needs to be clarified taking a great lot of primes ℓ. The complete
tables for p = 37 and p = 157 (40 pages) may be downloaded from:
https://www.dropbox.com/s/vs5eq6ornqx5922/vandiver.97.157.pdf?dl=0

4.5.4. Link with the non-p-rationality. We return to the case p = 37 and
n0 = 32. From the reflection relation (1), we see that ω32 is a character of
order 9, hence a character of the real subfield k9 of degree 9 which is such
that Tk9 ≃ Z/37Z; so, k9 admits a cyclic 37-ramified extension of degree
37 which is not unramified. To verify, we use the program [7, Program I]
simplified for real fields, which gives #Tk9 = 37 (take nt large enough):

{P=polsubcyclo(37,9);K=bnfinit(P,1);p=37;nt=6;Kpn=bnrinit(K,p^nt);

Hpn=component(component(Kpn,5),2);L=listcreate;e=component(matsize(Hpn),2);

R=0;for(k=1,e,c=component(Hpn,e-k+1);if(Mod(c,p)==0,R=R+1;

listinsert(L,p^valuation(c,p),1)));print("Structure of T: ",L);

if(R>1,print("rk(T)=",R-1," K is not ",p,"-rational"));

if(R==1,print("rk(T)=",R-1," K is ",p,"-rational"))}

https://www.dropbox.com/s/vs5eq6ornqx5922/vandiver.97.157.pdf?dl=0
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37-rank of the compositum of the Z_37-extensions: 1

Structure of the 37-ray class group: List([69343957, 37])

rk(T)=1 K is not 37-rational

We find here another interpretation of the reflection theorem since we have
the typical formula (for totally real number fields) #T+ = #Cℓ+ · #R, where
the p-group R is the normalized p-adic regulator of K+ [10, Proposition
5.2]; thus the above data shows that the relation #T+ = 37 comes from
#R = 37.

Remark 4.7. We have the analytic formula #Cℓχ∗

0
= #(Eχ∗

0
/〈ηχ∗

0
〉), where η is

a suitable cyclotomic unit; so a classical method (explained in [18, Corollary
8.19] and applied in [2, 3]) consists in finding a prime ℓ ≡ 1 (mod p) such
that ηχ∗

0
is not a local pth power at ℓ proving Vandiver’s conjecture at χ∗

0;
so when we find that R 6= 1, this means that ηχ∗

0
generates Eχ∗

0
and is a

local pth power at p.

5. Heuristics

5.1. Standard probabilities. We may conjecture that, for p fixed, the
sets Eℓ(p) of exponents of p-primarity of primes ℓ ≡ 1 (mod p), are random
with the same behavior as for the set E0(p) of exponents of p-irregularity
of K (see in [18], after Theorem 5.17, the comments and the statistical
computations). This should imply that, for p fixed, Eℓ(p) 6= ∅ for infinitely
many ℓ.

More precisely, if we assume, as in Washington’s book [18], that in terms

of probabilities one has for p and ℓ fixed (where N := p−3
2 is the number of

even characters χ 6= 1):

Prob(#E0(p) = j) =
(

N
j

)

·
(

1− 1
p

)N−j ·
(

1
p

)j
,

Prob(#Eℓ(p) = k) =
(N
k

)

·
(

1− 1
p

)N−k ·
(

1
p

)k
,

the probability of a non-empty intersection E0(p)∩Eℓ(p), for j ∈ [0, N ] and

k ∈ [0, N ] fixed, is 1 − (N − k)! · (N − j)!

N ! · (N − k − j)!
. So, a first approximation of the

whole probability for E0(p) ∩ Eℓ(p) 6= ∅ is:

(7)
∑

j, k≥0

(N
j

)(N
k

)

·
(

1− 1
p

)2N−j−k ·
(

1
p

)j+k ·
(

1− (N−k)!·(N−j)!
N !·(N−k−j)!

)

.

Some computations show that this expression is around 1
2 p , which does not

allow to conclude easily. The following program shows a rapid convergence
obtained still for t = 18 (i.e., j and k independent in [0, t]):

{p=1000003;N=(p-3)/2;for(t=1,30,S=0.0;for(k=0,t,Pk=binomial(N,k)*

(1-1/p)^(N-k)*(1/p)^k;for(j=0,t,S=S+Pk*binomial(N,j)*(1-1/p)^(N-j)*(1/p)^j*

(1-factorial(N-k)*factorial(N-j)/(factorial(N)*factorial(N-k-j)))));

print(t," ",S," ",0.5/p," ",0.5/p-S))}
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S = 4.9999687501 × 10−7, 1

2p
= 4.9999850000 × 10−7, 1

2p
− S = 1.6249892292 × 10−12.

5.2. New heuristics. There are at least two reasons to say that the generic
probability 1

p must be replaced by a much lower probability:

(i) For some even characters χ = ωn =: ωp−1−h, χ∗ = ωh+1, h = 2, 4, . . .,
when p ≫h 0, one may prove that Cℓχ = 1 (see [5, 15, 17] among other
authors applying the same approach via K-theory); the order of ωn is

p− 1

gcd (p− 1, n)
which only concerns subfields of K+ of great degree since

gcd (p− 1, n) = gcd (p − 1, h) giving the order of ωn equal to:

p− 1

gcd (p− 1, h)
=

p− 1

h′
, h′ | h.

(see the data obtained § 4.5.3 for p = 37 and 157).

In another direction, for the even χ of small orders, Cℓχ may be trivial
because of the “archimedean” order of magnitude of #Cℓ+ (which is proved
for the quadratic case when p ≡ 1 (mod 4), the cubic case when p ≡ 1
(mod 3), . . . ). Moreover, we have the ǫ-conjecture of [4], for p-class groups,
that we state for the real abelian fields kd of fixed degree d, of discriminant
D = pd−1, when p increases:

For all ǫ > 0 there exists Cǫ,p such that log(#Cℓkd) ≤ log(Cǫ,p) + ǫ · log(p),

which would give Cℓkd = 1 for log(p) >
log(Cǫ,p)

1− ǫ
and any ǫ < 1.

(ii) The previous probabilities (7) assume that when ℓ varies, the sets Eℓ(p)
are random and independent, which is not the case when p is irregular at
some χ∗

0 = ωp−n0 (for even χ0 = ωn0) as we shall see; to simplify we assume
the Hypothesis 1.2 giving bc(χ

∗
0) = p u, where u is a p-adic unit.

Indeed, if Lχ∗

0
generates Cℓχ∗

0
≃ Z/pZ, for any L′

χ∗

0
one has:

L′
χ∗

0
= (zχ∗

0
) · Lr

χ∗

0
, r ∈ Z/pZ, z ∈ K×,

then L′pu
χ∗

0
= L

rpu
χ∗

0
· (zpuχ∗

0
), giving, since Eχ∗

0
= 1:

τc(L
′)χ∗

0
= zpuχ∗

0
· τc(L)rχ∗

0
≡ τc(L)

r
χ∗

0
(mod p).

Fix ℓ and L | ℓ, then put:

τc(L)χ∗

0
= 1 + β0 ·̟p−n0 ;

then β0 only depends on χ∗
0. From Proposition 2.4, β0 is invertible modulo

̟ if and only if τc(L)χ∗

0
is non-p-primary, or is not invertible if and only

if τc(L)χ∗

0
is p-primary. This relation gives, whatever L′

χ∗

0
, but under the

non-p-principality of Lχ∗

0
:

(8) τc(L
′)χ∗

0
= 1 + r · β′0 ·̟p−n0, β′0 ≡ β0 (mod ̟), r ∈ Z/pZ.
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Contrary to the classical idea that the values of β0 modulo ̟ follow stan-
dard probabilities 1

p , the heuristic that we propose is the following:

For each even character χ 6= 1, the congruential values, at χ∗ = ω χ−1,
of the Gauss sums (more precisely of the τc(L)χ∗ = (τ(ψ)c−σc)χ∗), are
independent of the p-class of L | ℓ and are uniformly distributed, when
ℓ ≡ 1 (mod p) varies.

Because of the uniform distribution of the ideals L in the p-classes (density
theorems), we must examine two cases for any even χ when there exists
χ0 = ωn0 such that Cℓχ∗

0
≃ Z/pZ:

(a) χ 6= χ0 and Cℓχ∗ = 1. The numerical experiments show that the
τc(L

′)χ∗ , when L′ varies, are of the form τc(L
′)χ∗ ≡ 1 + β′ ·̟p−n (mod p),

with uniformly random β′ (mod ̟) in Z/pZ (usual heuristics and proba-
bilities 1

p).

(b) χ = χ0 and Cℓχ∗

0
≃ Z/pZ. If τc(L)χ∗

0
is p-primary for some fixed

non-principal Lχ∗

0
, then from (8) all the τc(L

′)χ∗

0
are p-primary, whatever

the class of L′
χ∗

0
(p possibilities) because β0 ≡ 0 (mod ̟). So, n0 is always

an exponent of p-primarity; in other words E0(p) ∩ Eℓ(p) 6= ∅ for all prime
ℓ ≡ 1 (mod p).

Thus, to have the same density 1
p of p-primary τc(L

′)χ∗

0
(as in the p-principal

case (a)), β0 ≡ 0 (mod ̟) must occur p times less, giving the probability
1
p2 instead of 1

p ; it is even possible that such a circumstance is of proba-

bility 0 depending on more precise properties of Gauss sums. Otherwise,
the behaviour of the Gauss sums should be excessively disturbed and in an
algorithmic framework, we suggest that the congruential properties of the
Gauss sums “determine” the properties of the p-class group of K instead
of the contrary.

Precisely, under the assumption τc(L)χ∗

0
p-primary, the corresponding com-

ponent n0 of the list counting the p-primarities, increases at each step. For
instance, if for p = 37 the exponent 32 of 37-irregularity was an exponent of
p-primarity, then the last line of the data § 4.5.3 would be the awful result
about the 16th component:

L=[83,96,86,91,80,80,86,83,92,83,98,76,83,78,86, {75+1432}, 76]

The quotient
1432

75
looks like

p

2
; this is in accordance with the previous

heuristics and would give a 16th component:

x0(ℓ) ≈ x(ℓ) ·
(

1 +
p

2

)

, as ℓ→ ∞,

where x(ℓ) is the mean of the other components (very approximatively

equal to
2N

p
where N is the number of exponents of p-primarity obtained
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in the selected interval). Let Nℓ be the number of prime numbers ℓ tested;

then
Nℓ

N
seems to be O(1) giving:

x(ℓ) ≈ 2

p
·Nℓ · (1 +O(1))

and the pathological component:

x0(ℓ) ≈ Nℓ · (1 +O(1)).

6. Conclusion

Under these experiments and heuristics, the existence of disjoint sets Eℓ(p)
and E0(p), or perhaps the existence of ℓ such that Eℓ(p) = ∅ (see the nu-
merical results § 4.4.2), may occur conjecturally for all p ≫ 0 and possibly
for all p.

Note that the “algoritm” associated to the test of Vandiver’s conjecture is
the passage from ℓ to the next ℓ′ in the sequence of totally split primes, the
crucial step being the computation of the Jacobi sums:

Ji = −
∑

x
ζ lg(x)+lg(1−x)
p & J ′

i = −
∑

x′

ζ lg
′(x′)+lg′(1−x′)

p ,

where lg and lg′ are the discrete logarithms for ℓ and ℓ′, respectively. Since
they have, a priori, no “algebraic link”, this suggests randomness and ap-
plies for infinitely many primes.

Of course, there are two constraints: the fact that each Jacobi sum is of
module ℓ and that the p-classes of the associated ideals L (finite in number)
are all represented with standard densities; but the congruential properties
of Gauss sums do not follow any law (in our opinion), what explains that
the negation of the above properties, for at least one prime p, implies a very
tricky complexity of the algoritms, as the fact that, for all ℓ ≡ 1 (mod p),
Eℓ(p) ∩ E0(p) 6= ∅ (or the weaker property Eℓ(p) 6= ∅ for all ℓ ≡ 1 (mod p)).

Which gives again an example of p-adic problem analogous to those we have
analysed for various conjectures: Greenberg’s conjectures, p-rationalities of
a number field, existence of a p-adic Brauer–Siegel theorem governing many
number theory problems (see [11] and its bibliography).

In other words, the truth of Vandiver’s conjecture for “small” primes p
may be a non-theoretical coincidence and may come, for p ≫ 0, from

Borel–Cantelli heuristics on properties of probabilities much less than O(1)
p2

.

Possibly, there is an universal obstruction for the above phenomena on the
sets Eℓ(p) comming from Gauss sums theory.

To be very optimistic (but not very rigorous), one can perhaps say that
Vandiver’s conjecture is true because it has been verified for sufficiently
many prime numbers [2, 3]. In a more serious statement, we may conjecture
that Vandiver’s conjecture holds for almost all primes, the precise finite
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cardinality of the set of counterexamples (∅ or not) being (in our opinion)
not of algebraic nature nor enlightened by Iwasawa’s theory, is perhaps
accessible by the way of analytical techniques or depends on an hypothetic
“complexity theory” in number theory.
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