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Evidence of an information leakage between logically independent blocks
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In this paper we study the information leakage that may exist, due to electrical coupling, between logically independent blocks of a secure circuit as a new attack path to retrieve secret information. First, an AES-128 has been implemented on a FPGA board. Then, this AES implementation has been secured with a delay-based countermeasure against fault injection related to timing constraints violations. The countermeasure's detection threshold was supposed to be logically independent from the data handled by the cryptographic algorithm. Thus, it theoretically does not leak any information related to sensitive values. However experiments point out an existing correlation between the fault detection threshold of the countermeasure and the AES's calculations. As a result, we were able to retrieve the secret key of the AES using this correlation. Finally, different strategies were tested in order to minimize the number of triggered alarm to retrieve the secret key.

INTRODUCTION

Security is a key component for information technologies and communication. Among the security threats, a very important one is certainly due to the vulnerabilities of the integrated circuits that implement cryptographic algorithms to ensure confidentiality, authentication or data integrity. These electronic devices could fall into the hands of malicious people and then could be subject to physical attacks.

Three different kinds of techniques are used to perform such attacks. The first one consists in getting information about the chip design by direct inspection of its hardware structure. The second technique consists in observing some physical characteristics (such as power consumption, electromagnetic radiation, response time, etc.) which change during the circuit's computation. The third technique consists in disrupting the circuit's behaviour by using fault injection means such as laser beam, voltage or clock glitches, electromagnetic pulses, etc. With such techniques the attacker may be able to: bypass the security functions (such as the PIN code ver-. ification), retrieve the details of their implementations, find out the manipulated data (cryptographic materials, personal data, etc.).

Somes techniques of key recovering are based on side channel measurements. The first one, called DPA-like, consists in building a set of mathematical models (i.e. mathematical formulae) from a priori knowledge about the circuit. Each model is associated with a hypothesis on the value of the key. Then, the models are compared with measurements. The model which matches the best with measurements is generally associated with the right key hypothesis [START_REF] Kocher | Differential Power Analysis[END_REF]. The second kind of side channel attacks needs a profiling step on another circuit. This circuit is supposed to be identical to the target and the attacker is supposed to be able to set the key value. In this case, the profiling step is used either to improve the model a priori (stochastic attacks, [START_REF] Schindler | A stochastic model for differential side channel cryptanalysis[END_REF]) or to build a statistical model only based on measurements (template attacks [START_REF] Chari | Template attacks[END_REF]).

To reduce sensitivity to side channel attacks, the correlation between physical values (such as power consumption or electromagnetic radiation) and the data processed has been reduced, for example, by using balanced data encoding and balanced place and route [START_REF] Tiri | A logic level design methodology for a secure dpa resistant asic or fpga implementation[END_REF], by using power filters or electromagnetic shields. Noise has also been added to the power consumption, for example, by masking the internal computations that have to be predicted by the attacker or by randomizing the program instructions [START_REF] Coron | On Boolean and arithmetic masking against differential power analysis[END_REF][START_REF] Rivain | Higher-order masking and shuffling for software implementations of block ciphers[END_REF]. To detect fault attacks, physical sensors give information about the state of the system either by measuring the light, the voltage, the frequency or the temperature of the chip [START_REF] Endo | An Efficient Countermeasure against Fault Sensitivity Analysis Using Configurable Delay Blocks[END_REF][START_REF] Dehbaoui | Electromagnetic Transient Faults Injection on a Hardware and Software Implementation of AES[END_REF]. These error detection schemes are independent of the computation of the sensitive variables contrary to other detection schemes based on spatial redundancy (i.e. making the same computation several times simultaneously), temporal redundancy (i.e. doing the same computation several times) or information redundancy (i.e. doing a computation with more bits than required) [START_REF] Joye | Strengthening hardware aes implementations against fault attacks[END_REF]. Several mechanisms are also proposed to detect a modification of the execution flow of a software.

The estimation of the security provided by these protections is a very challenging task. Indeed, the protections based on redundancy open the door to safe-error attacks because the error signal triggered by these schemes depends on the sensitive values. On the opposite, the physical sensors should not create such a path for safe-error attacks (because they are designed to be logically independent from the computation of sensitive values). In this article, we show that this assertion is unfortunately false for some kinds of physical sensors used to detect timing constraints violations.

In section 2 of this article a delay-based countermeasure is de- scribed along with its implementation to protect an AES implementation against timing constraints violations. Then, in section 3, the attack which uses this sensor detection threshold as an attack path is described. And finally, in section 4, its efficiency is estimated.

PRELIMINARIES 2.1 Motivation

As presented in the introduction, several attack paths both passive and active have been exploited to retrieve secret informations and then countermeasures have been designed. In this study we focused on the electrical coupling existing between implemented blocks and used this coupling as a new attack path.

To illustrate and validate this attack path, we monitored the detection threshold variations of a delay-based countermeasure. This countermeasure against timing constraints violations was used to protect a physical AES implementation on a Spartan3 700A FPGA board.

In fact, the implemented countermeasure is designed to be logically independent from the AES's calculations. However, registers' updates and internal calculations induce voltage drops into the circuit's core voltage [START_REF] Shang | Dynamic power consumption in virtex-ii fpga family[END_REF][START_REF] Zick | Sensing nanosecond-scale voltage attacks and natural transients in fpgas[END_REF]. These core voltage drops could have a significant influence on the countermeasure sensitivity (its detection threshold) as they share the same power supply grid. As a result, these detection threshold variations could be correlated with the secret information. Thereore, we assumed that this electrical coupling may be used as a new attack path to retrieve secret information.

Note that a related work about the existence of a similar information leakage through voltage levels at I/O pins have already been presented in [START_REF] Schmidt | Side-channel leakage across borders[END_REF].

Timing constraints

In synchronous digital ICs, a clock signal is used to synchronize internal operations. When the clock rises, data are released from a register, processed by the logic, and finally latched by another register on the next clock's rising edge. As a result, data have to be stable early enough at the input of the arrival register before the clock rising edge in order to be sampled properly.

On the one hand, the time between two clock's rising edges on two different registers is not exactly the clock period, T clk . T skew , the clock skew between the two registers and Tjitter the clock jitter have to be taken into account. On the other hand, the time needed for the last signal to be stabilized at the input of the arrival register is not exactly the largest data propagation time, DpMax. D clk2q , the time spent by a register to release a data after the clock rising edge has to be taken into account. And finally Tsetup is the amount of time a register's input data have to be stable before the clock's rising edge to ensure reliable sampling. This constraint is expressed in Eq. 1:

T clk > D clk2q + DpMax + Tsetup + T skew + Tjitter (1)
For the sake of brevity, the clock pulse width constraint and the hold time constraint were not described.

The violation of this timing constraint is a straightforward means to inject faults into a circuit. Clock and power supply glitches induce transient violations of Eq. 1. A clock glitch [START_REF] Endo | An on-chip glitchy-clock generator for testing fault injection attacks[END_REF] consists in reducing temporarily the clock period (left hand-side of Eq. 1) to obtain a negative slack, whereas a power glitch [START_REF] Zussa | From physical stresses to timing constraints violation[END_REF] induces a transient increase of the logic propagation times (right hand-side of Eq. 1).

Countermeasure

A delay-based countermeasure (CM) against timing violations [START_REF] Endo | An Efficient Countermeasure against Fault Sensitivity Analysis Using Configurable Delay Blocks[END_REF], [START_REF] Selmane | Security evaluation of application-specific integrated circuits and field programmable gate arrays against setup time violation attacks[END_REF] has been implemented into our target circuit. Fig. 1 illustrates the countermeasure principle. The countermeasure is based on a tunable guarding delay (Dcm) that is longer than the most critical path of the AES (DpMax) but shorter than the clock period (T clk ). Eq. 2 and Fig. 2 illustrate this constraint.

T clk -Tsetup + T skew > D clk2q + Dcm > D clk2q + DpMax (2)
A CONTROL signal is used to tune the delay of the countermeasure to fulfill the following constraints (see Fig. 3):

• The register (DFF) should sample a '1' when running in its nominal condition.

• The DFF should sample a '0' when undergoing a physical attack.

• The countermeasure's sensitivity (detection threshold) should be greater than the AES's one (fault sensitivity).

The critical path of the AES depends on both the input message and the key. To fix the value of the guarding delay, 10,000 [Plaintext, Key] couples have been tested. From our experiments, the guarding delay has been tuned in order to be longer (i.e 8.25 ns) than all the most critical path of the AES but shorter than the clock period (i.e. 10 ns).

Figure 2: Guarding delay longer than the AES path As a result, when the circuit is under attack the alarm should be triggered before any fault being injected into AES calculations. Thus the countermeasure protects the circuit against timing constraints violations. And the countermeasure sensitivity should not depend on the handled data. Thus, attacks such as Fault Sensitivity Analysis (FSA [START_REF] Li | Fault sensitivity analysis[END_REF]) cannot be performed. The efficiency of this countermeasure against clock, power and electromagnetic glitches has been studied in [START_REF] Zussa | Efficiency of a glitch detector against electromagnetic fault injection[END_REF]. The countermeasure implementation has to be close enough to the AES's implementation to be efficient against electromagnetic injection.

For sake of clarity, only clock glitches have been used in this work but results could be extended to other kinds of disturbances injection means. As presented previously, the countermeasure has been designed to detect this kind of attack. Fig. 3 illustrates a glitched clock signal and the countermeasure detection principle. CLOCK is the nominal clock signal. CLOCK + Glitch is the clock signal when the circuit is undergoing a timing attack (in this case one of the clock periods is reduced). D -CLOCK + Glitch is the delayed clock of the countermeasure. The countermeasure's register samples D-CLOCK +Glitch when CLOCK +Glitch rises. When the sampling result ALARM is '0' an alarm is triggered by another block and then the security policy is applied. As the guarding delay of the countermeasure is designed to be independent from the AES's calculation, the detection threshold should not be data dependent. However, practical measurements showed that this assertion is unfortunately false. Fig. 4 reports the measured alarm detection rate as a function of the number of decrements of the clock period during the AES first round. Each decrement, or stress step by using the terminology introduced by [START_REF] Li | Fault sensitivity analysis[END_REF], was equal to 35 ps. Alarm detection rates are given for 3 different input messages, or plain texts, but the same secret key. It is clearly observable that the sensitivity of the countermeasure (i.e. its detection threshold) depends on the input message. This is a fault injection-based evidence of an information leakage between the AES implementation and the countermeasure block. The aim of the next section is to confirm on experimental basis that this leakage is correlated with the sensitive data handle by the AES. 

ELECTRICAL COUPLING BETWEEN LOGICALLY INDEPENDENT BLOCKS

In this section the electrical coupling between logically independent blocks is described as an attack path to retrieve secret information. In this work, the two considered blocks were the AES and the countermeasure previously described. Theoretically, the countermeasure is data independent but measurements exposed in Fig. 4 tend to show the opposite.

Attack description

In fact, the attack procedure is very similar to the DPA. However, this attack measures a side effect of the power consumption instead of measuring it directly. This attack could also be considered as a FSA targeting the countermeasure detection threshold instead of the fault injection threshold.

The assumption we made is the following one: AES calculations have an effect on the core voltage and the core voltage has an effect on the guarding delay of the countermeasure. These guarding delay variations can be monitored by measuring the alarm detection threshold. To measure the countermeasure sensitivity, the stress applied to the circuit is gradually increased until an alarm is triggered. Then the same protocol than the one used for a classical FSA or DPA is used to correlate the detection threshold to the handled data.

Measurements of a side effect of the power consumption

In this study, we considered the countermeasure detection threshold variations as a side effect of the power consumption. We measured the alarm sensitivity by decreasing a chosen clock period step by step until the alarm was triggered. More generally the sensitivity of the countermeasure could be monitored by increasing any kind of stress which has an effect on this countermeasure (underpowering, over-heating, electromagnetic pulse, etc.) [START_REF] Zussa | Efficiency of a glitch detector against electromagnetic fault injection[END_REF].

Divide and conquer strategy

In this work we targeted the 1 st round of the AES for several practical reasons:

• The 16 bytes are independent until the first MIXCOLUMN.

Every byte can be targeted one after each other.

• Only the first few steps of the AES have to be simulated to calculate the selection function. (see Sec. 3.4.2)

Analysis

Notation: M is the input message of the AES and Mi its i th byte. K0 is the secret key of the AES and K0i its i th byte. SB is the output of the first SUBBYTES block of the AES and SBi its i th byte. In round 1, SBi depends only on Mi and K0i.

In this specific case, the attack targeted only one byte after each other. If the u th byte is targeted then 0 ≤ Mi=u ≤ 255 and M i =u = 0 (other bytes are chosen equal to zero). As a result for a specific byte, there are only 256 different values for M . Moreover, in the following equations the byte index will be omitted.

Measurements

To perform the attack, the attacker first encrypts Nmax times the message M targeting round 1 with a stress S ∈ [0..60] (in this experiment the stress step is 35 ps). When S = 0 the circuit is running at its nominal value (i.e. 10 ns). For every encryption N ∈ [0..Nmax] of message M ∈ [0..255] with a stress S, the attacker saves the alarm state A[N, M, S] (active or not). At the end of the experiment, an alarm state matrix A[0..255, 1..Nmax, 0..60] is obtained. In other words the alarm state matrix give the alarm triggering state for a given stress S, applied during the the N th encryption of the M th plaintext.

The information of interest in this attack is the alarm detection rate for a given stress according to the considered message encrypted. The alarm detection rate considering the M th message for a given stress S is given by the equation Eq. 3 :

AlarmRate(M, S) = Nmax i=1 A[M, i, S] Nmax (3)

Prediction

In order to retrieve the correct key candidate, Kcorrect, predictions have to be made according to a specific key candidate K. Then, these predictions have to be verified to score the key candidate. As a result, predictions have to be related to an internal value which has an effect on the measured information (i.e. the alarm rate). The predicted value is called the selection function.

In this study, the selection function is the theoretical value of a given bit b of the targeted byte at the output of the first SUBBYTES block, SB. For a specific byte, there are only 256 different values for the key candidate K. For every message M ∈ [0..255] and for every key candidate K ∈ [0..255], the selection function is denoted

SB[M, K, b] ∈ [0, 1].

Correlation

Finally, the usual way to verify the assumption is to correlate the predictions to the measurements. In this study we assumed that a correlation existed between the selection function and the alarm detection rate

The Pearson's correlation has been used to score every key candidate. ρ(K, b, S) is the Pearson's correlation index of a key candidate K, of a given bit b, for a given stress S (Eq. 4). 

EXPERIMENTAL RESULTS

In this section we focused on the first byte for the sake of clarity. As a result the attack presented in the following section was perfomed with a divide and conquer strategy. Only one byte of the input data was modified to recover the corresponding byte of the key. Results are very similar to those obtained targeting other bytes of the key. Final results are given in section 4.2.

"Information leakage" assumption verification

A first step was to verify experimentally if the countermeasure sensitivity variations observed in Fig. 4 was linearly correlated to sensitive data. If the correlation exists then a DPA-like analysis could be successfully performed.

Every message was encrypted 1000 times for every different stress. Then the alarm detection rate (AlarmRate(M, S)) obtained for a specific message M with M ∈ [0..255] and with a specific stress S ∈ [0..60] was correlated to the selection function (SB[M, K, b]).

Fig. 5 represents the Pearson correlation score for all the different key candidates with SB[M, K, 1] used as a selection function. In this case the correct key candidate does not appear (for every key candidate and for every stress, the correlation absolute value is smaller than 0.3). Thus, this bit does not leak information about the secret key. In Fig. 6 we turned our attention to the 4 th bit of the AES' first byte, SB[M, K, 4] was used as a selection function. In this case, the correct key candidate appears (for one and only one key candidate the correlation absolute value is greater than 0.3). As a result, the countermeasure sensitivity leaks enough information to retrieve the first byte of the secret key.

However in this case the attack was performed with 15,360,000 (256 plaintexts × 60 stress × 1000 encryptions) glitch injections (per byte). The following subsections report how to minimize the number of injections to perform the attack.

Targeting only one specific stress

The Pearson correlation is efficient at any stress within the nondeterministic zone of the countermeasure (S such as ∀M ∈ [0..255], 0 < AlarmRate(M, S) < 100) as illustrated in Fig. 6. As a result, targeting only one well-chosen stress could be enough to retrieve the secret key.

The effectiveness of different stresses were compared using the guessing entropy evaluation metric [START_REF] Standaert | A unified framework for the analysis of side-channel key recovery attacks[END_REF]. The guessing entropy GE(S) returns the average guessing position of the correct key Kcorrect after a side-channel attack. Concerning passive side channel attacks such as DPA or CPA, the guessing entropy is usually plotted as a function of the total number of observations. Concerning this attack which is an active side channel attack, the guessing entropy is plotted as a function of the total number of glitch injections (total number of messages × number of encryptions per message = 256 × Nmax).

Moreover, in this specific case, an alarm had to be triggered to retrieve the secret key. However, according to the attacker's ability to avoid the alarm triggering effects (security strategies), this number of triggered alarm could be more critical than the total number of queries. In order to obtain an average guessing position of the correct key candidate Kcorrect, the attack was performed 200 times and results are presented in Fig. 7 and Fig. 8.

In Fig. 7, the average guessing position when the attack was performed with a stress S (GE(S)) is plotted as a function of the total number of queries. In this figure, it appears that the guessing entropy tends faster to 1 when the stress applied lead to a medium range alarm rate (48 ≤ S ≤ 53). In our case, for a stress S = 49, around 7000 glitch injections were needed to retrieve a correct key byte. That represents around 1500 triggered alarms. As the number of triggered alarms could be a practical limitation for the attackers, Fig. 8 presents the same GE(S) as a function of the average number of triggered alarms. In this figure, it appears that targeting the circuit with a low stress could be an interesting strategy to minimize the number of triggered alarms needed to retrieve the secret key. In our case, targeting the circuit with a stress S = 49 minimize the total number of injections needed to retrieve the secret key (1500 alarms / 7000 injections) and a stress S = 46 minimize the total number of triggered alarms needed (800 alarms / 15000 injections).

It is important to note that the number of triggered alarms could be a technical limitation of this attack. Indeed, a detection can lead to a key erasing. However, in the field of smart card for instance, key material could be kept in the EEPROM and erasing the information stored in the floating gate of a memory cell has a significant impact on the power consumption. This variation on the power consumption due to the injected glitch detection could be monitored by the attacker and then the chip could be reset and the sensitive information will be trapped [START_REF] Anderson | Tamper resistance-a cautionary note[END_REF] Fig. 9, illustrates the successful recovery of the whole bytes of the secret key with a stress S = 49 and Nmax = 1000 using the most leaking bit as selection function SB[M, K, b leaking ].

CONCLUSION AND FURTHER WORKS

In this paper a new attack path has been introduced. This attack exploits electrical coupling between logically independent blocks to retrieve secret information. To illustrate this statement an AES has been implemented on a FPGA board. The AES was protected against fault injection with a delay-based countermeasure. This countermeasure and the AES implementation were supposed to be two logically independent blocks (i.e. the countermeasure sensitivity should not dependent on the AES's calculations).

However, experiments point out the existence of a correlation between the attack detection threshold of the countermeasure and the data handled by the AES. This information leakage led us to find the AES key. This result is especially worrying because it casts doubt on a kind of countermeasure [START_REF] Endo | An Efficient Countermeasure against Fault Sensitivity Analysis Using Configurable Delay Blocks[END_REF] which was designed to prevent FSA. However, this new attack path involved a large number of alarm triggering, which may be a limitation for its practical effectiveness. Thus, we have completed this study by trying to minimize the number of these triggered alarms.

Next step of our work will be to perform similar attack on masked AES's implementation and discuss the results. Also, a better model to represent the power consumption and voltage drops propagation through the power supply grid could be built. With this model we could probably extract more information from these detection threshold variations such as voltage drops localization. 
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 9 Figure 9: Key recovering for every byte of the secret key with a stress S = 49 and Nmax = 1000 using the most leaking bit as selection function
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