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ABSTRACT

Context. The development of precise numerical integrations of the motion of the planets, taking into account the most recent obser-
vations, lead us to improve the two families of analytical planetary theories built in the Institut de mécanique céleste et de calcul des
éphémérides (IMCCE), the Variations Séculaires des Orbites Planétaires (VSOP) and the Theory of the Outer Planets (TOP) theories.
Aims. We have built the solutions VSOP2010 and TOP2010 fitted to the Jet Propulsion Laboratory (JPL) numerical integration DE405
and the solutions VSOP2013 and TOP2013 fitted to the European recent numerical integration INPOP10a. This paper specifically
considers VSOP2013 and TOP2013.
Methods. We have improved the construction of VSOP by analytically computing the pertubations due to the asteroids and to Pluto.
We have increased the precision of the VSOP solutions of Jupiter and Saturn by using TOP solutions. We have also improved the
construction of TOP by computing the perturbations due to the telluric planets from VSOP solutions. Moreover, TOP contains a
solution of the motion of the Pluto-Charon barycenter.
Results. From 1890 to 2000, the precision of VSOP2013 goes from a few 0.01 mas (planets except Mars and Uranus) up to 0.7 mas
(Mars and Uranus). Compared to the previous solution (VSOP2000), this represents an improvement of a factor of 2 to 24, depending
on the planet. From −4000 to 8000, the precision is of a few 0.1′′ for the telluric planets (1.6′′ for Mars), i.e. an improvement of about
a factor of 5 compared to VSOP2000. The TOP2013 solution is the best for the motion of the major planets from −4000 to 8000. Its
precision is of a few 0.1′′ for the four planets, i.e. a gain between 1.5 and 15, depending on the planet compared to VSOP2013. The
precision of the theory of Pluto remains valid up to the time span from 0 to 4000. The VSOP2013 and TOP2013 data are available on
the WEB server of the IMCCE.

Key words. celestial mechanics – ephemerides

1. Introduction

For the last 30 years, two kinds of analytical planetary the-
ories1 have been built in the Institut de mécanique céleste et
de calcul des éphémérides (IMCCE): the Variations Séculaires
des Orbites Planétaires (VSOP) theories, essentially issued
from the research works of P. Bretagnon, and the Theory
of Outer Planets (TOP) theories, derived from the works of
J.-L. Simon. The VSOP theories are solutions for the motion
of the eight planets in the solar system; they are very precise
over a time span of about 1000 years and the ephemerides pub-
lished by the IMCCE from 1984 to 2006 were derived from
VSOP. The TOP theories are solutions for the motion of the
four major planets and are accurate over several thousands of
years. Currently, the ephemerides of the planets are obtained
mainly from very precise numerical integrations fitted to the
most recent observations: the European ephemerides Intégration
Numérique Planétaire de l’Observatoire de Paris (INPOP,
Fienga et al. 2008, 2009, 2011), the American ephemerides
Development Ephemeris (DE; e.g. Standish 1998; or more

? VSOP2013 and TOP2013 are available by ftp on:
ftp.imcce.fr/pub/ephem/planets/vsop2013 and
ftp.imcce.fr/pub/ephem/planets/top2013.
1 The word “theory” is a traditional term used in celestial mechanics
for the analytical solution of the equations of the motion of solar system
bodies.

recently Folkner et al. 2009; Folkner 2010) and the Russian
ephemerides Ephemerides of Planets and the Moon (EPM;
Pitjeva 2005, 2010). Nevertheless, the construction of analytical
planetary theories remains useful: (i) even if the aim of analyt-
ical theories is not to compete with numerical integrations for
space engineering, they can provide precise ephemerides for the
concern of most astronomers; (ii) their precision slowly decrease
with time and they remain accurate over several thousand years;
(iii) they allow a precise analysis of the perturbations; (iv) they
are useful for some problems such as the study of the Earth’s
rotation; and (v) from these theories it is possible to obtain com-
pact solutions of good precision.

We first built the analytical solutions VSOP2010 and
TOP2010, fitted to DE405 (Standish 1998). We then built
VSOP2013 and TOP2013, fitted to INPOP10a (Fienga et al.
2011). This paper particularly deals with VSOP2013 and
TOP2013. After giving the common characteristics of these two
kinds of solutions in Sect. 2, we will present the construction of
the VSOP theories (Sect. 3) and of the TOP theories (Sect. 4). A
method to build an analytical solution of the motion of Pluto is
given in Sect. 5. Perturbations by asteroids are studied in Sect. 6.
Lastly, the results are presented and discussed in Sect. 7.

2. Common characteristics

The two solutions VSOP and TOP have several characteristics
in common that are given here.
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2.1. Variables and equations

– The variables used are the elliptic variables a, λ, k = e cos$,
h = e sin$, q = sin i/2 cos Ω, and p = sin i/2 sin Ω where
a is the semi-major axis, λ the mean longitude, e the eccen-
tricity of the orbit, $ the longitude of perihelion, i the in-
clination to the ecliptic J2000, and Ω the longitude of the
ascending node.

– The equations of the motion of the planets are the Lagrange
differential equations (for the computing of the second mem-
bers of the Lagrange equations, see Chapront et al. 1975).

2.2. Form of the solutions

There are two kinds of analytical planetary theories: general
planetary theories and classical planetary theories. In general
planetary theories, the variables are developed under the form
of Fourier series, with arguments being linear combinations
of short-period arguments (mean longitudes of the planets)
and long-period arguments (longitudes of nodes and perihelia).
Developing the long-period arguments with respect to time, we
obtain the classical planetary theories under the form of Poisson
series, with arguments being linear combinations of short-period
arguments. The VSOP and TOP solutions are classical planetary
theories. For a planet j, we note that x j are the elements other
than mean longitudes λ j; x j and λ j have the form

x j = x0
j + x1

j t + ... + xp
j t

p + X0
j + tX1

j + .... + tpXp
j (1)

λ j = λ0
j + n jt + l2j t

2 + ... + lp
j t

p + L0
j + tL1

j + .... + tpLp
j ,

where t is the time (the timescale will be explained in the follow-
ing sections), x0

j , ...x
p
j and λ0

j , n j, ...l
p
j are numerical coefficients,

and Xq
j and Lq

j are Fourier series of short-period arguments the
form of which will be explained in the following sections.

2.3. Integration of the equations

– Results of the integration are obtained in the following way.
First, the perturbations are built order by order up to the third
order with respect to the masses. An iterative method is then
used for the following computations.

– The integration constants x0
j and λ0

j and the mean mo-
tions n j are determinated by fitting, over the time span from
1890 to 2000, the solutions to the numerical integrations
DE405 (Standish 1998) for the solutions VSOP2010 and
TOP2010 or INPOP10a (Fienga et al. 2011) for VSOP2013
and TOP2013.
We note that the numerical formulae given in the follow-
ing sections will generally relate to the solutions fitted to
INPOP10a.

3. The VSOP theories

The VSOP theories are analytical theories for the eight plan-
ets: Mercury, Venus, the Earth-Moon barycenter (EMB), Mars,
Jupiter, Saturn, Uranus, and Neptune.

3.1. Historical review

The first VSOP solutions were:

– VSOP82 (Bretagnon 1982). In this solution, the itera-
tive method was developed up to the fifth order with re-
spect to the masses. The relativity was introduced by the

Schwarzschild problem and the perturbations of the Earth-
Moon barycenter by the Moon were taken into account. So,
the arguments of the Poisson series were the mean mean lon-
gitudes of the planets and the Delaunay arguments of the
Moon D, F, and L. The mean mean longitudes are linear
functions of time defined for each planet j by

λ̄ j = λ0
j + n jt, (2)

where n j is the mean motion of the planet j. VSOP82 was fit-
ted to the numerical integration of the JPL, DE200 (Standish
1982). The timescale is barycentric dynamical time (TDB)
obtained from Fairhead & Bretagnon (1990).

– VSOP87 (Bretagnon & Francou 1988). This solution was
an extension of VSOP82, so this solution was also fitted
to DE200. The solutions were expressed with elliptic ele-
ments and also with rectangular (X, Y , Z) or spherical (lon-
gitude, latitude, and radius vector) variables. The reference
frames were the ecliptic and equinox J2000 or the ecliptic
and equinox of the date. The coordinates were heliocentric
or barycentric.
VSOP82 and VSOP87 were used to compute the
ephemerides of the IMCCE up to the construction of the
INPOP numerical integrations (Fienga et al. 2009, 2011).

– VSOP2000 (Moisson & Bretagnon 2001). This solution was
an improvement of VSOP82. The iterative method was de-
veloped up to the eighth order of the masses. The perturba-
tions by the five big asteroids Ceres, Pallas, Vesta, Iris, and
Bamberga were introduced during the iterations. Second or-
der perturbations by the Moon on Mercury, Venus, the Earth-
Moon barycenter, and Mars were computed. Relativistic
corrections were also introduced in the iterations. The
arguments of the series were linear combinations of 16 an-
gles, the mean mean longitudes of the eight major planets
and of the five big asteroids, and the three Delaunay angles
of the Moon. The solution was fitted to the numerical inte-
gration of the JPL DE403 (Standish et al. 1995). This so-
lution was 10 to 100 times more precise than VSOP82 and
VSOP87.

3.2. New VSOP theories

3.2.1. The works of P. Bretagnon

Starting in VSOP2000, Bretagnon performed 15 additional itera-
tions with a numerical precision 10 times better than VSOP2000,
with the following characteristics:

– The Poisson series were developed up to the 12th degree with
respect to time.

– The eight major planets and the five big asteroids had their
orbits analytically computed during the same process.

– Perturbations of the Moon issued from ELP2000
(Chapront-Touze & Chapront 1983) on the eight major
planets were introduced during the iteration process.

– Relativistic corrections were introduced in the iterations.
– The solution was fitted to DE403 (Standish et al. 1995) us-

ing the inertial mean ecliptic of J2000 defined by Chapront
et al. (2002). Starting from the equatorial rectangular vari-
ables (x, y, z)equ given by DE403, we computed the ecliptic
rectangular variables (x, y, z)ecl byxy
z


ecl

=

1 0 0
0 cos ε sin ε
0 − sin ε cos ε


 cos φ sin φ 0
− sin φ cos φ 0

0 0 1


xy
z


equ

, (3)
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where ε and φ are issued from Chapront et al. (2002) as

ε = 23◦26′21′′.40 928 and φ = − 0.05294′′. (4)

From these ecliptic rectangular coordinates, we computed el-
liptic elements issued from DE403 and we computed the in-
tegration constants by fitting elliptic elements of VSOP to
the elements issued from DE403 over the time span from
1890 to 2000. We note that the inertial mean ecliptic J2000
that was used was very close to but not exactly the same as
the dynamic ecliptic of VSOP. So, the integration constants
of the variables q and p of the EMB were very small but not
equal to zero.

3.2.2. The construction of the VSOP2010 and VSOP2013
solutions

Unfortunately, Bretagnon did not have time to complete his
work. We took his work up again introducing various changes
and supplements

– The integration constants have been computed, first by fit-
ting VSOP2010 to the numerical integration of the JPL
DE405, then to different versions of the INPOP numerical in-
tegrations INPOP06 (Fienga et al. 2008), INPOP08 (Fienga
et al. 2009), and finally INPOP10a (Fienga et al. 2011) for
VSOP2013. These fits were done over the time span from
1890 to 2000.

– We have computed the perturbations due to the J2 of the Sun
on the planets Mercury, Venus, EMB, and Mars. The values
used for the J2 of the Sun are 2 × 10−7 for DE405 and 2.4 ×
10−7 for INPOP10a.

– We have introduced the perturbations induced by the aster-
oids as explained in Sect. 6.

– We have added the perturbations of Pluto on the outer planets
in the form of Poisson series as explained in Sect. 5.4.5.

– Starting from the TOP solutions, we have improved the pre-
cision of the theories of Jupiter and Saturn over a large time
span as explained in Sect. 4.3.

– The arguments of the series are linear combinations of 17 an-
gles: the 16 angles of VSOP2000 and the linear function of
time µ defined below.

– The timescale is TDB and the relationship with terrestrial
time (TT) depends on the ephemeris. For DE405, one can use
TE405 (Irwin & Fukushima 1999). For INPOP10a, the trans-
formation between TT and TDB is numerically integrated
with the equations of the motion of the bodies, leading to a
4D-ephemeris (see Fienga et al. 2009).

– The solutions are fitted with DE405 or INPOP10a as ex-
plained in Sect. 3.2.1. For the fit to DE405, we use the values
given by Chapront et al. (2002)

ε = 23◦26′21.′′40 960 and φ = − 0.05028′′. (5)

The fit to INPOP10a is made starting from the equatorial
rectangular coordinates of INPOP10a and using the angles
given in Eq. (5) to compute the ecliptic rectangular coordi-
nates, then the elliptic elements. The comparison, from 1890
to 2000, with the elliptic elements issued from DE405 gives
small corrections ∆q and ∆p for p and q of EMB. From these
corrections, we deduce the corrections ∆ε and ∆φ by

∆ε = 2∆q ; ∆φ =
2∆p
sin ε
· (6)

We finally found the values corresponding to INPOP10a:

ε = 23◦26′21.′′41 136 and φ = − 0.05188′′. (7)

Table 1. GM of the Sun, the planets, and the five big asteroids used for
the construction of INPOP10a.

Celestial body GM (m3s−2)

Sun 1.327 124 4006 × 1020

Mercury 2.203 208 0486×1013

Venus 3.248 585 9883×1014

EMB 4.035 032 4500×1014

Mars 4.282 831 4258×1013

Vesta 1.766 887 8029×1010

Iris 1.031 426 8890×109

Bamberga 6.227 510 9355×108

Ceres 6.314 933 5465×1010

Pallas 1.478 332 7322×1010

Jupiter 1.267 127 6483×1017

Saturn 3.794 062 6061×1016

Uranus 5.794 549 0071×1015

Neptune 6.836 534 0639×1015

Pluto 9.816 008 8771×1011

We note that if, starting from the values in Eq. (5), we ap-
ply this method replacing INPOP10a by DE403, we find
ε = 23◦26′21.′′40 926 and φ = − 0.05296′′, values very close
to the Chapront values given in Eq. (4), that validates our
method. The values found in Eq. (7) are consistent with the
ICRF (International Celestial Reference Frame) definition.
Indeed, by the fit of INPOP10a to planet positions obtained
by VLBI (Very Long Baseline Interferometry) tracking of
spacecraft, INPOP10a is directly tied to ICRF at the preci-
sion of these observations, about a few mas (Fienga et al.
2011). In consequence, VSOP2013 being fitted to INPOP10a
can then be seen as linked to ICRF by means of INPOP10a.

We use the systems of planetary masses of DE405 for
VSOP2010 and of INPOP10a for VSOP2013. We note G the
newtonian gravitational constant and M the mass of a celestial
body. Table 1 gives the GM of the Sun, the planets, and the five
big asteroids used for the construction of INPOP10a.

4. The TOP theories

The TOP (Theory of the Outer Planets) theories are analytical
theories for the motion of the four large planets Jupiter, Saturn,
Uranus, and Neptune.

4.1. Historical review

The first TOP solutions were:

– TOP82 (Simon 1983). In this solution, the perturbations
were Poisson series of the mean mean longitudes of the four
large Planets. A supplementary input was brought to the the-
ory for the couple Jupiter-Saturn by computing, with an iter-
ative method and using harmonic analysis, the mutual pertur-
bations Jupiter-Saturn up to the seventh order with respect to
the masses. The relativity was introduced as in VSOP82. The
solution also contained the perturbations of the four large
planets by the telluric planets at the third order of masses
from VSOP82. TOP82 was fitted to DE200.

– An extension of TOP82: JASON84 (Jupiter And Saturn
Orbits from Neolithic). JASON84 (Simon & Bretagnon
1984) was an extension of TOP82 where the mutual pertur-
bations Jupiter-Saturn were computed up to the 20th order

A49, page 3 of 12
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of masses. Before the construction of the new TOP solu-
tions, JASON84 was the most precise theory of the mo-
tion of Jupiter and Saturn over the time span [J2000-6000,
J2000+6000] and was used to build the tables for the motion
of those planets in the book Planetary Programs and Tables
from −4000 to +2800 (Bretagnon & Simon 1986).

4.2. New TOP theories

The aim of TOP is not to compete with VSOP over a short time
span but to build very precise theories of the four large planets
over several thousands of years. For that purpose we use a com-
pletely different representation.

4.2.1. The representation

The solutions are also Poisson series of the form of Eqs. (1), but
Xq

j and Lq
j are Fourier series of only one argument µ

Xq
j /L

q
j =
∑

r

Ar cos rµ + Br sin rµ, (8)

where r is a positive integer. The maximum value of r
is 219(524 288) and µ is linked to the mean motions of Jupiter
and Saturn n5 and n6 by:

µ = (n5 − n6)t/880 = 0.359 536 23 t, (9)

where t is measured in thousands of years from J2000 and with
the values of n5 and n6 given in Table 6. The period of µ is
about 17 485 years. The mean motions of the four major planets
are linked to µ by relations of the form

n5t = 1473µ + σ5t = 1473µ + 0.094 095 55t (10)
n6t = 593µ + σ6t = 593µ + 0.094 095 55t
n7t = 208µ + σ7t = 208µ − 0.001 873 89t
n8t = 106µ + σ8t = 106µ + 0.022 132 13t.

This representation was choosen because perturbations are more
convergent using this form than the classical form of Poisson se-
ries of the mean mean longitudes for Jupiter and Saturn because
the choice of µ allows us to take in account an important part of
the development with respect to the time of the long periods of a
general theory of the couple Jupiter-Saturn (Simon et al. 1992).
For Uranus and Neptune, the convergence is the same as in the
classical form.

4.2.2. Construction of the solution

The solution is computed by the iterative method of Simon &
Joutel (1988). The Lagrange equations are dx

dt = F(µ, t), with
F(µ, ti) computed by harmonical analysis, for 13 values of the
time t0, t0 + ∆t, t0 −∆t, ..., t0 + 6∆t, t0 − 6∆t, t0 corresponding to
J2000 and ∆t = 1200 yrs. After interpolation and integration, the
solution has the form of Eqs. (1) with p = 12. The integration
constants have been computed by fitting TOP2010 to DE405 and
TOP2013 to INPOP10a, over the time span from 1890 to 2000.

4.2.3. Perturbations by the telluric planets

For TOP2010, we used the perturbations by the telluric planets
developed up to the third order of the masses extracted from

VSOP82. They are written as µ series and are introduced in
the iterations. For TOP2013, we obtain these perturbations by
computing the differences between the last iteration of the itera-
tive process used for VSOP2013 and the last iteration computed
without taking in account the telluric planets. This method gives
a better estimation of the perturbations by the telluric planets as
will be seen in Sect. 7.3.2.

4.2.4. Heliocentric spherical and rectangular variables

It is easy to compute by harmonic analysis the heliocentric
spherical variables (longitude, latitude, radius vector) and the
heliocentric rectangular variables (X, Y , Z) from the elliptic el-
ements, under the form of Poisson series of µ. These variables
have been introduced in the TOP solutions.

4.3. Amelioration of VSOP theories using TOP theories

The good convergence of the mutual perturbations Jupiter-
Saturn in the TOP solution can be used to improve the pertur-
bations corresponding to some periodic terms in the VSOP rep-
resentation of the semi-major axis and the mean longitude of
these two planets. As an example of how the VSOP improve-
ment is obtained for the Jupiter mean longitude development we
take the argument 4λ5−10λ6.

4.3.1. VSOP and TOP developments

In VSOP, this development has the form

Lv =
∑

p = 0,11

tp[sp
4−10 sin(4λ5−10λ6)+cp

4−10 cos(4λ5−10λ6)]. (11)

This argument corresponds to the TOP argument 38µ. The TOP
development has the form

Lt =
∑

q = 0,12

tq[sq
38 sin(38µ) + cq

38 cos(38µ)]. (12)

The values of sp
4−10 and cp

4−10 are given in Cols. 2 and 3 of
Table 2, and the values of sq

38 and cq
38 in Cols. 4 and 5. In Table 2,

to estimate the amplitude of the Poisson terms for t = ±6000 yrs,
the coefficients are given in arcseconds for the periodic terms and
in arseconds per 6000 years for the Poisson terms.

4.3.2. TOP developed in VSOP form

From Eqs. (10), we find

38µ = −(4λ5 − 10λ6) − 0.564 573 30 t, (13)

where t is measured in thousands of years from J2000.
Substituting the value of 38µ given by Eq. (13) in Eq. (12),
we obtain a Poisson development issued from TOP but under
the VSOP representation. Up to t20 this development has the
form

Ltv =
∑

r = 0,20

tr[s′r4−10 sin(4λ5−10λ6)+c′r4−10 cos(4λ5−10λ6)]; (14)

the values of s′r4−10 and c′r4−10 are given in Cols. 6 and 7 of Table 2.
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Table 2. Poisson developments of the mean longitude of Jupiter for the argument 4λ5 − 10λ6 for VSOP2013, TOP2013, TOP2013 in VSOP form,
and corrections to VSOP2013.

VSOP2013 TOP2013 TOP2013 in VSOP form Corrections to VSOP2013
sp

4−10 cp
4−10 sq

38 cq
38 s′r4−10 c′r4−10 δsr

4−10 δcr
4−10

t0 10.370 3.476 −10.556 2.860 10.370 3.476 0 0
t −22.920 47.143 10.418 12.650 −22.919 47.144 0 0
t2 −106.469 −70.446 7.007 −12.358 −106.471 −70.444 0 0
t3 138.263 −156.792 −8.624 0.062 138.254 −156.791 0 0
t4 166.715 197.399 1.854 3.923 166.699 197.380 0 0
t5 −220.086 133.030 1.223 −1.711 −220.056 132.897 0 0
t6 −78.488 −200.287 −0.726 −0.218 −78.421 −200.435 0 0
t7 153.283 −29.450 −0.021 0.294 153.211 −29.432 0 0
t8 −0.706 100.680 0.066 0.026 −0.551 100.738 0 0
t9 −56.991 −12.332 0.025 −0.031 −57.910 −12.219 −0.919 0.113
t10 11.877 −26.174 −0.012 −0.021 12.823 −29.575 0.945 −3.401
t11 −0.018 −0.011 −0.006 0.005 13.666 9.282 13.685 9.292
t12 −0.002 −0.003 −5.526 5.856 −5.526 5.856
t13 −2.405 −2.866 −2.405 −2.866
t14 1.372 −0.983 1.372 −0.983
t15 0.411 0.607 0.411 0.607
t16 −0.253 0.175 −0.253 0.175
t17 −0.074 −0.100 −0.074 −0.100
t18 0.038 −0.030 0.038 −0.030
t19 0.011 0.013 0.011 0.013
t20 −0.004 0.004 −0.004 0.004

Notes. Units are in arcseconds for the periodic terms and arcseconds per 6000 years for the Poisson terms.

4.3.3. Comparison between these developments

The comparison between the coefficients of the Cols. 2 and 3
of Table 2 with the coefficients of the Cols. 4 and 5 shows
the best convergence of the TOP representation. For instance,
for t = ±6000 yrs the amplitude of the Poisson terms in t9 is

about 58′′,
√

(s9
4−10)2 + (c9

4−10)2, for VSOP2013 and only 0.04′′,√
(s9

38)2 + (c9
38)2), for TOP2013. The comparison between the

coefficients of the Cols. 2 and 3 with the coefficients of the
Cols. 6 and 7 shows the inaccuracy of the VSOP representation
from Poisson terms in t11.

4.3.4. Correction of the VSOP development

The VSOP and TOP theories have been built in different ways
and their integration constants are not the same. So, the change
of all VSOP coefficients of Eq. (11) by the coefficients of
Eq. (13) does not give good results. After some tests, we have
estimated that the best correction for this argument is to add to
the VSOP coefficients the differences between the coefficients
of Eq. (13) and the coefficients of Eq. (11) starting from Poisson
terms in t9. So, these corrections have the form

δLv =
∑

r = 9,20

tr[δsr
4−10 sin(4λ5 − 10λ6) + δcr

4−10 cos(4λ5 − 10λ6)].

(15)

The values of δsr
4−10 and δcr

4−10 are given in Cols. 8 and 9 of
Table 2.

4.3.5. Application of the method

This method has been applied to the Poisson developments of the
semi-major axis and the mean longitude of Jupiter and Saturn for

the 12 arguments

4λ5 − 11λ6 + 3λ7 (7 µ) 2λ5 − 6λ6 + 3λ7 (12µ) (16)
2λ5 − 5λ6 (19µ) 6λ5 − 16λ6 + 3λ7 (26µ)
4λ5 − 10λ6 (38µ) 8λ5 − 21λ6 + 3λ7 (45µ)
6λ5 − 15λ6 (57µ) 8λ5 − 20λ6 (76µ)
7λ5 − 17λ6 (230µ) 4λ5 − 12λ6 (249µ)
6λ5 − 14λ6 (536µ) 4λ5 − 9λ6 (555µ) .

Though not rigorous, this method significantly improves the
precision of VSOP for large time spans, as we shall see in
Sect. 7.4.2.

4.3.6. Degree of the Poisson development in VSOP

With these complements, the Poisson series of VSOP2013 and
VSOP2010 are developed up to the 20th degree with respect to
time.

5. Theory of the motion of Pluto

5.1. Perturbations by Pluto on the major planets

To obtain a precise theory of the major planets, especially for
Uranus and Neptune, it is necessary to include the perturbations
due to Pluto (or, more exactly, of the Pluto-Charon barycenter)
and, therefore, to build an analytical theory of Pluto at least at
the first order of masses.

5.2. Construction of the theory of Pluto in the classical form

A very close Neptune-Pluto resonance is the argument 2λ̄8−3λ̄9
with a period of about 20 000 years, λ̄8 and λ̄9 being the mean
mean longitudes of Neptune and Pluto, respectively. Looking at
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Table 3, we can understand why the construction of a theory of
Pluto in the classical form is a complex problem. This table gives
a few terms of the perturbations at the first order with respect to
the masses for the mean longitude, computed with a precision
of 5−11 rad (0.01 mas), for two couples of planets:

– Saturn perturbed by Jupiter (which represents the most im-
portant first order perturbations obtained in the construction
of an analytical theory of the eight planets),

– Pluto perturbed by Neptune.

We can see that the amplitude of the most important perturba-
tion of the mean longitude of Pluto, 4.56 rad (9.4 × 105 arcsec),
which corresponds to the resonance 2λ̄8 − 3λ̄9, is greater than
the most important perturbation of the mean longitude of Saturn,
0.013 rad (2.7 × 103 arcsec), by a factor of 350. Moreover, the
number of terms greater than 5−11 rad (0.01 mas) is 329 for
Saturn perturbed by Jupiter and 15 539 for Pluto perturbed by
Neptune. From the second iteration, the number of terms of the
perturbations of the mean longitude of Pluto soars and it be-
comes impossible to build an analytical theory of Pluto in the
classical form of series of the mean mean longitudes. In our rep-
resentation using µ, we obtain

n8t = 106µ + 0.022t n9t = 71µ − 0.176t, (17)

where the coefficients of t are in rad/1000 yrs. The mean mo-
tion of Neptune n8 is given in Table 6. For the mean motion of
Pluto n9, we used a preliminary value (25.350 505 rad/1000 yrs)
given by Chapront (2012, priv. comm.). The resonance 2λ̄8−3λ̄9
corresponds to the argument µ and we have exactly the same dif-
ficulties as in the classical representation.

5.3. Choice of a new argument for the representation

We chose a representation with an argument ν such that the reso-
nance should correspond to 0ν. So, the perturbations correspond-
ing to the resonance should be expanded in polynoms of time.
We then take

ν = n8t/105 = 0.363 171 17 t, (18)

where t is measured in thousands of years from J2000 and
with n8 given in Table 6. This argument is very near to µ given by
Eq. (9) and we obtain n9t = 70ν − 0.086 321 37t. The resonance
corresponds then to 0ν.

5.4. Construction of the analytical theory of Pluto

We built our theory of Pluto as explained in Simon (2004). As
for the VSOP and TOP solutions, we built two solutions fitted to
DE405 and INPOP10a, respectively.

5.4.1. First order theory

We first computed the mutual perturbations Jupiter-Pluto,
Saturn-Pluto, Uranus-Pluto, and Neptune-Pluto in Poisson se-
ries of ν. The mutual perturbation Neptune-Pluto are computed
without difficulties. For instance, the mean longitude of Pluto
contains, for this couple, 44 terms with an amplitude greater
than 0.01 mas (the amplitude of the most important term being
about 30′′) and 250 Poisson terms giving contributions greater
than 0.01 mas over 1000 yrs. As an example, in the first order
Saturn-Jupiter, computed in Poisson series of µ, the mean longi-
tude of Saturn contains 329 terms with an amplitude greater than
0.01 mas and 496 Poisson terms giving contributions greater
than 0.01 mas over 1000 yrs.

Table 3. Perturbations at the first order of the masses for the mean lon-
gitudes greater than 5×10−11 rad: comparison between Saturn perturbed
by Jupiter and Pluto perturbed by Uranus.

Saturn/Jupiter Pluto/Neptune

Rank Argument Amplitude Argument Amplitude

1 2λ5 − 5λ6 0.013 2λ8 − 3λ9 4.56
2 λ5 − λ6 3 × 10−3 4λ8 − 6λ9 1.08
3 λ5 − 2λ6 2 × 10−3 6λ8 − 9λ9 0.40
10 3λ5 − 4λ6 1 × 10−4 20λ8 − 30λ9 1 × 10−2

100 14λ5 − 16λ6 8 × 10−8 13λ8 − 18λ9 4 × 10−5

329 17λ5 − 25λ6 5 × 10−11 82λ8 − 23λ9 5 × 10−6

1000 24λ8 − 42λ9 8 × 10−7

15 539 155λ8 − 220λ9 5 × 10−11

Notes. Units of the amplitudes are in rad.

Table 4. Secular terms of the mean longitude of Pluto in ′′/1000 yrs.

t2 t3 t4 t5 t6 t7 t8 t9

3770 397 20 7 0.7 0.1 0.03 0.0005

5.4.2. Construction of the theory

We applied the method used for building the TOP solutions for
the combined and simultaneous resolution of two systems of
equations in using the argument ν. The first system corresponds
to the five planets Jupiter, Saturn, Uranus, Neptune, and Pluto,
the second to the four major planets only. For the first iteration,
we started from the first order theory for Pluto and from the TOP
Poisson series of µ given in Poisson series of ν for the major
planets. We also introduced the perturbations due to the telluric
planets at the second order of masses. The resolution of the first
system of equations gives the theory of the motion of Pluto. The
differences between the solutions of the two systems give the
perturbations of Pluto on the major planets.

5.4.3. The resonance 2λ̄8–3λ̄9 (0ν)

The secular terms corresponding to the resonance converge per-
fectly and decrease with time as can be seen in Table 4 which
gives the values of the secular terms of the mean longitude of
Pluto in ′′/1000 yrs.

5.4.4. The argument λ̄7–3λ̄9

This argument has a period of 4000 yrs and corresponds to the
argument 4ν like the great inequality Uranus-Neptune λ̄7 − 2λ̄8.
This argument is known as a long short-period argument, i.e. an
argument with a period similar to the periods of the long-period
arguments of general theories. As shown by Joutel (1990), in
a classical planetary theory, the perturbations corresponding to
this type of argument do not converge well. Here, the amplitude
is about 700′′ for the mean longitude of Pluto with an error of
about 10′′. We shall discuss the consequences of this error in
Sect. 7.3.2.
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Table 5. Integration constants and mean motions of VSOP2013.

Planet a0 (au) λ0 (rad) k0 h0 q0 p0 n (rad/1000 yrs)

Mercury 0.387 098 3099 4.402 608 6317 0.044 660 6294 0.200 723 3087 0.040 615 6406 0.045 635 4933 26 087.903 140 6855
Venus 0.723 329 8199 3.176 134 4616 −0.004 492 8210 0.005 066 8515 0.006 824 1139 0.028 822 8192 10 213.285 547 4344
EMB 1.000 001 0176 1.753 470 3694 −0.003 740 8181 0.016 284 4892 −0.000 000 0014 −0.000 000 0010 6 283.075 850 3532
Mars 1.523 679 3402 6.203 500 0141 0.085 365 5932 −0.037 899 7092 0.010 470 4280 0.012 284 4865 3 340.612 434 1455
Jupiter 5.202 603 2063 0.599 546 1070 0.046 985 8470 0.012 003 7197 −0.002 065 6227 0.011 183 8646 529.690 961 5623
Saturn 9.554 910 3860 0.874 018 5101 −0.002 959 9134 0.055 429 6361 −0.008 717 4559 0.019 891 4362 213.299 086 1085
Uranus 19.218 438 5555 5.481 225 3957 −0.045 953 0748 0.005 648 3402 0.001 859 2408 0.006 486 0185 74.781 659 0308
Neptune 30.110 415 9870 5.311 897 9332 0.005 998 8382 0.006 691 8100 −0.010 291 4751 0.011 516 7667 38.132 972 2261

5.4.5. Introduction of the theories of Pluto in TOP and VSOP

The Poisson series of ν do not have a convergence as good as the
series of µ for Jupiter and Saturn. For that reason, we kept µ as
the argument of the TOP solutions and transformed in Poisson
series of µ the Poisson series of ν corresponding to the complete
solution of Pluto. Moreover, we transformed in Poisson series
of µ the perturbations of Pluto on the major planets and we added
them to the VSOP and TOP solutions of the major planets. So µ
becomes an argument of the Poisson series of VSOP. At last, we
have introduced the theory of the motion of Pluto in both TOP
and VSOP solutions.

6. Perturbations by the asteroids

6.1. Representation of the perturbations

We introduced the analytical perturbations of the asteroids con-
sidered by numerical planetary ephemerides on the eight ma-
jor planets. These perturbations are computed at the first order
of masses and have the form of Poisson series of µ as explained
in Fienga & Simon (2005). For each variable and each planet-
asteroid couple, the first order perturbations are computed by
harmonical analysis (Simon 1986) in the form of Fourier series.
The arguments of the series have the form iλ̄p + jλ̄a, where i
and j are integers and λ̄p and λ̄a are the mean mean longi-
tudes of the planet and the asteroid, respectively. Then, writing
inp+ jna = qµ+εt where q is an integer and ε is as small as possi-
ble, we transform the Fourier series of mean mean longitudes in
Poisson series of µ. By addition of the Poisson series given by all
the asteroids, we obtain, finally, for each variable of each planet,
the perturbations under the form of only one Poisson series of µ.

6.2. The asteroids in DE405 and INPOP10a

The integration of the motion of the asteroids is not done in the
same way for DE405 and INPOP10a. In DE405, the orbits of
Ceres, Pallas, and Vesta under their own gravitational forces,
those of the Sun, the planets, and the Moon are integrated sepa-
rately from the planet integration. The orbits of the 297 asteroids
(Iris and Bamberga included) are also integrated separately un-
der the gravitational forces of the Sun, the planets, the Moon,
Ceres, Pallas, and Vesta, but only the action of these 297 as-
teroids upon Mars, the Earth, and the Moon, as well as their
contributions to the solar system barycenter, are included in the
planetary integration. In INPOP10a, 165 asteroids are integrated
with the planets and their perturbations are taken into account
for all the planets. The analytical first order perturbations by the
asteroids is a first approach of the complete perturbations of the
asteroids on the planets. So the model of the VSOP solutions is

closer from INPOP10a model than the DE405 one. We shall talk
about this point again in Sect. 7.3.1.

We note that the motion of the five big asteroids are included
in the iterative process of VSOP. So, the first order perturbations
are computed for 295 asteroids in VSOP2010 and for 160 aster-
oids in VSOP2013. For TOP2010 and TOP2013, the perturba-
tions are computed for the 300 asteroids of DE405 and for the
165 asteroids of INPOP10a, respectively.

7. Results

7.1. Integration constants and mean elements

Mean elements of the variables x j and λ j, referred to J2000, are
the secular parts of the Eqs. (1)

〈x j〉 = x0
j + x1

j t + ... + xp
j t

p (19)

〈λ j〉 = λ0
j + n jt + l2j t

2 + ... + lptp.

The mean elements are useful for
– the determination of the starting integration constants in

building classical planetary theories,
– the determination of the integration constants of general

planetary theories (Laskar 1988),
– the amelioration of general planetary theories by fitting the

long-period terms of these theories to the mean elements of
classical theories (Bretagnon & Simon 1990).

The purpose of the mean elements is not to compute
ephemerides. Nevertheless, it is possible to obtain approximate
ephemerides of the planets by adding the small Poisson series
of µ given by Simon et al. (1994) to the mean elements. For
the heliocentric longitudes, the precision of these approximate
ephemerides is about a few arcseconds for the telluric planets
and Neptune and about a few tens of arcseconds for the other
planets over the time span from 1000 to 3000. Mean elements
are too voluminous to be published in this paper, but they are
available on the WEB server of the IMCCE. We give here only
the integration constants x j

0 and the mean motions n j of the so-
lutions VSOP2013 (Table 5) and TOP2013 (Table 6).

7.2. Number of terms of the series

We give the number of terms of the solutions VSOP2013 and
TOP2013, for different levels of truncation in the series, in
Table 7. For the small levels of truncation, the TOP solutions
are more compact than the VSOP solutions for the major plan-
ets. This is due both to the best convergence of the Poisson series
in the TOP representation and because numerous VSOP terms of
a period superior to 1000 yrs are represented in TOP by the same
small multiples of µ (smaller than 17µ).
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Table 6. Integration constants and mean motions of TOP2013.

Planet a0 (au) λ0 (rad) k0 h0 q0 p0 n (rad/1000 yrs)

Jupiter 5.202 603 2025 0.599 544 6520 0.046 985 8464 0.012 003 7085 −0.002 065 6227 0.011 183 8645 529.690 962 2786
Saturn 9.554 910 4300 0.874 020 9500 −0.002 959 8987 0.055 429 6608 −0.008 717 4558 0.019 891 4362 213.299 081 1942
Uranus 19.218 438 2726 5.481 221 8694 −0.045 953 1057 0.005 648 4158 0.001 859 2404 0.006 486 0177 74.781 661 6318
Neptune 30.110 415 8724 5.311 899 0423 0.005 998 8612 0.006 691 7075 −0.010 291 4756 0.011 516 7670 38.132 972 3622
Pluto 39.544 617 1440 4.165 471 1248 −0.178 738 9594 −0.173 404 7186 −0.051 702 3078 0.139 779 9252 25.335 660 2044

Table 7. Number of terms of the solutions VSOP2013 and TOP2013
for several levels of truncation.

Planet Complete 10−14 10−12 10−10 10−8

solution

Mercury 272 360 138 226 21 399 3625 533
Venus 289 647 225 161 33 674 5135 704
EMB 294 426 281 337 51 498 7505 984
Mars 309 140 309 107 118 169 15 136 1880
Jupiter 324 596 323 738 104 894 15 889 2348

37 918 37 418 31 233 13 763 2103
Saturn 350 513 350 167 190 036 31 382 4368

62 124 56 365 49 801 26 832 4071
Uranus 330 581 330 100 211 837 36 997 5045

81 272 71 563 61 560 35 515 5890
Neptune 322 572 318 401 113 009 18 793 2712

41 026 40 475 34 441 16 647 2993
Pluto 114 088 114 088 92 500 51 886 11 421

Notes. Units used for the levels of truncation are in: au for the semi-
major axis, rad for the mean longitude, and without dimension for k, h,
q, p. For Jupiter, Saturn, Uranus and Neptune, the first line corresponds
to VSOP2013, the second line corresponds to TOP2013.

7.3. Precision over the time span from 1890 to 2000

7.3.1. VSOP solutions

We have estimated the precision of VSOP2013 and VSOP2010
by computing their maximum differences to INPOP10a and
DE405 from 1890 to 2000. Table 8 gives these differences for
the elliptic elements of the eight planets. This table also gives the
differences between VSOP2000 and DE403 given by Moisson
& Bretagnon (2001). The accuracy of VSOP2013 is very good.
The precision of the mean longitudes is about a few 0.01 mas for
Mercury, Venus, EMB, Saturn, and Neptune, 0.2 mas for Jupiter,
and 0.7 mas for Mars and Uranus. Related to VSOP2000, the im-
provement is about a factor of 2 for Uranus and up to 24 for EMB
and Neptune. This is especially the result of the better inclusion
of the perturbations by the asteroids and Pluto. Moreover, we
note that the VSOP2013-INPOP10a differences are smaller than
the VSOP2010-DE405 differences by a factor of 2.5 to 5 for
the planets from Mercury to Jupiter. The reason is that the com-
putation of the perturbations by the asteroids is closer between
VSOP2013 and INPOP10a than in the case of VSOP2010 and
DE405 as explained in Sect. 6.2. Another estimation of the pre-
cision of our solutions is given in Table 9 which gives the ac-
curacy of VSOP2013, VSOP2010, and VSOP2000 compared to
the first version VSOP82 (Bretagnon 1982) for the mean longi-
tudes of planets from 1890 to 2000. We can see that the improve-
ment is very important for the new VSOP solutions, especially
for VSOP2013 (by a factor between 15 and 2121).

Table 8. Maximum differences from 1890 to 2000 between VSOP2013,
VSOP2010, VSOP2000, and the numerical integrations for the elliptic
variables.

Planet VSOP a λ k h q p

Mercury 2013 0.003 0.03 1.0 1.2 0.1 0.1
2010 0.006 0.07 3.1 1.0 0.5 0.9
2000 0.006 0.27 8.0 4.0 0.5 0.8

Venus 2013 0.002 0.02 0.3 0.2 0.1 1.1
2010 0.003 0.08 1.0 1.4 0.8 0.7
2000 0.012 0.29 10.0 3.0 1.1 1.5

EMB 2013 0.003 0.01 0.8 0.5 0.1 1.9
2010 0.003 0.06 0.8 0.6 0.1 2.0
2000 0.021 0.35 3.0 17.0 3.4 4.2

Mars 2013 0.078 0.74 4.6 5.4 0.3 1.1
2010 0.073 2.01 7.0 6.4 0.7 1.6
2000 0.134 2.88 12.0 30.0 2.6 7.2

Jupiter 2013 0.099 0.19 2.9 3.3 0.5 0.4
2010 0.683 0.72 13.3 13.6 0.6 0.4
2000 0.910 0.47 15.0 16.0 5.0 4.3

Saturn 2013 0.173 0.09 4.8 4.3 0.9 0.9
2010 0.816 0.19 5.5 5.8 1.0 0.9
2000 6.774 1.75 19.0 35.0 7.8 8.1

Uranus 2013 15.120 0.76 40.0 39.1 3.0 2.3
2010 24.467 0.88 60.6 68.5 2.8 2.2
2000 23.600 1.49 66.0 57.0 38.2 11.0

Neptune 2013 3.432 0.08 9.1 3.8 1.5 1.0
2010 7.747 0.27 10.6 7.8 1.5 1.1
2000 47.032 1.86 61.0 68.0 4.1 11.3

Notes. Units are in: km (a), mas (λ), and 10−10 (k, h, q, p). The numeri-
cal integrations of reference are INPOP10a for VSOP2013, DE405 for
VSOP2010, and DE403 for VSOP2000. The values corresponding to
VSOP2000 are issued from Moisson & Bretagnon (2001).

The differences between VSOP2013 and INPOP2010a for
the mean longitudes of the planets from 1890 to 2000 are illus-
trated by Fig. 1.

7.3.2. TOP solutions

The Table 10 gives the differences between TOP2013 and
INPOP10a, and between TOP2010 and DE405 for the eclip-
tic elements of the four major planets and Pluto from 1890 to
2000. The orbits of the telluric planets are not integrated with
the major planets and the TOP theories cannot be as accurate
as the VSOP theories over short time spans. Nevertheless, we
can see that TOP2013 is more precise than TOP2010 thanks to
the method used for computing the perturbations by the telluric
planets in TOP2013 as explained in Sect. 4.2.3. The precision of
TOP2013 is of the same order as the precision of VSOP2000.
For Pluto, over the time span from 1890 to 2000, the accuracy
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Fig. 1. Mean longitudes of
the planets: VSOP2013 −

INPOP10a differences from
1890 to 2000. Units are in mas.

Table 9. Mean longitudes of the planets: gain in precision with respect
to VSOP82 for VSOP2013, VSOP2010, and VSOP2000 from 1890 to
2000.

Planet VSOP2013 VSOP2010 VSOP2000

Mercury 21 9 2
Venus 228 50 15
EMB 233 54 10
Mars 15 6 4
Jupiter 212 53 81
Saturn 962 496 53
Uranus 59 51 30
Neptune 2121 633 90
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Fig. 2. Mean longitude of Pluto: TOP2013 − INPOP10a differences
from 1890 to 2000. Units are in mas.

is about 3 mas for the mean longitude, about 125 km for a,
and 2 × 10−8 for k and h. This accuracy is far below the ac-
tual uncertainties of the Pluto observations. The differences be-
tween TOP2013 and INPOP2010A for the mean longitude of
Pluto from 1890 to 2000 are illustrated in Fig. 2. We see that
these differences are short-period terms. Although, the short-
period terms perfectly converge in the iterative process, the bad
convergence of the perturbations corresponding to the argument
λ̄7 − 3λ̄9 (see Sect. 5.3.4) involves an uncertainty in the determi-
nation of the integration constants explaining these short-period
differences.

7.4. Precision over large time spans

The accuracy of our solutions over large time spans has been
estimated by computing the differences with two numerical

Table 10. Maximum differences from 1890 to 2000 between TOP2013,
TOP2010, and the numerical integrations for the elliptic variables.

Planet TOP a λ k h q p

Jupiter 2013 0.47 0.84 20.7 28.0 16.7 10.8
2010 4.94 1.39 78.3 88.4 36.6 31.3

Saturn 2013 1.02 1.86 31.2 41.0 18.6 15.1
2010 17.10 2.89 99.9 69.1 38.7 33.2

Uranus 2013 16.55 1.70 50.9 48.5 18.5 15.3
2010 29.79 2.58 122.8 93.2 39.3 43.0

Neptune 2013 6.96 0.67 21.5 17.7 12.4 14.7
2010 43.66 1.52 70.6 67.5 42.0 43.0

Pluto 2013 124.71 2.85 198.1 185.8 56.9 23.3
2010 130.49 3.42 161.6 149.7 26.5 23.9

Notes. Units are in: km (a), mas (λ), 10−10 (k, h, q, p). The numerical
integrations of reference are INPOP10a for TOP2013 and DE405 for
TOP2010.

integrations from −4000 to 8000. The solutions VSOP2010 and
TOP2010 have been compared with an internal numerical inte-
gration, the initial values of which are issued from the solutions.
The solutions VSOP2013 and TOP2013 have been compared
with the extension of INPOP10a from −4000 to 8000 (Manche
2012, priv. comm.). The comparisons with these two different
integrations are similar. Tables 11 and 12 refer only to the com-
parisons with the extension of INPOP10a.

7.4.1. Telluric planets

Table 11 gives the differences between VSOP2013 and the ex-
tension of INPOP10a from −4000 to 8000 (Manche 2012, priv.
comm.) for the mean longitude (λ) and the heliocentric coordi-
nates (L, B, R) of the four telluric planets over three time spans:
from 900 to 3100, from 0 to 4000, and from −4000 to 8000.

We can see that the precision remains good for large time
spans. For instance, from 0 to 4000, the accuracy of the helio-
centric longitude is better than 0.02′′ for Venus and 0.05′′ for
Mercury and EMB. From −4000 to 8000, the precision is better
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Table 11. Telluric planets: maximum differences over large time spans
between VSOP2013 and the extension of INPOP10a from −4000
to 8000 for the mean longitude and the heliocentric coordinates.

Planet Time span λ L B R

Mercury [900, 3100] 0.01 0.02 0.002 0.9
[0, 4000] 0.03 0.05 0.006 2.6

[−4000, 8000] 0.12 0.20 0.021 9.2
Venus [900, 3100] 0.002 0.002 0.001 0.1

[0, 4000] 0.02 0.02 0.002 0.2
[−4000, 8000] 0.15 0.15 0.009 4.1

EMB [900, 3100] 0.03 0.03 0.002 0.4
[0, 4000] 0.05 0.06 0.003 1.9

[−4000, 8000] 0.98 1.01 0.015 19.4
Mars [900, 3100] 0.70 0.83 0.023 69.5

[0, 4000] 1.06 1.28 0.036 107.2
[−4000, 8000] 1.49 1.74 0.058 153.4

Notes. Units are in: arsec (λ, L, B) and km (R). The extension of
INPOP10a is from Manche (2012, priv. comm.).

than 0.2′′ for Mercury and Venus, about 1′′ for EMB and 1.7′′
for Mars. The improvement is about a factor of 5 compared to
VSOP2000. However, we see that the precision decreases with
time more quickly for EMB and Mars than for Mercury and
Venus. This is due to the perturbations by the asteroids which
should be computed at the second order of masses to improve
the accuracy of the solutions of the motion of these two planets
over large time spans.

The differences between VSOP2013 and INPOP10a for
the heliocentric longitudes of the telluric planets from −4000
to 8000 are illustrated in Fig. 3.

7.4.2. Major planets and Pluto

Table 12 gives, for the major planets and Pluto, the differences
between VSOP2013, TOP2013, and the extension of INPOP10a
for the same variables and the same time spans as in Table 11.
For Jupiter and Saturn and for the time span from −4000 to 8000,
the second line of VSOP corresponds to the theory without the
corrections from TOP2013. We see that the improvement due
to the supplementary material from TOP2013 is about a factor
of 5 for the mean and heliocentric longitudes of these two plan-
ets. From −4000 to 8000, the precision of the heliocentric lon-
gitudes of the major planets is included between 1′′ and 5′′ for
Jupiter, Uranus, and Neptune and about 11′′ for Saturn. This rep-
resents an improvement compared to VSOP2000 of a factor of 5
to 10.

Nevertheless, TOP2013 remains the more precise solution
over large time spans. From −4000 to 8000, the precision of
the heliocentric longitudes of the major planets is about 0.4′′ for
Jupiter, 0.7′′ for Uranus and Neptune, and 0.9′′ for Saturn. The
gain in precision, compared to VSOP2013, is between 10 and 15
for Jupiter and Saturn and between 1.5 and 4 for Uranus and
Neptune. The differences between VSOP2013, TOP2013, and
the extension of INPOP10a for the heliocentric longitudes
of the major planets from −4000 to 8000 are illustrated in
Fig. 4.

For Pluto, the precision remains good from 900 to 3100
(about 0.8′′ for the heliocentric longitude) and still correct
from 0 to 4000 (about 12′′). For larger time spans, the preci-
sion quickly decreases, but the existence of a libration of the

Table 12. Major planets and Pluto: maximum differences over large
time spans between VSOP2013, TOP2013, and the extension of
INPOP10a from −4000 to 8000.

Planet Time span Theory λ L B R

Jupiter [900, 3100] VSOP 0.04 0.04 0.001 12
TOP 0.01 0.01 0.001 21

[0, 4000] VSOP 0.22 0.24 0.004 64
TOP 0.05 0.07 0.004 61

[−4000, 8000] VSOP 4.80 4.47 0.164 3 393
19.90 22.21 0.505 5 858

TOP 0.40 0.45 0.051 343

Saturn [900, 3100] VSOP 0.28 0.30 0.013 122
TOP 0.03 0.04 0.002 50

[0, 4000] VSOP 2.07 2.24 0.098 758
TOP 0.15 0.18 0.008 151

[−4000, 8000] VSOP 8.92 11.73 0.524 21 911
35.58 41.97 1.543 35 637

TOP 0.74 0.89 0.081 1 299

Uranus [900, 3100] VSOP 0.14 0.14 0.001 136
TOP 0.01 0.02 0.001 102

[0, 4000] VSOP 0.30 0.34 0.004 433
TOP 0.04 0.06 0.003 189

[−4000, 8000] VSOP 1.23 2.45 0.069 13 007
TOP 0.42 0.70 0.037 4 113

Neptune l [900, 3100] VSOP 0.06 0.07 0.002 143
TOP 0.01 0.02 0.001 143

[0, 4000] VSOP 0.13 0.14 0.003 342
TOP 0.04 0.06 0.003 311

[−4000, 8000] VSOP 1.28 1.27 0.044 7 761
TOP 0.39 0.78 0.059 5 284

Pluto [900, 3100] TOP 0.36 0.80 0.222 6 593
[0, 4000] TOP 5.14 11.95 2.980 45 042

Notes. Variables and units are the same as in Table 11. For Jupiter and
Saturn and for [−4000, 8000], the second line of VSOP corresponds to
the theory without the corrections from TOP2013.

longitude of Pluto, with a period about 19 900 yrs (Milani et al.
1989), means that we cannot hope to build an analytical solution
of Pluto valid over time spans greater than a few thousand years.

7.5. The solutions on the WEB server of the IMCCE

7.5.1. The VSOP2013 solution2

For VSOP2013, we give on the WEB server of the IMCCE:

– The complete Poisson developments of the elliptic variables
of the eight planets and Pluto.

– Developments in the form of Tchebychev polynomials for
the heliocentric rectangular coordinates (positions and ve-
locities) of the eight planets over different time spans.

– The mean elements of the elliptic variables of the eight
planets.

– Subroutines for reading the developments and computing the
coordinates for given values of time.

2 ftp://ftp.imcce.fr/pub/ephem/planets/vsop2013
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Fig. 4. Heliocentric longitudes of the major
planets: differences between TOP2013 and
the extension of INPOP10a (straight lines)
and between VSOP2013 and the extension of
INPOP10a (dotted lines) from −4000 to 8000.
Units are in arcseconds.

7.5.2. The TOP2013 solution3

The TOP2013 solution is much more compact than VSOP2013
and it is not necessary to use developments under the form of
Tchebychev polynomials. So, we give:

– The complete Poisson developments of the elliptic variables
(four major planets and Pluto) and of the heliocentric spher-
ical and rectangular variables (four major planets).

– The mean elements of the elliptic variables of the four major
planets and Pluto.

– Subroutines for reading the developments and computing the
coordinates for given values of time.

7.6. Possible improvements

Some improvements of the theories can still be made.
For VSOP2013, it would be possible

– to improve the accuracy of the motion of the telluric planets
(specially EMB and Mars) over large time spans by comput-
ing the perturbations of the asteroids on the planets to the
second order of masses;

– to improve the accuracy of the motion of Jupiter and Saturn
over large time spans by developing the Poisson series up to
the 20th degree with respect to time;

– to improve the accuracy of the relativistic corrections, using
the techniques suggested by Brumberg (2012).

The TOP2013 theory could be more accurate by improving
the modelling of the perturbations due to the telluric planets.

3 ftp://ftp.imcce.fr/pub/ephem/planets/top2013

Integrating the motion of the telluric planets in the iterative pro-
cess would not be easy because the computation of very short
periods in the motion of Mercury would lead to important dif-
ficulties in the harmonic analysis. A better method would be to
do two kinds of iterations in the VSOP process, one with the tel-
luric planets, another without. The difference between the two
processes should give a good estimation of the perturbations of
the telluric planets on the outer planets.

8. Conclusion

The new analytical theories VSOP2013 and TOP2013 built at
the IMCCE are complementary and have been greatly enhanced
since the previous versions. They are fitted to INPOP10a, a nu-
merical integration of the motion of the planets that takes into
account more recent observations. The VSOP2013 theory is the
best analytical theory for the motion of the eight solar system
planets over time spans of a few hundred years. The improve-
ment over VSOP2000 is about a factor of 2 for Uranus, 5 for
Mars and Jupiter, and greater than 10 for the other planets.
Moreover, VSOP2013 remains very accurate over large time
spans for the motion of the telluric planets. The TOP2013 theory
was developed in a compact and easy to use form. It is the most
precise theory for the motion of the four major planets over large
time spans; TOP2013 also gives a solution of the motion of the
Pluto-Charon barycenter with good accuracy up to time spans of
a few thousand years.

Lastly, the subroutines used to build VSOP2013 and
TOP2013 are ready to fit these theories to new versions of
INPOP.
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