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Codes and automata in minimal sets

We explore several notions concerning codes and automata in a restricted set of words S. We define a notion of S-degree of an automaton and prove an inequality relating the cardinality of a prefix code included in a minimal set S and its S-degree.

Introduction

We have introduced in [START_REF] Berthé | Acyclic, connected and tree sets[END_REF] the notion of tree set as a common generalization of Sturmian sets and of interval exchange sets. In this paper, we investigate several new directions concerning codes and automata in minimal sets.

Codes and automata in restricted sets of words have already been investigated several times. In particular, Restivo has investigated codes in sets of finite type [START_REF] Restivo | Codes and local constraints[END_REF] and Reutenauer has studied the more general notion of codes of paths in a graph [START_REF] Reutenauer | Ensembles libres de chemins dans un graphe[END_REF]. We have initiated in [START_REF] Berstel | Bifix codes and Sturmian words[END_REF] with several other authors, a systematic study of bifix codes in Sturmian sets, a subject already considered before in [START_REF] Carpi | Codes of central Sturmian words[END_REF]. The overall conclusion of this study is that very surprising phenomena appear in this context in relation with subgroups of finite index of the free group, allowing one to obtain positive bases of the subgroups contained in a given minimal set.

In this paper, we investigate several notions concerning codes and automata in relation with a factorial set S. This includes a definition of minimal S-rank of an automaton, which is equal to 1 if and only if the automaton is synchronized. We prove a result which allows to compute the minimal S-rank when S is minimal (Theorem 3.1). We also show that for a recurrent set S and a strongly connected automaton A, the set of elements of the transition monoid M of minimal S-rank is included in a D-class of M called its S-minimal D-class (Proposition 3.2). This regular D-class is unique when S is minimal and it is related with the results of [START_REF] Almeida | On the transition semigroups of centrally labeled Rauzy graphs[END_REF] and [START_REF] Almeida | Presentations of Schützenberger groups of minimal subshifts[END_REF] on the regular J -classes of free profinite semigroups.

We define the S-degree of a prefix code X included in S as the minimal Srank of the minimal automaton of X * . We show that the cardinality of a prefix code is bounded below by a linear function of its S-degree (Theorem 4.4).

Let X be a prefix code and let M be the transition monoid of the minimal automaton of X * . We associate to X a permutation group denoted G X (S) which is the structure group of the S-minimal D-class of M . We show that for any uniformly recurrent tree set S and any finite S-maximal bifix code X, the group G X (S) is equivalent to the representation of the free group on the cosets of the subgroup generated by X (Theorem 4.5).

Let A be a finite alphabet. We denote by A * the set of all words on A. We denote by ε or 1 the empty word. A set of words on the alphabet A and containing A is said to be factorial if it contains the factors of its elements. An internal factor of a word x is a word v such that x = uvw with u, w nonempty.

Neutral sets

Let S be a factorial set on the alphabet A. For w ∈ S, we denote

L S (w) = {a ∈ A | aw ∈ S}, R S (w) = {a ∈ A | wa ∈ S}, E S (w) = {(a, b) ∈ A × A | awb ∈ S}, and further ℓ S (w) = Card(L S (w)), r S (w) = Card(R S (w)), e S (w) = Card(E S (w)).
We omit the subscript S when it is clear from the context. A word w is rightextendable if r(w) > 0, left-extendable if ℓ(w) > 0 and biextendable if e(w) > 0. A factorial set S is called right-extendable (resp. left-extendable, resp. biextendable) if every word in S is right-extendable (resp. left-extendable, resp. biextendable).

A word

w is called right-special if r(w) ≥ 2. It is called left-special if ℓ(w) ≥ 2. It is called bispecial if it is both left-special and right-special. For w ∈ S, we denote m S (w) = e S (w) -ℓ S (w) -r S (w) + 1.
A word w is called neutral if m S (w) = 0. We say that a set S is neutral if it is factorial and every nonempty word w ∈ S is neutral. The characteristic of S is the integer χ(S) = 1 -m S (ε).

A neutral set of characteristic 1, simply called a neutral set, is such that all words (including the empty word) are neutral.

The following is a trivial example of a neutral set of characteristic 2.

Example 2.1. Let A = {a, b} and let S be the set of factors of (ab) * . Then S is neutral of characteristic 2. As a more interesting example, any Sturmian set is a neutral set [START_REF] Berthé | Acyclic, connected and tree sets[END_REF] (by a Sturmian set, we mean the set of factors of a strict episturmian word, see [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF]).

The following example is the classical example of a Sturmian set. The factor complexity of a factorial set S of words on an alphabet A is the sequence p n = Card(S ∩ A n ). The complexity of a Sturmian set is p n = n(Card(A) -1) + 1. The following result (see [START_REF] Dolce | Enumeration formulae in neutral sets[END_REF]) shows that a neutral set has linear complexity. Proposition 2.1 The factor complexity of a neutral set on k letters is given by p 0 = 1 and p n = n(k -χ(S)) + χ(S) for every n ≥ 1.

Example 2.3. The complexity of the set of Example 2.1 is p n = 2 for any n ≥ 1.

A set of words S = {ε} is recurrent if it is factorial and for any u, w ∈ S, there is a v ∈ S such that uvw ∈ S. An infinite factorial set is said to be minimal or uniformly recurrent if for any word u ∈ S there is an integer n ≥ 1 such that u is a factor of any word of S of length n. A uniformly recurrent set is recurrent.

Tree sets

Let S be a biextendable set of words. For w ∈ S, we consider the set E(w) as an undirected graph on the set of vertices which is the disjoint union of L(w) and R(w) with edges the pairs (a, b) ∈ E(w). This graph is called the extension graph of w. We sometimes denote 1 ⊗ L(w) and R(w) ⊗ 1 the copies of L(w) and R(w) used to define the set of vertices of E(w). We note that since E(w) has ℓ(w) + r(w) vertices and e(w) edges, the number 1 -m S (w) is the Euler characteristic of the graph E(w).

A biextendable set S is called a tree set of characteristic c if for any nonempty w ∈ S, the graph E(w) is a tree and if E(ε) is a union of c trees. Note that a tree set of characteristic c is a neutral set of characteristic c. A tree set of characteristic 1, simply called a tree set as in [START_REF] Berthé | Acyclic, connected and tree sets[END_REF], is such that E(w) is a tree for any w ∈ S.

As an example, a Sturmian set is a tree set [START_REF] Berthé | Acyclic, connected and tree sets[END_REF] . Let S be a set of words. For w ∈ S, let

Γ S (w) = {x ∈ S | wx ∈ S ∩ A + w}. If S is recurrent, the set Γ S (w) is nonempty. Let Ret S (w) = Γ S (w) \ Γ S (w)A +
be the set of return words to w.

Note that a recurrent set S is uniformly recurrent if and only if the set Ret S (w) is finite for any w ∈ S. Indeed, if N is the maximal length of the words in Ret S (w) for a word w of length n, any word in S of length N + n contains an occurrence of w. The converse is obvious.

We will use the following result [START_REF] Berthé | Acyclic, connected and tree sets[END_REF]Theorem 4.5] . We denote by F A the free group on A.

Theorem 2.2 (Return Theorem). Let S be a uniformly recurrent tree set. For any w ∈ S, the set Ret S (w) is a basis of the free group F A .

Note that this result implies in particular that for any w ∈ S, the set Ret S (w) has Card(A) elements.

Example 2.6. Let S be the Tribonacci set. It is the set of factors of the infinite word x = abacaba • • • which is the fixed point of the morphism f defined by [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF]). We have Ret S (a) = {a, ba, ca}.

f (a) = ab, f (b) = ac, f (c) = a. It is a Sturmian set (see

Automata

All automata considered in this paper are deterministic and strongly connected and we simply call them automata. An automaton on a finite set Q of states is given by a partial map from Q × A into Q denoted p → p • a, and extended to words with the same notation. For a word w, we denote by ϕ A the map

p ∈ Q → p • w ∈ Q.
The transition monoid of the automaton A is the monoid M of partial maps from Q to itself of the form ϕ A (w) for w ∈ A * . The rank of an element m of M is the cardinality of its image, denoted Im(m).

Let A be an automaton and let S be a set of words. Denote by rank A (w) the rank of the map ϕ A (w), also called the rank of w with respect to the automaton A. The S-minimal rank of A is the minimal value of rank A (w) for w ∈ S. It is denoted rank A (S). A word of rank 1 is called synchronizing.

The following result gives a method to compute rank A (S) and thus gives a method to decide if A admits synchronizing words. Theorem 3.1. Let S be a recurrent set and let A be an automaton. Let w be in S and let I = Im(w). Then w has rank equal to rank A (S) if and only if rank A (wz) = rank A (w) for any z ∈ Ret S (w).

Proof. Assume first that rank A (w) = rank A (S). If z is in Ret S (w), then wz is in S. Since rank A (wz) ≤ rank A (w) and since rank A (w) is minimal, this forces rank A (wz) = rank A (w).

Conversely, assume that w satisfies the condition. For any r ∈ Ret S (w), we have I • r = Im(wr) ⊂ Im(w) = I. Since rank A (wr) = rank A (w), this forces I • r = I. Since Γ S (w) ⊂ Ret S (w) * , this proves that

Γ S (w) ⊂ {z ∈ S | I • z = I}. (3.1)
Let u be a word of S of minimal rank. Since S is recurrent, there exists words v, v ′ such that wvuv ′ w ∈ S. Then vuv ′ w is in Γ S (w) and thus I • vuv ′ w = I by (3.1). This implies that rank A (u) ≥ rank A (vuv ′ w) = rank A (w). Thus w has minimal rank in S.

Theorem 3.1 can be used to compute the S-minimal rank of an automaton in an effective way for a uniformly recurrent set S provided one can compute effectively the finite sets Ret S (w) for w ∈ S.

Example 3.1. Let S be the Fibonacci set and let A be the automaton given by its transitions in Figure 3.1 on the left. One has Im(a 2 ) = {1, 2, 4}. The action on the 3-element sets of states of the automaton is shown on the right. By Theorem 3.1, we obtain rank A (S) = 3. We denote by L, R, D, H the usual Green relations on a monoid M (see [START_REF] Berstel | Codes and Automata[END_REF]). Recall that R is the equivalence on M defined by The following result is proved in [START_REF] Berstel | Bifix codes and Sturmian words[END_REF] in a particular case (that is, for an automaton recognizing the submomoid generated by a bifix code). Proposition 3.2 Let S be a recurrent set and A be a strongly connected automaton. Set ϕ = ϕ A and M = ϕ(A * ). The set of elements of ϕ(S) of rank rank A (S) is included in a regular D-class of M .

mRn if mM = nM . The R-class of m is denoted R(m).
Proof. Set d = rank A (S). Let u, v ∈ S be two words of rank d. Set m = ϕ(u) and n = ϕ(v). Let w be such that uwv ∈ S. We show first that mRϕ(uwv) and nLϕ(uwv).

For this, let t be such that uwvtu ∈ S. Set z = wvtu. Since uz ∈ S, the rank of uz is d. Since Im(uz) ⊂ Im(z) ⊂ Im(u), this implies that the images are equal. Consequently, the restriction of ϕ(z) to Im(u) is a permutation. Since Im(u) is finite, there is an integer ℓ ≥ 1 such that ϕ(z) ℓ is the identity on Im(u). Set e = ϕ(z) ℓ and s = tuz ℓ-1 . Then, since e is the identity on Im(u), one has m = me. Thus m = ϕ(uwv)ϕ(s), and since ϕ(uwv) = mϕ(wv), it follows that m and ϕ(uwv) are R-equivalent.

Similarly n and ϕ(uwv) are L-equivalent. Indeed, let t ′ be such that vt ′ uwv ∈ S. Set z ′ = t ′ uwv. Then Im(vz ′ ) ⊂ Im(z ′ ) ⊂ Im(v). Since vz ′ is a factor of z 2 and z has rank d, it follows that d = rank(z 2 ) ≤ rank(vz ′ ) ≤ rank(v) = d. Therefore, vz ′ has rank d and consequently the images Im(vz ′ ), Im(z ′ ) and Im(v) are equal. There is an integer The D-class containing the elements of ϕ(S) of rank rank A (S) is called the Sminimal D-class of M . This D-class appears in a different context in [START_REF] Perrin | Automata on the integers, recurrence, distinguishability, and the equivalence of monadic theories[END_REF] (for a survey concerning the use of Green's relations in automata theory, see [START_REF] Colcombet | Green's relations and their use in automata theory[END_REF]). Let us recall some notions concerning groups in transformation monoids (see [START_REF] Berstel | Bifix codes and Sturmian words[END_REF] for a more detailed presentation). Let M be a transformation monoid on a set Q. For I ⊂ Q, we denote Let D be a regular D-class in a transformation monoid M on a set Q. The holonomy groups of M relative to the sets Qm for m ∈ D are all equivalent. The structure group of D is any of them.

ℓ ′ ≥ 1 such that ϕ(z ′ ) ℓ ′ is the identity on Im(v). Set e ′ = ϕ(z ′ ) ℓ ′ . Then n = ne ′ = nϕ(z ′ ) ℓ ′ -1 ϕ(tuwv) = nqϕ(uwv), with q = ϕ(z ′ ) ℓ ′ -1 ϕ(t). Since ϕ(uwv) = ϕ(uw)n,
Let A be an automaton with Q as set of states and let I ⊂ Q. Let w be a word such that ϕ A (w) ∈ Stab(I). The restriction of ϕ A (w) to I is a permutation which belongs to Group(I). It is called the permutation defined by the word w on the set I.

Let A be a strongly connected automaton and let S be a recurrent set of words. The S-group of A is the structure group of its S-minimal D-class. It is denoted G A (S).

For the set S = A * and a strongly connected automaton, the group G A (S) is a transitive permutation group of degree d X (S) (see [START_REF] Berstel | Codes and Automata[END_REF]Theorem 9.3.10]). We conjecture that it holds for a uniformly recurrent tree set. It is not true for any uniformly recurrent set S, as shown in the following examples. The fact that d A (S) = 3 and that G A (S) is trivial can be seen directly as follows. Consider the group automaton B represented in Figure 3.4 on the right and corresponding to the map sending each word to the difference modulo 3 of the number of occurrences of a and b. There is a reduction ρ from A onto B such that 1 → 0, 2 → 1, and 4 → 2. This accounts for the fact that d A (S) = 3. Moreover, one may verify that any return word x to a 2 has equal number of a and b (if x = uaa then aauaa is in S, which implies that aua and thus uaa have the same number of a and b). This implies that the permutation ϕ B (x) is the identity, and therefore also the restriction of ϕ A (x) to I. The same argument holds for Example 3.3 by considering the parity of the length.

Codes

A code is a set X such that for any n, m ≥ 0 any x 1 , . . . , x n and y 1 , . . . , y m in X, one has

x 1 • • • x n = y 1 • • • y m only if n = m and x 1 = y 1 ,..., x n = y n .
A prefix code is a set X of nonempty words which does not contain any proper prefix of its elements. A suffix code is defined symmetrically. A bifix code is a set which is both a prefix code and a suffix code.

Let S be a set of words. A prefix code X ⊂ S is said to be S-maximal if it is not properly contained in any prefix code Y ⊂ S. The notion of an S-maximal suffix or bifix code are symmetrical.

It follows from results of [START_REF] Berstel | Bifix codes and Sturmian words[END_REF] that for a recurrent set S, a finite bifix code X ⊂ S is S-maximal as a bifix code if and only if it is S-maximal as a prefix code.

Given a set X ⊂ S, we denote λ S (X) = x∈X λ S (x) where λ S is the map defined by λ S (x) = e S (x) -r S (x). The following result is [START_REF] Dolce | Enumeration formulae in neutral sets[END_REF]Proposition 4]. Proposition 4.1 Let S be a neutral set of characteristic c on the alphabet A, and let X be a finite S-maximal prefix code. Then λ S (X) = Card(A) -c.

Symmetrically, one denotes ρ S (x) = e S (x) -ℓ S (x). The dual of Proposition 4.1 holds for suffix codes instead of prefix codes with ρ S instead of λ S .

Note that when S is Sturmian, one has λ S (x) = Card(A)-1 if x is left-special and λ S (x) = 0 otherwise. Thus Proposition 4.1 expresses the fact that any finite S-maximal prefix code contains exactly one left-special word [3, Proposition 5.1.5].

Example 4.1. Let S be the Fibonacci set and let X = {aa, ab, b}. The set X is an S-maximal prefix code. It contains exactly one left-special word, namely ab. Accordingly, one has λ S (X) = 1.

Let S be a factorial set and let X ⊂ S be a finite prefix code. The S-degree of X is the S-minimal rank of the minimal automaton of X * . It is denoted d X (S).

When X is a finite bifix code, the S-degree can be defined in a different way. A parse of a word w is a triple (s, x, p) such that w = sxp with s ∈ A * \ A * X, x ∈ X * and p ∈ A * \ XA * . For a recurrent set S and an S-maximal bifix code X, d X (S) is the maximal number of parses of a word of S. A word w ∈ S has d X (S) parses if and only if it is not an internal factor of a word of X (see [START_REF] Berstel | Bifix codes and Sturmian words[END_REF]).

The following result is [START_REF] Berthé | The finite index basis property[END_REF]Theorem 4.4].

Theorem 4.2 (Finite Index Basis Theorem). Let S be a uniformly recurrent tree set and let X ⊂ S be a finite bifix code. Then X is an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of index d of F A .

Note that the result implies that any S-maximal bifix code of S-degree n has d(Card(A) -1) + 1 elements. Indeed, by Schreier's Formula, a subgroup of index d of a free group of rank r has rank d(r -1) + 1.

Example 4.2. Let S be a Sturmian set. For any n ≥ 1, the set X = S ∩ A n is an S-maximal bifix code of S-degree n. According to theorem 4.2, it is a basis of the subgroup which is the kernel of the group morphism from F A onto the additive group Z/nZ sending each letter to 1.

The following statement generalizes [START_REF] Berstel | Bifix codes and Sturmian words[END_REF]Theorem 4.3.7] where it is proved for a bifix code (and in this case with a stronger conclusion).

Theorem 4.3. Let S be a recurrent set and let X be a finite S-maximal prefix code of S-degree n. The set of nonempty proper prefixes of X contains a disjoint union of n -1 S-maximal suffix codes.

Proof. Let P be the set of proper prefixes of X. Any word of S of rank n of length larger than the words of X has n suffixes which are in P .

We claim that this implies that any word in S is a suffix of a word with at least n suffixes in P . Indeed, let x ∈ S be of minimal rank. For any w ∈ S, since S is recurrent, there is some u such that xuw ∈ S. Then xuw is of rank n and has n suffixes in P . This proves the claim.

Let Y i for 1 ≤ i ≤ n be the set of p ∈ P which have i suffixes in P . One has Y 1 = {ε} and each Y i for 2 ≤ i ≤ d is clearly a suffix code. It follows from the claim above that it is S-maximal. Since the Y i are also disjoint, the result follows.

Corollary 1. Let S be a recurrent neutral set of characteristic c, and let X be a finite S-maximal prefix code of S-degree n. The set P of proper prefixes of X satisfies ρ S (P ) ≥ n(Card(A) -c). Proof. Let P be the set of proper prefixes of X. We may identify X with the set of leaves of a tree having P as set of internal nodes, each having r S (p) sons. By a well-known argument on trees, we have Card(X) = 1 + p∈P (r S (p) -1). Thus Card(X) = 1 + ρ S (P ). By Corollary 1, we have ρ S (P ) ≥ n(Card(A) -c).

The next example shows that the prefix code can have strictly more than d X (S)(Card(A) -c) + 1 elements. code X is S-maximal. The word ab has rank 2 in the literal automaton of X * . Indeed, Im(ab) = {1, 3}. Moreover R S (ab) = {ab, aab}. The ranks of abab and abaab are also equal to 2, as shown in Figure 4.2 on the right. Thus the S-degree of X is 2 by Proposition 3.1. The code X is not bifix since ba is a suffix of aaba.

The group of a bifix code

The following result is proved in [ The S-group of a prefix code, denoted G X (S), is the group G A (S) where A is the minimal automaton of X * . Theorem 4.5. Let Z be a group code of degree d and let S be a uniformly recurrent tree set S. The set X = Z ∩ S is an S-maximal bifix code of S-degree d and G X (S) is equivalent to the representation of F A on the cosets of the subgroup generated by X.

Proof. The first part is [7, Theorem 5.10], obtained as a corollary of the Finite Index Basis Theorem. To see the second part, let H be the subgroup generated by X of the free group F A . Consider a word w ∈ S which is not an internal factor of X. Let P be the set of proper prefixes of X which are suffixes of w. Then P has d elements since for each p ∈ P , there is a parse of w of the form (s, x, p). Moreover P is a set of representatives of the right cosets of H. Indeed, let p, q ∈ P and assume that p = uq with u ∈ S. If p ∈ Hq, then u ∈ X * ∩ S. Since p cannot have a prefix in X, we conclude that p = q. Since H has index d, this implies the conclusion.

Let A = (Q, i, i) be the minimal automaton of X * . Set I = Q • w. Let Stab(I) be the set of words x ∈ A * such that I • x = I. Note that Stab(I) contains the set Ret S (w) of right return words to w. For x ∈ Stab(I), let π(x) be the permutation defined by x on I. By definition, the group G X (S) is generated by π(Stab(I)). Since Stab(I) contains Ret S (w) and since Ret S (w) generates the free group F A , the set Stab(I) generates F A .

Let x ∈ Stab(I). For p, q ∈ I, let u, v ∈ P be such that i • u = p, i • v = q. Let us verify that p • x = q ⇔ ux ∈ Hv. is the set {1, 2}. We have Ret S (a) = {a, ba} and the action of Ret S (a) on the minimal images is indicated in Figure 4.3 on the right. The word a defines the permutation [START_REF] Perrin | Automata on the integers, recurrence, distinguishability, and the equivalence of monadic theories[END_REF] and the word ba the identity. Theorem 4.5 is not true for an arbitrary minimal set instead of a minimal tree set (see Example 3.4). The second part is true for an arbitrary finite S-maximal bifix code by the Finite Index Basis Theorem. We have no example where the second part is not true when X is S-maximal prefix instead of S-maximal bifix.
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 22 Let A = {a, b} and let f : A * → A * be the Fibonacci morphism defined by f (a) = ab and f (b) = a. The infinite word x = lim n→∞ f n (a) is the Fibonacci word. One has x = abaababa • • • . The Fibonacci set is the set of factors of the Fibonacci word. It is a Sturmian set, and thus a neutral set.
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 24 The set S of Example 2.1 is a tree set of characteristic 2.
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 25 Let A = {a, b} and let f : A * → A * be the morphism defined by f (a) = ab and f (b) = ba. The infinite word x = lim n→∞ f n (a) is the Thue-Morse word. The Thue-Morse set is the set of factors of the Thue-Morse word. It is uniformly recurrent but it is not a tree set since E(ε) = A × A.
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 31 Fig. 3.1. An automaton of S-degree 3.

  Symmetrically, one denotes by L the equivalence defined by mLn if M m = M n. It is well-known that the equivalences R and L commute. The equivalence RL = LR is denoted D. Finally, one denotes by H the equivalence R ∩ L.

  one has nLϕ(uwv). Thus m, n are D-equivalent, and ϕ(uwv) ∈ R(m) ∩ L(n). Set p = ϕ(wv). Then p = ϕ(w)n and, with the previous notation, n = ne ′ = nqϕ(u)p, so L(n) = L(p). Thus mp = ϕ(uwv) ∈ R(m) ∩ L(p), and by Clifford and Miller's Lemma, R(p) ∩ L(m) contains an idempotent. Thus the D-class of m, p and n is regular.
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 32 Let S be the Fibonacci set and let A be the automaton represented in Figure 3.2 on the left. The S-minimal D-class of the transition monoid of A is represented in Figure 3.2 on the right.

b * ba * ba 2 1, 2 , 3 *Fig. 3 . 2 .

 22332 Fig. 3.2. The automaton A and the S-minimal D-class

  Stab M (I) = {x ∈ M | Ix = I} or Stab(I) if the monoid M is understood. The holonomy group of M relative to I is the restriction of the elements of Stab M (I) to the set I. It is denoted Group(I).
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 33 Let S be the set of factors of (ab) * and let A be the automaton of Figure3.3. The minimal S-rank of A is 2 but the group G A (S) is trivial.
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 33 Fig. 3.3. An automaton of S-rank 2 with trivial S-group
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 3435 Fig. 3.4. An automaton of S-degree 3 with trivial S-group

Proof.

  By Theorem 4.3, there exist n -1 pairwise disjoint S-maximal suffix codes Y i (2 ≤ i ≤ n) such that P contains all Y i . By the dual of Proposition 4.1, we have ρ S (Y i ) = Card(A) -c for 2 ≤ i ≤ n. Since ρ S (ε) = e S (ε) -ℓ S (ε) = m S (ε)+r S (ε)-1 = Card(A)-c, we obtain ρ S (P ) ≥ ρ S (ε)+(n-1)(Card(A)-c) = n(Card(A) -c). 4.1 A cardinality theorem for prefix codes Theorem 4.4. Let S be a uniformly recurrent neutral set of characteristic c. Any finite S-maximal prefix code has at least d X (S)(Card(A) -c) + 1 elements.
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 434142 Fig. 4.1. A prefix code of S-degree 3
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 143 Indeed, let t ∈ S be such that vt ∈ X. Then, one has p • x = q if and only if uxt ∈ X * which is equivalent to ux ∈ Hv. Since Stab(I) generates F A , Equation (4.1) shows that the bijection u → i • u from P onto I defines an equivalence from G X (S) onto the representation of F A on the cosets of H. Example 4.5. Let S be the Fibonacci set and let Z = A 2 which is a group code of degree 2 corresponding to the morphism from A * onto the additive Z/2Z sending each letter to 1. Then X = {aa, ab, ba}. The minimal automaton of X * is represented in Figure4.3 on the left. The word a has 2 parses and its image The minimal automaton of X * and the action on minimal images.

  3, Theorem 7.2.5] for a Sturmian set S. Recall that a group code of degree d is a bifix code Z such that Z * = ϕ -1 (K) for a surjective morphism ϕ from A * onto a finite group G and a subgroup K of index d in G. Equivalently, a bifix code Z is a group code if it generates the submonoid H ∩ A * where H is a subgroup of index d of the free group F A .