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[1] We present a realistic application of an inversion scheme for global seismic
tomography that uses as prior information the sparsity of a solution, defined as having
few nonzero coefficients under the action of a linear transformation. In this paper, the
sparsifying transform is a wavelet transform. We use an accelerated iterative
soft-thresholding algorithm for a regularization strategy, which produces sparse models in
the wavelet domain. The approach and scheme we present may be of use for preserving
sharp edges in a tomographic reconstruction and minimizing the number of features in the
solution warranted by the data. The method is tested on a data set of time delays for
finite-frequency tomography using the USArray network, the first application in global
seismic tomography to real data. The approach presented should also be suitable for other
imaging problems. From a comparison with a more traditional inversion using damping
and smoothing constraints, we show that (1) we generally retrieve similar features,
(2) fewer nonzero coefficients under a properly chosen representation (such as wavelets)
are needed to explain the data at the same level of root-mean-square misfit, (3) the model
is sparse or compressible in the wavelet domain, and (4) we do not need to construct a
heterogeneous mesh to capture the available resolution.
Citation: Charléty, J., S. Voronin, G. Nolet, I. Loris, F. J. Simons, K. Sigloch, and I. C. Daubechies (2013), Global seismic
tomography with sparsity constraints: Comparison with smoothing and damping regularization, J. Geophys. Res. Solid Earth,
118, 4887–4899, doi:10.1002/jgrb.50326.

1. Introduction
[2] In order to increase the resolution of tomographic

images, we seek improvements in the way that the infor-
mation contained in seismograms is used. Dahlen et al.
[2000] introduced the use of frequency-dependent body
wave data (delay time and/or amplitude) and derived kernels
with which finite-frequency effects are taken into account.
Chevrot and Zhao [2007] showed that the parameteriza-
tion of the model is of crucial importance to benefit from
the spatial structure of a finite-frequency sensitivity kernel.
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These kernels show variations in sensitivity over small spa-
tial length scales that potentially allow for a solution with
better resolution than offered by ray theory. However, in
order to exploit the enhanced sensitivity, it is essential that
the details of its structure are not smoothed away by a param-
eterization that allows only for long wavelengths, so we
will have no choice but to overparameterize. Another rea-
son for overparameterization of a tomographic model is that
with the very high station density obtained today in net-
works like USArray and its flexible component, or HiNet in
Japan, a resolution of the order of better than 50 km is often
within reach in global tomography, if only locally and for
shallow structure.

[3] In a tomographic inverse problem, we generally
encounter the following phenomenon: The system to be
solved is underdetermined; that is, for linear problems, the
sensitivity matrix has more columns than rows and we need
to solve for more unknowns than there are data. On the
right-hand side of the problem, the data are noisy, and the
singular values of the matrix decrease rapidly toward zero.
Generally speaking, the matrices encountered in this setting
are not well conditioned. Since the problem is underdeter-
mined, constraints on the solution are generally added to
impose uniqueness of the solution. Due to the noise in the
right-hand side and the ill-conditioning of the matrix, it is
necessary to use regularization for the solution of the lin-
ear system. The choice of regularizing constraints and the
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utilized algorithm are crucial to the characteristics of the
obtained solution. In this paper, we adopt a framework for
dealing with these problems using sparsity-constrained opti-
mization applied in the wavelet model domain and apply it
to actual experimental data.

[4] The poor conditioning of the matrix means that rel-
atively few singular values are of sufficient magnitude, in
comparison to the maximal rank for a matrix of that size.
A simple regularization method is a truncated singular-value
decomposition (SVD) whereby we compute the solution
using only the singular vectors of the matrix that correspond
to the largest singular values. However, real-world tomo-
graphic systems are commonly too large to allow for such an
approach, since computing the SVD is expensive.

[5] An often-chosen option is smoothing by applying an
`2 norm constraint on the solution (or, alternatively, on its
gradient or Laplacian). The resulting quadratic problem is
easily solved by means of a linear system or via augmented
least-squares [Paige and Saunders, 1982], but has the dis-
advantage of smoothing away sharp boundaries (e.g., of a
subducting slab in global terrestrial tomography). One way
to alleviate the effects of overparameterization in large sys-
tems is to combine adjacent voxels into larger voxels, as
was first done by Abers and Roecker [1991]. One can use
ray coverage within each voxel as a guideline for combining
voxels, but the procedure is not unique, and there is no guar-
antee that a combined voxel is actually resolved, nor is this
system in a straightforward way related to SVD.

[6] In this paper we obtain regularized solutions by
imposing an `1 norm constraint on the wavelet representa-
tion of the model following on the work in seismic tomog-
raphy by Loris et al. [2007, 2010]. Our approach shares
many conceptual similarities with a variety of methods in
other seismological settings, such as those proposed by Li
et al. [1996], Lin and Herrmann [2007], and Herrmann
and Hennenfent [2008], and considered for other imaging
and signal processing problems by Figueiredo et al. [2007],
Vonesch and Unser [2008], and numerous other authors such
as reviewed by Bruckstein et al. [2009]. In these papers,
the sparsity-seeking behavior of the `1 norm is discussed
in detail.

[7] If a sparsity constraint can be imposed on the solution
via a penalty function, based on some prior knowledge, a res-
olution that seemingly exceeds fundamental limitations can
be obtained. In a Bayesian interpretation, the extra informa-
tion supplied can perhaps even be gleaned adaptively during
the course of the experiment [Haupt and Nowak, 2012].
Szameit et al. [2012] exploit the knowledge of the spar-
sity of an object in a known basis to reconstruct features
much smaller than the classical diffraction limit. Under some
special circumstances, “compressed sensing” enables the
realization of sub-Nyquist sampling [Davenport et al., 2012;
Herrmann et al., 2012]. Since wavelets represent identifi-
able structures localized in space, the `1 norm minimization
tends to satisfy our demand that the tomographic solution
does not have more “structure” than warranted by the data.
It can also conserve sharp boundaries in the solution if these
are imposed by the data.

[8] It is important to realize that every form of regular-
ization represents a subjective choice of one model over
infinitely many that satisfy the data to the same degree.
Annihilating null-space components by a simple damping

of the model norm leads to erratic solutions unless the
data coverage is without any major gaps [VanDecar and
Snieder, 1994]. To bridge gaps left by imperfect data cover-
age, smoothing has been, until now, the preferred method in
global seismic tomography—whether implemented by lim-
iting the number of coefficients in a spherical harmonic
expansion [Ritsema et al., 2011] or by damping the `2 norm
of the gradient or the Laplacian of the model.

[9] Although both methods use components of the null-
space to bridge gaps, the `1 norm regularization offers an
alternative to smoothing in the sense of an `2 penalty on the
Laplacian. Whether it is “better” than smoothing depends
on the situation at hand, and probably also on the subjec-
tive preference of the geophysicist. If information on the
sharpness of discontinuities is available and can be used as a
formal constraint in a Bayesian sense, the ability to preserve
sharp boundaries may very well give `1 norm regularization
an advantage over smoothing. At the same time, the coeffi-
cient thresholding that we employ should guard us against
the inclusion of null-space components that are not strongly
warranted by the data—and furthermore, such wavelet-basis
components will wield an influence that is strictly localized
in the model space.

[10] In this paper we quantify the differences between
either option in terms of solution quality, computation
speed, and algorithmic complexity. For a theoretical justifi-
cation that goes beyond arguing for subjective preferences
on the part of the user, we point to the early work by
Donoho [1995] which contrasts the linear filtering of global,
operator-dependent eigenfunctions of classical regulariza-
tion techniques that include truncated SVD solutions, with
the nonlinear approach of thresholding model coefficients
in a wavelet basis—see our section 2. The crucial differ-
ence lies in our emphasis on representing the model, i.e., the
object to be recovered, rather than the operator of the inverse
problem itself, and in the space-scale localization and thus
sparsifying nature of the wavelet basis acting on the model.

[11] Up to now, to our knowledge, the wavelet basis has
been used in global seismic tomography in two different
ways. The first uses the resolvability properties of wavelets
[Chiao and Kuo, 2001] and the second their compressibil-
ity [Chevrot and Zhao, 2007; Chevrot et al., 2012]. The
first method benefits from the spatial variation of the res-
olution that can be achieved within the wavelet basis. The
second uses the property that in the wavelet basis, the model
can be sparser and therefore, in this basis, the model can
be compressed. Here we discuss an inversion scheme that
benefits from both properties, resolvability and compress-
ibility, and that flexibly handles spatial variations in model
resolution. In areas where the allowable model resolution
is better than others, by being able to utilize information
locally, our method flexibly handles such situations. Our
present paper follows the philosophy of the earlier work
by Simons et al. [2011], who developed a wavelet basis on
the cubed Earth and described (but did not actually test in
three-dimensional space) an inversion algorithm. We imple-
mented their wavelet transformation by extension to three
dimensions and thereby applied their proposed method in
its full complexity, using a large set of real data, includ-
ing the effects of source-correction terms. The novelty of
our contribution lies in the implementation, for realistically
sized applications in global seismic tomography, of methods
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Figure 1. Location of the sources (blue triangles) and stations (red squares) used in our inversion
experiment. The latitudes marked correspond to the model cross sections presented in Figures 6–9.

that are related to those that have been espoused in partic-
ular by the exploration-seismological community [e.g., Li
et al., 1996; Tikhotsky and Achauer, 2008; Gholami and
Siahkoohi, 2010; Tikhotskii et al., 2011, Li et al., 2012].

[12] We first present the wavelet parameterization and
the `1 norm-regularized least-squares inversion method
(section 2). Subsequently, we determine the correct regular-
ization parameter by constructing an L-curve (section 5.1).
In section 5.2 we show the final preferred velocity model and
compare it with the result of Sigloch et al. [2008], which was
obtained with a more commonly used `2 inversion scheme
using imposed, isotropic smoothing and damping in a tetra-
hedral voxel parameterization whose mesh size increased
with depth. Using `1 regularization is a sensible choice in the
wavelet model domain, as the transform is spatially localized
and naturally sparsifying. One could envisage replicating
the `2-regularizing schemes in the wavelet domain also,
but since our wavelet transform is almost norm preserv-
ing, models obtained with `2 regularization are virtually
unchanged under a change of parameterization from tetrahe-
dra to our wavelets. This invariance explains our choice to
use Sigloch’s output model rather than regenerating it from
the primary data sets.

2. Method
[13] We use the “cubed Earth,” that is, the cubed sphere

representation of Ronchi et al. [1996], a wavelet trans-
form, and the Fast Iterative Soft-Thresholding Algorithm
(FISTA) of Beck and Teboulle [2009] to invert the data in the
new parameterization.

[14] The details of the parameterization or wavelet trans-
formation can be found in Simons et al. [2011]. Briefly,
the Earth is parameterized with six chunks that divide the
surface of a sphere (see Figure 1). Each chunk, for this
study, is sampled by 128 � 128 voxels in the angular direc-

tions. In depth, there are 37 layers (Table 1) distributed
unevenly by subsampling an original division of 128 layers
of equal thickness (Figure 2). Therefore, the model consists
of 6� 128� 128� 37 (3,637,248) voxels or unknowns. This
number has to be compared to the 92,175 unknowns or grid
points of the tetrahedral parameterization used by Sigloch
[2008], Sigloch et al. [2008], and Tian et al. [2009] for mod-
els of the mantle under USArray or 19,279 grid points for
the global model of Montelli et al. [2006].

[15] In contrast to these earlier studies, the size of vox-
els is smaller at the core-mantle boundary (CMB) than near
the surface. The angular discretization remains constant irre-
spective of the radius. As it decreases with depth, the ratio
of the size of a voxel at the surface to one in the low-
ermost layer is around 2. The linear horizontal size of a
voxel at the surface is around 80 km and thus 40 km at the
CMB. The resulting voxels are close to cubic in shape near
the surface, but their height of 90 km remains constant. In
comparison, for the parameterization used by Sigloch et al.
[2008], the face length is around 200 km in the upper man-
tle under unconstrained regions (Pacific, Asia, for example)

Table 1. Radius of the Layer Boundaries for the 37 Layers of the
Model Domain

Radius Radius Radius Radius
Layer (km) Layer (km) Layer (km) Layer (km)

1 3481.4 11 4294.1 21 5197.1 31 5964.7
2 3526.6 12 4384.4 22 5287.4 32 6009.8
3 3571.7 13 4474.7 23 5377.7 33 6100.1
4 3662.0 14 4565.0 24 5468.0 34 6190.4
5 3752.3 15 4655.3 25 5558.3 35 6280.7
6 3842.6 16 4745.6 26 5648.6 36 6325.9
7 3932.9 17 4835.9 27 5693.8 37 6348.4
8 4023.2 18 4926.2 28 5738.9 38 6371.0
9 4113.5 19 5016.5 29 5829.2
10 4203.8 20 5106.8 30 5919.5
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Figure 2. Illustration of the mapping of the 128 divisions
to the 37 layers and of the 37 layers to the 32-component
vector required for the wavelet transform.

but is around 70 km under USArray with a linear decrease
to 600 km at the center of the Earth.

[16] The cubed Earth representation is chosen because it
allows us to define a Cartesian coordinate system on which
we can use various families of wavelets developed in other
fields (for example, image processing). Terrestrial hetero-
geneities must be well represented in the chosen wavelet
basis; there are many different wavelets to choose from to
ensure that this is the case.

[17] The separable wavelet transformation defines a mul-
tiresolution basis in the combined three dimensions. Simons
et al. [2011] tested a number of wavelets, starting with
orthogonal Daubechies [1988] wavelets of varying filter
lengths, namely D2 (Haar), D4, and D6. In those cases, the
resolved model suffered from artifacts because the wavelets,
except for the Haar wavelets, are not (anti)symmetric.
Random-shift methods [Figueiredo et al., 2007; Vonesch
and Unser, 2008] might have been called to action, but these
would involve recalculating our matrix A, which is costly.
In the end, we sacrificed orthogonality for symmetry, as is
often done in image processing, by using the Cohen et al.
[1992] biorthogonal CDF wavelet family. In the angular
directions, the chosen wavelet basis is CDF 4–2 [see Simons
et al., 2011, Figure 4]. In the radial dimension, we retained
the Haar wavelet family. Since the latter basis encompasses
“layers” of constant value, it implicitly allows for abrupt
discontinuities. Also, as there are only 37 layers in our
model domain, using smoother wavelets (with more van-
ishing moments, corresponding to longer filters) would be
more difficult to implement across many decomposition
scales. We would simply have too few scales available to
attain the asymptotic regime in which using wavelets with
more vanishing moments, appropriate for the second-order
tomographic operator, would make a material difference.

[18] The algorithm used for the wavelet transform uses a
discretized model with 2n elements in each spatial direction.
We have 128 voxels in the two horizontal (x, y) directions
in the cubed Earth parameterization; in the z direction, we
could adopt 32, 64, or 128 elements. However, we must
explicitly represent the depths of discontinuities and possi-
bly crustal layering. We chose 32 elements but felt com-
pelled to transform parts of the model using a smaller voxel
spacing in the z direction (e.g., near known boundaries in
the Earth such as the 410, 660 km, and core-mantle dis-
continuities). Figure 2 illustrates the mapping of the 128
divisions to an initial set of 37 layers from which the final 32-
element radial vector is constructed. The construction shown
in Figure 2 combines the thinner layers by averaging in two
stages. Starting from a 128-layer division, in a first step, we
create 37 layers, most of them composed of four original lay-
ers except near major discontinuities and the surface. These
37 are subsequently reduced to 32 = 25 but the differences
between adjacent thin layers are stored so that the reverse
transformation is possible. Thus, the transformation from
37 to 32 layers is invertible and mimics a lifting-scheme
algorithm for the wavelet transform using only means
and differences.

[19] The wavelet transform reorganizes the information
into a set of details appearing at different resolutions,
or levels. Multiresolution analysis consists of successively
projecting the signal onto subspaces in a series of increas-
ingly coarser approximations. Given a sequence of increas-
ing resolutions (rj)j2J , the details of the information at
resolution rj are defined as the difference of informa-
tion between its approximation at the resolution rj and its
approximation at the lower resolution rj–1 [Mallat, 2008].
A variety of algorithms is available to carry out the trans-
forms efficiently [Strang and Nguyen, 1997; Jensen and
la Cour-Harbo, 2001]; for the short filter lengths that we
use, computation speeds do not vary appreciably between
algorithms [Sweldens, 1996].

2.1. Toward a Sparse Model
[20] We proceed to describe the background to our

approach. We start at the linear system:

Am = b, (1)

where A 2 RN�M contains the kernels, b 2 RN the data,
and m is the “true” but unknown model to be estimated. In
our problem, N, the number of data, is smaller than M, the
number of unknowns, making the system underdetermined.
Moreover, the matrix A is generally ill-conditioned and only
a noisy version of the data b is measured. The classical way
to deal with the noise in b is to minimize the term kAm – bk2

2
in the inversion. It is, however, well understood that addi-
tional constraints must be added to the linear system (1) to
account for the system being underdetermined and to obtain
a reasonably bounded solution owing to the ill-conditioning
of the matrix.

[21] We thus look for a solution Nm that minimizes the
functional:

Nm = arg min
m

˚
F (m) = kAm – bk2

2 + R(m)
�

, (2)

where R(m) is some penalty function. In classical tomogra-
phy, R(m) is equal to �kmk2

2, or more generally �kˆmk2
2,
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Figure 3. Comparison of `2 norm and `1 norm minimization in the two-dimensional (x, y) plane. The
solution is defined by the black dot at the intersection of the black (for the quantity to be minimized) and
the red (for the linear constraint) curves. (left) min(|x|2 + |y|2), different contours shown in blue, subject
to ax + by = c, in red. (right) min(|x| + |y|) subject to ax + by = c. The `1 norm minimization generally
produces a sparse solution: In this case, one of the components is exactly zero.

where ˆ is a linear operator such as the gradient or Lapla-
cian used to impose model smoothness. The advantage of
this approach, commonly known as Tikhonov regularization,
lies in its simplicity. When ˆ = I and R(m) = �kmk2

2, the
solution to the quadratic problem is given in terms of the
linear system:

Nm = arg min
m

˚
kAm – bk2

2 + �kmk2
2
�
” (ATA + �I) Nm = ATb. (3)

One way to implement Tikhonov regularization is via solv-
ing the augmented least-squares problem:

Nm = arg min
m

����
�

Ap
�ˆ

�
m –

�
b
0

�����
2

2
, (4)

usually by standard least-squares solvers such as LSQR
[Paige and Saunders, 1982]. The desired effect of the regu-
larization is to filter the contributions from the small singular
values of the matrix A to the solution. Using the SVD
A = U†VT, we can write the solution by substitution in
equation (4) for the case ˆ = I as

Nm = arg min
m

����
�

U†VT
p
�I

�
m –

�
b
0

�����
2

2
= Vdiag

�
�i

�2
i + �

�
UTb, (5)

and the effect of this regularization is to replace the small
singular values �i by �i/(� 2

i + �), which prevents those
smaller than

p
� from dominating the solution.

[22] Introducing a two-norm (`2) constraint on the solu-
tion, however, is not the only way to realize the benefits
of regularization. If other assumptions on the model can be
made, different constraints can be used. The main hypothe-
sis we make in this paper is that the unknown model is sparse
in a particular basis.

[23] Wavelets provide a way to sparsely represent a (geo-
physical) model using functions at different scales, which
allows the representation and analysis [e.g., Herrmann and
Bernabé, 2004] of different features corresponding to differ-
ent wavelengths (or sharpness). Simons et al. [2011] show
that the seismic velocity model of Montelli et al. [2006] or
that of Ritsema et al. [2011] can be efficiently represented
in a “four-tap” orthogonal Daubechies [1988] wavelet basis
(D4) using few nonzero expansion coefficients. In other

words, these models can be considered sparse in this wavelet
basis. For this paper, we assume that this is also true with
respect to the biorthogonal CDF 4–2 basis which we use
for the model that we wish to reconstruct. Physically, this
means we assume that heterogeneity in the Earth is orga-
nized in identifiable entities that are well modeled with
wavelets [Piromallo et al., 2001]. Consequently, we sup-
pose that tomographic models have a sparse representation
in the wavelet basis and that this new type of constraint
can be used to find an estimate of velocity variations within
the Earth.

[24] Mathematically, forcing a sparsity constraint on the
model norm in the wavelet domain implies that we would
like to introduce a penalty on the term Wm, where W is
to represent the action of the forward wavelet transform.
Instead of imposing a quadratic penalty on Wm, which would
not give a sparse solution, we could consider the so-called `0
measure which counts the number of nonzero components of
a vector. The `0 measure is, however, not a norm and highly
nonconvex (which means it has many local minima) mak-
ing it difficult to work with numerically, especially in the
case of ill-conditioned matrices. Moreover, direct minimiza-
tion of the `0 measure would be combinatorially difficult.
For these reasons and based on an abundance of results
from the compressive-sensing literature [see, for example,
Candès and Wakin, 2008; Donoho, 2006], we will use
instead the closest convex norm to the `0 measure, the `1
norm, which is simply the sum of the absolute values:

kWmk1 =
MX

i=1

|(Wm)i|. (6)

Under certain conditions on the matrix A in equation (1),
both the `0 measure and the `1 norm penalties return iden-
tical results (see Figure 3 for a simple example and a
comparison with the `2 norm). As parts of the globe are
not illuminated by the kernel coverage (leading to near-zero
columns in the matrix A), we know that these conditions may
not be satisfied. However, in such a case, the `1 norm penalty
approach still yields stable sparse solutions. Daubechies
et al. [2004] highlight the regularizing action (small changes
in the data do not lead to high variance in the reconstructed
models) and prove the convergence of such schemes as will
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be discussed below. Thus, the minimization problem that we
wish to solve is now given by

Nw = arg min
w

˚
kAW–1w – bk2

2 + 2�kwk1
�

with Nm = W–1 Nw, (7)

[25] where we have identified the wavelet coefficients
w = Wm (the forward wavelet transform of the model) and
m = W–1w (the inverse wavelet transform of the forward
transformed model). Remember that our transform is not
orthogonal; hence, we write the inverse and not the trans-
pose of the operator W. We have replaced the regularization
parameter � with 2� for convenience in writing down the
algorithm for its minimization. Equation (7) forms the basis
of the algorithm that we consider in this paper. If—for any
reason—one preferred to keep the number of coefficients
low at particular length scales and not others, equation (7)
can easily be adapted by weighting each scale differently.

2.2. Algorithm
[26] We now discuss the approach we use to solve (7).

The main advantage of the one-norm `1 penalty k � k1 is its
convexity. Indeed, kAW–1w – bk2

2 + 2�kwk1 is convex and is
globally minimized for the conditions:�

(AW–1)T(b – AW–1 Nw)
	

i = �sgn( Nwi) , 8i with Nwi ¤ 0,
|
�
(AW–1)T(b – AW–1 Nw)

	
i | � � , 8i with Nwi = 0. (8)

Such conditions, however, appear much more complicated
than the linear system that arose in the case of `2 norm
regularization, although we may immediately observe that
Nwi = 0 8i when � > k(AW–1)Tbk1. This gives us an upper

bound on the choice of � . Beyond this fact, however, we
cannot make efficient use of these conditions directly. Fortu-
nately, simple algorithms for the above minimization exist.
They are based on the soft-thresholding function:

S� (u) �

8<
:

u – � u > �
0 |u| � � ,
u + � u < –�

(9)

as defined by Donoho and Johnstone [1994]. The simple
use of the majorization-minimization approach [Daubechies
et al., 2004] then yields the following straightforward
scheme for solving equation (7) starting with any initial
estimate m0 for the model:

w0 = Wm0, (10)
wn+1 = S�



wn + (AW–1)Tb – (AW–1)T(AW–1)wn� , (11)

mn+1 = W–1wn+1. (12)

[27] The above scheme, known as ISTA, short for Itera-
tive Soft-Thresholding Algorithm, converges for any initial
guess with the condition that kAW–1k2 < 1, which can be
accomplished by rescaling the matrix A, the data b, and the
penalty parameter. The parameter � is chosen to be smaller
than k(AW–1)Tbk1. When � is large, the convergence is
faster and the solution is sparser in the wavelet domain. It
typically is also slightly smaller—motivating some to opt
for a debiasing step by a final `2 projection on the support
of the result [Mallat, 2008]. We ran tests with matrices of
similar conditioning as our A and with synthetically gener-
ated models, but we did not observe significant differences
in terms of mean-square error when using debiasing after the
`1 solve. In principle, � might be chosen differently for dif-
ferent types of coefficients, allowing us to vary the degree

of sparsity, for example, between detail and approximation
coefficients. In practice, this simple scheme is known to con-
verge considerably more slowly than a similar accelerated
(F for Fast) scheme known as FISTA [Beck and Teboulle,
2009], in which the soft-thresholding operation is applied
to a linear combination of the two previous iterates, so that
for n = 1, : : :,

w0 = 0, (13)

wn+1 = T
�

wn +
tn – 1
tn+1

(wn – wn–1)
�

, (14)

T(x) = S� (x + VTb – VTVx), (15)

with V = AW–1 and tn a sequence of numbers defined by
tn+1 = (1 +

p
1 + 4t2

n)/2, and t1 = 1. The FISTA has the
same computational complexity as ISTA but a substantially
faster rate of convergence. The computational requirements
at each iteration are to perform matrix-vector multiplications
with the matrix AW–1 and its transpose W–TAT. This requires
the existence of the inverse wavelet transform W–1 and the
inverse-transpose transform W–T, the dual of the forward
transform W.

[28] In short, while there are many alternatives [e.g.,
Figueiredo et al., 2007; van den Berg and Friedlander,
2008], our predilection for FISTA also keeps the number of
matrix-vector multiplications low, and with a suitable choice
of step lengths (and apart from the empirical lowering of the
penalty parameter), we enjoy a guaranteed convergence of
the algorithm.

3. Incorporating Corrections
[29] In seismic tomography, there is generally a trade-off

between velocity model perturbations and corrections for
the published origin times of the earthquakes, directivity
effects that influence the cross correlations used to mea-
sure delays, and the coordinates of the hypocenter—each
of which influences the data. Therefore, we include in our
inversion corrections, u, for the locations and origin times
of the earthquakes. Hereby, we follow established practice,
while noting that there is recent work by Aravkin and van
Leeuwen [2012] on the theoretical justification of solving
for such and other “nuisance parameters” in a tomographic
context. This part of the inversion must not be constrained
in the same way as the model, and therefore, the system of
equations that we solve approximately is�

AW–1 C
0 D

� �
w
u

�
=
�

b
0

�
. (16)

The submatrix C contains the correction coefficients applied
to the subvector u, while D is a diagonal matrix of damp-
ing terms. In our experiment, the vector u will be composed
of about 2000 elements and as such, is substantially smaller
than the vector w which will count over 3 million elements.
To enforce the sparsity of w as a way to regularize the
problem, we now seek to solve the problem

[ Nw, Nu] = arg min
w,u

����
�

AW–1 C
0 D

� �
w
u

�
–
�

b
0

�����
2

2
+ 2�kwk1. (17)

Letting V = AW–1, the two-parameter functional that we
minimize is

F(w, u) = kVw + Cu – bk2
2 + kDuk2

2 + 2�kwk1. (18)

4892



CHARLÉTY ET AL.: SPARSITY-CONSTRAINED SEISMIC TOMOGRAPHY

To minimize the above functional with respect to both vari-
ables, we use alternate minimization: We update w and u
independently for some initial guesses w0 and u0, one after
the other in the iteration. Holding u = un constant we
can write

wn+1 = arg min
w



kVw – kk2

2 + 2�kwk1
�

with k = b – Cun. (19)

This update proceeds iteratively, through the accelerated
FISTA scheme. Once wn has been updated to wn+1, we hold
w = wn+1 constant to update un:

un+1 = arg min
u



kCu – lk2

2 + kDuk2
2
�

with l = b – Vwn+1. (20)

The latter equation is quadratic, with un+1 satisfying the
linear system:



CTC + DTD

�
un+1 = CT 
b – Vwn+1� , (21)

where mn+1 = W–1wn+1 represents the tomographic model
and un+1 the correction terms.

[30] The whole algorithm is given in pseudocode as

[31] For the inversion, two important technical aspects
have to be addressed: the choice of the threshold, � , and the
maximum level of the wavelet decomposition. The optimal
level of wavelet decomposition depends on the structure of
the model and the data sensitivity to it. To choose � , we use
a continuation scheme that starts with the zero vector at �
just below k(AW–1)Tbk1. At this value of � , w = 0 is a good
initial guess for the wavelet-transformed solution, since the
optimality conditions of the `1 functional (8) indicate that
the solution vanishes for values exceeding � . Thus, the con-
vergence at the initial point is expected to be fast. We then
proceed to use the obtained solution, lowering � at every
iteration. We stop this procedure when the obtained solu-
tion satisfies the desired mean-square error, although we may
elect different stopping criteria.

[32] In the following section, tests with real data are pre-
sented. The aim of these tests is to appreciate the behavior of
the algorithm and the role of the regularization parameter � .
Only after determining an optimal threshold and decompo-
sition level can we perform an inversion on real data. The
maximum level of decomposition for the wavelet transform
is set to 2 in our experiments. By implication, the threshold-
ing of the wavelet coefficients is only applied to structures of
size 22 = 4 times the filter length or smaller. In subsequent
sections we will provide physical length scales (in angular
degrees across the surface or in kilometers at depth) for these
and other values of the wavelet scales, where appropriate.

4. Data
[33] For this study, we use the cross-correlation delay

times from the database built by Sigloch [2008] in whose
published work more details can be found. This is only
a subset of the data used by Sigloch et al. [2008], who
also included amplitude variations in their inversion. Also
excluded are a small number of regional International Seis-
mological Centre (ISC) delay times that only influence
shallow structure. Source and receiver locations are shown
in Figure 1. The receivers are those of the USArray experi-
ment in its early stage; that is, they are concentrated in the
western part of the U.S. The locations of the sources provide
a suitable azimuthal sampling for this region.

[34] Our data set is composed of N = 430,554 P wave
delay times. These are estimated in eight different frequency
bands whose central periods are 30, 21.2, 15, 10.6, 7.5,
5.3, 3.7, and 2.7 s. The frequency bands are tapered with
a Gabor function that minimizes sidelobes in the kernels,
which renders them spatially relatively compact.

5. Results
5.1. Threshold Determination and the Pareto Curve

[35] The first parameter to establish is the regularization
parameter, � = 2� . The role and influence of that parameter
were determined by computing several inversions with dif-
ferent values for a two-level wavelet decomposition. Each
inversion was run for a limited identical number of 566
iterations, chosen for practicality. While this number of iter-
ations did not necessarily lead to complete convergence,
nevertheless, an acceptable solution was found in all cases.

[36] We computed a reduced chi-square statistic �2
red =

�2/N, the number of nonzero coefficients of the model in the
wavelet domain, and the `1 norm of the model in the wavelet
domain. This information is used to construct a Pareto
curve whose implication and significance are discussed
for `1-regularized least-squares problems by Hennenfent
et al. [2008] and van den Berg and Friedlander [2008], to
name a few.

[37] As expected, the larger the threshold, the more dif-
ficult it is to reach a good fit to the data (Figure 4 and
Table 2); for a large threshold, the number of removed
wavelet coefficients is too large to find a model that satisfies
the data. On the other hand, if the threshold is too low, the fit
to the data is easily assured and some coefficients only have
a negligible impact on explaining the data.

[38] In our experiments, the �2
red value bottoms out to

about 0.39. This value is also found by Sigloch [2008,
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Figure 4. Trade-off L-curve for the FISTA inversion scheme. The value of the threshold � is shown at
each point.

Table 2-1, p. 96, Chapter 2] using a more classical inver-
sion with a tetrahedral parameterization. If the data errors
in the direct problem were correctly estimated, the �2

red
value is expected to reach 1. However, as stated in Sigloch
[2008, Chapter 2, p. 98, Figures 2–4], the initial error esti-
mates in the delay times may have been too pessimistic, by
about 30%. We chose the value of the threshold located at
the corner of the L-curve [Hansen, 1992] shown in Figure 4:
the regularization parameter � � 8.10–5 and �2

red = 0.46.
This value of the regularization parameter yields a good
balance between a small residual norm kA Nm – bk and a small
solution k Nwk1.

[39] For the chosen value of the regularization param-
eter, Figure 5 shows the evolution of the data misfit and
model norms during one inversion whose maximum num-
ber of iterations was limited to 700. Color represents the
iteration number. The curve decreases monotonically. Con-
vergence is almost fully achieved after 300 iterations. Dur-
ing the last 400 iterations, the evolution of the two norms
is much slower. The final value of �2

red is similar to the
one obtained with 566 iterations: 0.4590 (for 700 iterations)
compared to 0.4609 (for 566 iterations). The final model has

Table 2. Value of the `1 Norm of the Final Model in the Wavelet
Space, the Reduced Chi-Square Statistic �2

red, the Corresponding
Threshold �, and the Number of Nonzero Wavelet Coefficients

kwnk1 �2
red � Nonzeros

4 1.53 4� 10–02 3
110 0.96 4� 10–03 104
219 0.80 2� 10–03 217
309 0.73 1� 10–03 321
462 0.65 8� 10–03 539
2,521 0.46 8� 10–05 5,838
7,435 0.42 2� 10–05 39,951
15,941 0.40 7� 10–06 128,955
35,481 0.39 8� 10–07 404,161
46,944 0.39 4� 10–10 1,444,608
46,962 0.39 8� 10–14 1,641,522
46,962 0.39 8� 10–18 1,643,240

5289 nonzero coefficients, a value to be compared with the
3,637,248 degrees of freedom, equivalent to a relative spar-
sity of 0.14%. Should we take into account that our stations
are located mainly in North America (Figure 1), and were we
to compute sparsity only over one of the six chunks of the
cubed Earth and only for the upper 1500 km of our model,
the percentage would still be 1.5%. Either way, the hypothe-
sis that a sparse representation in the wavelet domain exists
for the given parameterization is confirmed, since the models
have a very small number of nonzero wavelet coefficients.
Using those, we are able to explain the data down to the
estimated noise level.

5.2. Velocity Model
[40] Our preferred velocity model is shown in

Figures 6–9, where it is compared to that obtained by

Figure 5. Evolution of the reduced chi-square misfit and
the `1 norm of the model in the wavelet domain with the
iteration number color-coded, for one inversion.
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Figure 6. Cross section through the velocity models at 34ıN (see Figure 1 for location). The top
left panel is the cross section in the Sigloch [2008] model. The bottom left one is from this study. In
the top right, we represent the values of the velocities as a density scatterplot for the well-resolved
(hi-res) part, a total least-squares regression line through the data (thick black line) and the one-to-one line
for reference (thin black line). The well-resolved part (rectangles) is located below the dense network in
the upper mantle. The remainder of the model domain is less well resolved. In the bottom right, we show
energy spectra of the heterogeneity in both cross sections, as the `2 norms of their wavelet coefficients for
different scales. See text for details.

dV
p
/V

p
 in %

−5 −4 −3 −2 −1 0 1 2 3 4 5

12345
101

102

103

wavelet scale

l2
 n

or
m

l2 model
l1 model

de
pt

h 
[k

m
]

longtitude at 37.5° N

l1 regularized least squares

−130° −120° −110° −100° −90° −80° −70°

0

500

1000

1500

dV
p
/V

p
 in % [l

1
 model]

dV
p/V

p in
 %

 [l
2 m

od
el

]
hi res

R2 = 0.43

−5 0 5

−5

0

5B

de
pt

h 
[k

m
]

l2 regularized least squares

0

500

1000

1500

Figure 7. As in Figure 6 but for a cross section at 37.7ıN (see Figure 1 for location).
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Figure 8. As in Figure 6 but for a cross section at 40ıN (see Figure 1 for location).

Sigloch [2008]. The difference between our and their studies
lies in the prior information introduced in the inversion:
We use the sparsity hypothesis (see section 2.1). A minor
difference is that we did not use the regional ISC P wave
arrival time data set, but this omission should only affect the
top 60 km of our model.

[41] The comparison between both models is made in a
number of ways. The first is by visual comparison of a few
important cross sections. The second is by plotting the values

of the voxels in one model versus the other in a given cross
section and calculating their correlation coefficients and a
total least-squares regression line. The third is by inspec-
tion of the scale-dependent decay of the spatial energy of
the velocity anomalies for a given section. Guided by the
resolution tests presented by Sigloch [2008], we distinguish
a well-resolved zone that corresponds to the part of the
sections below the dense network of USArray stations prior
to the year 2008 and down to the bottom of the upper mantle
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Figure 9. As in Figure 6 but for a cross section at 42ıN (see Figure 1 for location).
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Table 3. Significance-Tested Correlation Coefficients, R,
Between the Model by Sigloch [2008] and Our Study for the
Four Cross Sections Shown in Figures 6–9, Distinguishing the
Well-Resolved and Poorly Resolved Parts

Cross Section Resolved Unresolved
Latitude Zone Zone

34.0ı 0.71 0.37
37.5ı 0.65 0.39
40.0ı 0.74 0.50
42.0ı 0.69 0.43

(660 km depth). The horizontal extension of this zone may
evolve slightly with latitude; we outline it by a rectangle of
fixed location.

[42] In the well-resolved part of the study area, the cross
sections of the models obtained by `2 smoothing (top left
panels of Figures 6–9) and by `1 norm regularization (bot-
tom left panels of Figures 6–9) are visually very well
correlated. Comparing individual pixels gives correlation
coefficients that are uniformly around R � 0.7 at the four
latitudes shown. The top right panels of Figures 6–9 con-
tain density estimates of the scatterplots of the voxels from
the high-resolution part inside the marked rectangles. A total
least-squares regression line, taking into account the uncer-
tainty on both axes, was fit to the data points, and the
cross-correlation coefficients R2 are reported in the labels; R
values are further listed in Table 3, both for the well-resolved
and poorly resolved model domains. While the `2 model
appears somewhat smoother, and the amplitudes are some-
what smaller in the `1 model, the close overall agreement is
not unexpected: A well-resolved model should not be overly
sensitive to the type of regularization used.

[43] The similarity of the models is also largely upheld in
the regions where the resolution is poor, namely, in the east-
ern part of the cross section, and at depth. Thus, the broad
appearance of either model is rather similar over the entire
model domain. Roughly speaking, we are able to retrieve
the same features, but within the resolved zone, the scat-
ter in the pixel-by-pixel comparison between both models is
lower than in the poorly resolved zones, and the correlation
coefficients are higher (Table 3).

[44] However, not using the `2-smoothing operator
allows some sharp discontinuities in the velocity model to
survive the regularization, especially in the first 400 km of
the upper mantle. The `1 approach does not use any smooth-
ing per se. Of course, the very choice of wavelets and scaling
functions in the vertical dimension also introduces a degree
of spatial coupling of structure in that dimension, but since
the wavelets act as a decorrelation filter [Sweldens, 1995]
and the `1 scheme is designed to pick out the components
that most strongly contribute to the signal, any smoothing
introduced by the wavelet transform itself is data adap-
tive and of a more flexible nature than what is traditionally
imposed via voxel-based `2-regularization tools.

[45] In Figures 7 and 9, some small-scale features seen
between –90ı and –80ı and near the surface are not present
in the `2-regularized model. In our model, fewer features
are needed to explain the data. Examples can be seen in
Figures 6 and 7, referenced as A and B, and in Figure 8
where the structures referenced as C, D, and E are absent
in our model. These examples lie in the part of the model

where the resolution is lower. The similarity is greater in the
well-resolved part, but exceptions can be found near the
western part of that region. In Figure 9, the main individu-
ally labeled structures that were discussed by Sigloch et al.
[2008] are definitely also present in our model.

[46] The sparsity constraint forces the solution to explain
the data with structures represented by a minimum number
of wavelets. As expected, this tends to simplify the model.
This appears clearly under the craton between the longi-
tudes –110ı/ –105ı and –90ı where resolution is low and
our model presents a more uniform high-velocity anomaly.
Another implication concerns the continuity of features. The
connection between F1 and F2 in Figure 9 is a good example.
The absence of the G structure connects these two bodies.
The wavelet-based minimization outperforms the conven-
tionally obtained results in terms of connecting the positive
anomaly in the center right of all cross sections at depths
larger than 300 km. We conclude that the effects of regular-
ization are important in the ill-resolved parts of the model,
where wavelets are able to reduce the number of disjoint
anomalies without smoothing away the smaller scales that
can locally be important.

[47] Another quantitative measure of the changes owing
to regularization can be obtained by subjecting the cross
sections to another wavelet analysis, not necessarily related
to the wavelets used in the construction of one of the mod-
els, but simply to extract the scale-dependent distribution of
energy in the models. For this comparison between the mod-
els, we used a D4 wavelet in the horizontal direction and
Haar wavelets in the vertical direction, calculated over the
four cross sections at latitudes varying from 34ıN to 42ıN.
Since most of the model box belongs to the ill-resolved part,
this will dominate in this analysis, and we have made no
effort to isolate it from the small volume directly underneath
the 2008 USArray data coverage. The bottom right panels
in Figures 6–9 show the energy in four wavelet scales, num-
bered 4 to 1, coarse to fine, with the finest labeled scale
corresponding to features about 50 km in vertical extent and
1.25ı in the angular dimension. With increasing scale num-
bers the equivalent length scales of the features double with
the support of the wavelets used. The coefficients at the
largest quoted scale 5 contain information from the remain-
ing scaling functions. The energy at the shorter length scales
is either similar, lower, or only slightly higher (at 40ıN and
42ıN) in the `1-regularized model than in the `2-smoothed
model. The decrease of energy with decreasing scale length
from 2 to 1 is larger in the `2 model, and the energy is more
consistently decreasing over the other scales in the `1 model.

[48] Wavelets are a multiscale basis. By applying an `1
norm, we minimize the number of wavelet coefficients, irre-
spective of the spatial length scale of the basis function.
We expected that this would lead to models with a much
simpler structure, but models with a simple structure can
also be obtained by smoothing, albeit with an increased
tendency to reduce the sharpness of some transitions. In
the `1-regularized model, sharp boundaries have a greater
chance at surviving the thresholding process. The data misfit
measure �2

red is similar in both studies (0.407 for Sigloch’s
model and 0.459 for ours), but fewer features are needed to
explain the data for our model.

[49] Wavelets thus are able to perform a dual task: They
will smooth out artifacts introduced by data insufficiencies,
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as one or a few wavelets are able to bridge unresolved
gaps introduced by missing data. But in the case of a well-
resolved gradient, there is no need for such smoothing, and
the data may sometimes be fitted with smaller amplitudes.
While these differences may be slight, even a small dif-
ference in the effects of model regularization may have
important consequences when interpreted in a geodynamical
context, e.g., when exploring the existence of slab tears via
the presence or absence of high-velocity structure. No prior
length scale is imposed in the inversion through smoothing
or ad hoc remeshing of the model. However, the sizes of
the larger features at depth are alike in the old and the new
solutions, while near the surface, small structures and sharp
boundaries are present in the wavelet model. The wavelets
choose the size of the structures so as to agree with informa-
tion present in the data. This point is not to be overlooked,
as the choice of gridding can be influential. With 3.6 million
voxels we are able to represent the sensitivity kernel rather
finely and therefore are able to explore finer-scale structures
or increase the resolution.

[50] Since the aim of our paper was primarily to study
the effect of the alternative regularization on an actual inver-
sion, we shall not repeat the geodynamical interpretations
given by Sigloch et al. [2008]. We do point out, however,
that the major elements leading to Sigloch’s interpretation—
such as the slab fragments S1, S2, F1, and F2—are present
in both modeling efforts. It is therefore likely that the geo-
logical scenarios proposed by Sigloch [2011] and Sigloch
and Mihalynuk [2013] remain valid in the alternative model
presented here.

6. Conclusion
[51] We have presented the first application, on actual

data, for global seismic tomography, of a new inversion and
regularization scheme that employs sparsity constraints on
the wavelet representation of the velocity model, via the
`1 norm in wavelet model space. This new methodology is
based on the hypothesis of sparsity of the model; that is,
we assume that the model is represented by a small num-
ber of nonzero coefficients in a known basis. In our case, we
chose the wavelet basis and tested new tools that were orig-
inally presented by Simons et al. [2011]. Finite-frequency
kernels are computed on a cubed Earth representation of
the model, which allows us to construct a Cartesian coor-
dinate system upon which we can use a large number of
wavelet families. For the present study, we chose to use
the Cohen-Daubechies-Feauveau CDF 4–2 wavelet fam-
ily in the angular dimensions and the Haar wavelet in the
depth direction.

[52] A comparison of our velocity model with the study
by Sigloch [2008], who used largely the same data but an `2
norm regularization with isotropic smoothing and damping,
shows for different cross sections that the features within
the model are very similar. As expected some discontinu-
ities subsist in the `1 solutions, as we do not strongly impose
model smoothness. For a comparable fit to the data (in terms
of its reduced chi-square metric �2

red), fewer anomalous
structures are needed with the `1 norm wavelet regulariza-
tion and therefore the latest model is, in some sense, simpler
without compromising small scale and details. The advan-
tages of this inversion are (1) that the meshing is regular

so that no prior information is needed for its construction
and (2) that no prior assumptions are made on the geome-
try of the features. We only presuppose that these features
can be well represented in the wavelet domain. In particular,
we conclude that the geometry of slabs or other major struc-
tures within the mantle can be revealed by the use of this
methodology given an appropriate data set.
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