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ABSTRACT
In this paper we study the information leakage that may exist, due
to electrical coupling, between logically independent blocks of a
secure circuit as a new attack path to retrieve secret information.
First, an AES-128 has been implemented on a FPGA board. Then,
this AES implementation has been secured with a delay-based coun-
termeasure against fault injection related to timing constraints vi-
olations. The countermeasure’s detection threshold was supposed
to be logically independent from the data handled by the crypto-
graphic algorithm. Thus, it theoretically does not leak any infor-
mation related to sensitive values. However experiments point out
an existing correlation between the fault detection threshold of the
countermeasure and the AES’s calculations. As a result, we were
able to retrieve the secret key of the AES using this correlation.
Finally, different strategies were tested in order to minimize the
number of triggered alarm to retrieve the secret key.

Keywords
Delay-based countermeasure, information leakage, ’DPA-like’ anal-
ysis, side effects

1. INTRODUCTION
Security is a key component for information technologies and

communication. Among the security threats, a very important one
is certainly due to the vulnerabilities of the integrated circuits that
implement cryptographic algorithms to ensure confidentiality, au-
thentication or data integrity. These electronic devices could fall
into the hands of malicious people and then could be subject to
physical attacks.

Three different kinds of techniques are used to perform such at-
tacks. The first one consists in getting information about the chip
design by direct inspection of its hardware structure. The second
technique consists in observing some physical characteristics (such
as power consumption, electromagnetic radiation, response time,
etc.) which change during the circuit’s computation. The third
technique consists in disrupting the circuit’s behaviour by using
fault injection means such as laser beam, voltage or clock glitches,
electromagnetic pulses, etc. With such techniques the attacker may
be able to: bypass the security functions (such as the PIN code ver-

.

ification), retrieve the details of their implementations, find out the
manipulated data (cryptographic materials, personal data, etc.).

Somes techniques of key recovering are based on side channel
measurements. The first one, called DPA-like, consists in building
a set of mathematical models (i.e. mathematical formulæ) from a
priori knowledge about the circuit. Each model is associated with
a hypothesis on the value of the key. Then, the models are com-
pared with measurements. The model which matches the best with
measurements is generally associated with the right key hypothesis
[1]. The second kind of side channel attacks needs a profiling step
on another circuit. This circuit is supposed to be identical to the
target and the attacker is supposed to be able to set the key value.
In this case, the profiling step is used either to improve the model
a priori (stochastic attacks, [2]) or to build a statistical model only
based on measurements (template attacks [3]).

To reduce sensitivity to side channel attacks, the correlation be-
tween physical values (such as power consumption or electromag-
netic radiation) and the data processed has been reduced, for exam-
ple, by using balanced data encoding and balanced place and route
[4], by using power filters or electromagnetic shields. Noise has
also been added to the power consumption, for example, by mask-
ing the internal computations that have to be predicted by the at-
tacker or by randomizing the program instructions [5, 6]. To detect
fault attacks, physical sensors give information about the state of
the system either by measuring the light, the voltage, the frequency
or the temperature of the chip [7, 8]. These error detection schemes
are independent of the computation of the sensitive variables con-
trary to other detection schemes based on spatial redundancy (i.e.
making the same computation several times simultaneously), tem-
poral redundancy (i.e. doing the same computation several times)
or information redundancy (i.e. doing a computation with more bits
than required) [9]. Several mechanisms are also proposed to detect
a modification of the execution flow of a software.

The estimation of the security provided by these protections is
a very challenging task. Indeed, the protections based on redun-
dancy open the door to safe-error attacks because the error signal
triggered by these schemes depends on the sensitive values. On
the opposite, the physical sensors should not create such a path for
safe-error attacks (because they are designed to be logically inde-
pendent from the computation of sensitive values). In this article,
we show that this assertion is unfortunately false for some kinds of
physical sensors used to detect timing constraints violations.

In section 2 of this article a delay-based countermeasure is de-

CS2 '15 Proceedings of the Second Workshop on Cryptography and Security in Computing Systems

https://doi.org/10.1145/2694805.2694810



scribed along with its implementation to protect an AES implemen-
tation against timing constraints violations. Then, in section 3, the
attack which uses this sensor detection threshold as an attack path
is described. And finally, in section 4, its efficiency is estimated.

2. PRELIMINARIES

2.1 Motivation
As presented in the introduction, several attack paths both pas-

sive and active have been exploited to retrieve secret informations
and then countermeasures have been designed. In this study we
focused on the electrical coupling existing between implemented
blocks and used this coupling as a new attack path.

To illustrate and validate this attack path, we monitored the de-
tection threshold variations of a delay-based countermeasure. This
countermeasure against timing constraints violations was used to
protect a physical AES implementation on a Spartan3 700A FPGA
board.

In fact, the implemented countermeasure is designed to be logi-
cally independent from the AES’s calculations. However, registers’
updates and internal calculations induce voltage drops into the cir-
cuit’s core voltage [10, 11]. These core voltage drops could have
a significant influence on the countermeasure sensitivity (its detec-
tion threshold) as they share the same power supply grid. As a
result, these detection threshold variations could be correlated with
the secret information. Thereore, we assumed that this electrical
coupling may be used as a new attack path to retrieve secret infor-
mation.

Note that a related work about the existence of a similar infor-
mation leakage through voltage levels at I/O pins have already been
presented in [12].

2.2 Timing constraints
In synchronous digital ICs, a clock signal is used to synchronize

internal operations. When the clock rises, data are released from
a register, processed by the logic, and finally latched by another
register on the next clock’s rising edge. As a result, data have to
be stable early enough at the input of the arrival register before the
clock rising edge in order to be sampled properly.

On the one hand, the time between two clock’s rising edges on
two different registers is not exactly the clock period, Tclk. Tskew,
the clock skew between the two registers and Tjitter the clock jitter
have to be taken into account. On the other hand, the time needed
for the last signal to be stabilized at the input of the arrival register
is not exactly the largest data propagation time, DpMax. Dclk2q ,
the time spent by a register to release a data after the clock rising
edge has to be taken into account. And finally Tsetup is the amount
of time a register’s input data have to be stable before the clock’s
rising edge to ensure reliable sampling. This constraint is expressed
in Eq. 1:

Tclk > Dclk2q +DpMax + Tsetup + Tskew + Tjitter (1)

For the sake of brevity, the clock pulse width constraint and the
hold time constraint were not described.

The violation of this timing constraint is a straightforward means
to inject faults into a circuit. Clock and power supply glitches in-
duce transient violations of Eq. 1. A clock glitch [13] consists in
reducing temporarily the clock period (left hand-side of Eq. 1) to
obtain a negative slack, whereas a power glitch [14] induces a tran-
sient increase of the logic propagation times (right hand-side of Eq.
1).

2.3 Countermeasure
A delay-based countermeasure (CM) against timing violations

[7], [15] has been implemented into our target circuit. Fig. 1 il-
lustrates the countermeasure principle.

Figure 1: Tunable delay-based countermeasure principle

The countermeasure is based on a tunable guarding delay (Dcm)
that is longer than the most critical path of the AES (DpMax) but
shorter than the clock period (Tclk). Eq. 2 and Fig. 2 illustrate this
constraint.

Tclk−Tsetup+Tskew > Dclk2q+Dcm > Dclk2q+DpMax (2)

A CONTROL signal is used to tune the delay of the countermea-
sure to fulfill the following constraints (see Fig. 3):

• The register (DFF) should sample a ’1’ when running in its
nominal condition.

• The DFF should sample a ’0’ when undergoing a physical
attack.

• The countermeasure’s sensitivity (detection threshold) should
be greater than the AES’s one (fault sensitivity).

The critical path of the AES depends on both the input message
and the key. To fix the value of the guarding delay, 10,000 [Plain-
text, Key] couples have been tested. From our experiments, the
guarding delay has been tuned in order to be longer (i.e 8.25 ns)
than all the most critical path of the AES but shorter than the clock
period (i.e. 10 ns).

Figure 2: Guarding delay longer than the AES path

As a result, when the circuit is under attack the alarm should
be triggered before any fault being injected into AES calculations.
Thus the countermeasure protects the circuit against timing con-
straints violations. And the countermeasure sensitivity should not
depend on the handled data. Thus, attacks such as Fault Sensi-
tivity Analysis (FSA [16]) cannot be performed. The efficiency
of this countermeasure against clock, power and electromagnetic



glitches has been studied in [17]. The countermeasure implemen-
tation has to be close enough to the AES’s implementation to be
efficient against electromagnetic injection.

For sake of clarity, only clock glitches have been used in this
work but results could be extended to other kinds of disturbances
injection means. As presented previously, the countermeasure has
been designed to detect this kind of attack. Fig. 3 illustrates a
glitched clock signal and the countermeasure detection principle.
CLOCK is the nominal clock signal. CLOCK + Glitch is the
clock signal when the circuit is undergoing a timing attack (in this
case one of the clock periods is reduced). D−CLOCK+Glitch
is the delayed clock of the countermeasure. The countermeasure’s
register samplesD−CLOCK+GlitchwhenCLOCK+Glitch
rises. When the sampling result ALARM is ’0’ an alarm is trig-
gered by another block and then the security policy is applied.

Figure 3: Delay-based countermeasure undergoing a clock glitch
injection

As the guarding delay of the countermeasure is designed to be
independent from the AES’s calculation, the detection threshold
should not be data dependent. However, practical measurements
showed that this assertion is unfortunately false. Fig. 4 reports
the measured alarm detection rate as a function of the number of
decrements of the clock period during the AES first round. Each
decrement, or stress step by using the terminology introduced by
[16], was equal to 35 ps. Alarm detection rates are given for 3 dif-
ferent input messages, or plain texts, but the same secret key. It
is clearly observable that the sensitivity of the countermeasure (i.e.
its detection threshold) depends on the input message. This is a
fault injection-based evidence of an information leakage between
the AES implementation and the countermeasure block. The aim of
the next section is to confirm on experimental basis that this leakage
is correlated with the sensitive data handle by the AES.
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Figure 4: Measure of the countermeasure’s sensitivity in round 1
for 3 different plain texts

3. ELECTRICAL COUPLING BETWEEN
LOGICALLY INDEPENDENT BLOCKS

In this section the electrical coupling between logically indepen-
dent blocks is described as an attack path to retrieve secret infor-
mation. In this work, the two considered blocks were the AES and
the countermeasure previously described. Theoretically, the coun-
termeasure is data independent but measurements exposed in Fig.
4 tend to show the opposite.

3.1 Attack description
In fact, the attack procedure is very similar to the DPA. However,

this attack measures a side effect of the power consumption instead
of measuring it directly. This attack could also be considered as a
FSA targeting the countermeasure detection threshold instead of the
fault injection threshold.

The assumption we made is the following one: AES calculations
have an effect on the core voltage and the core voltage has an effect
on the guarding delay of the countermeasure. These guarding de-
lay variations can be monitored by measuring the alarm detection
threshold. To measure the countermeasure sensitivity, the stress ap-
plied to the circuit is gradually increased until an alarm is triggered.
Then the same protocol than the one used for a classical FSA or DPA
is used to correlate the detection threshold to the handled data.

3.2 Measurements of a side effect of the power
consumption

In this study, we considered the countermeasure detection thresh-
old variations as a side effect of the power consumption. We mea-
sured the alarm sensitivity by decreasing a chosen clock period step
by step until the alarm was triggered. More generally the sensitiv-
ity of the countermeasure could be monitored by increasing any
kind of stress which has an effect on this countermeasure (under-
powering, over-heating, electromagnetic pulse, etc.) [17].

3.3 Divide and conquer strategy
In this work we targeted the 1st round of the AES for several

practical reasons:

• The 16 bytes are independent until the first MIXCOLUMN.
Every byte can be targeted one after each other.

• Only the first few steps of the AES have to be simulated to
calculate the selection function. (see Sec. 3.4.2)

3.4 Analysis
Notation: M is the input message of the AES andMi its ith byte.

K0 is the secret key of the AES and K0i its ith byte. SB is the
output of the first SUBBYTES block of the AES and SBi its ith

byte. In round 1, SBi depends only on Mi and K0i.
In this specific case, the attack targeted only one byte after each

other. If the uth byte is targeted then 0 ≤ Mi=u ≤ 255 and
Mi6=u = 0 (other bytes are chosen equal to zero). As a result for a
specific byte, there are only 256 different values for M . Moreover,
in the following equations the byte index will be omitted.

3.4.1 Measurements
To perform the attack, the attacker first encrypts Nmax times the

message M targeting round 1 with a stress S ∈ [0..60] (in this
experiment the stress step is 35 ps). When S = 0 the circuit is
running at its nominal value (i.e. 10 ns). For every encryption
N ∈ [0..Nmax] of message M ∈ [0..255] with a stress S, the at-
tacker saves the alarm state A[N,M,S] (active or not). At the end
of the experiment, an alarm state matrixA[0..255, 1..Nmax, 0..60]



is obtained. In other words the alarm state matrix give the alarm
triggering state for a given stress S, applied during the the N th

encryption of the M th plaintext.
The information of interest in this attack is the alarm detection

rate for a given stress according to the considered message en-
crypted. The alarm detection rate considering the M th message
for a given stress S is given by the equation Eq. 3 :

AlarmRate(M,S) =

∑Nmax
i=1 A[M, i, S]

Nmax
(3)

3.4.2 Prediction
In order to retrieve the correct key candidate, Kcorrect, predic-

tions have to be made according to a specific key candidate K.
Then, these predictions have to be verified to score the key candi-
date. As a result, predictions have to be related to an internal value
which has an effect on the measured information (i.e. the alarm
rate). The predicted value is called the selection function.

In this study, the selection function is the theoretical value of a
given bit b of the targeted byte at the output of the first SUBBYTES
block, SB. For a specific byte, there are only 256 different values
for the key candidate K. For every message M ∈ [0..255] and for
every key candidateK ∈ [0..255], the selection function is denoted
SB[M,K, b] ∈ [0, 1].

3.4.3 Correlation
Finally, the usual way to verify the assumption is to correlate

the predictions to the measurements. In this study we assumed that
a correlation existed between the selection function and the alarm
detection rate

The Pearson’s correlation has been used to score every key can-
didate. ρ(K, b, S) is the Pearson’s correlation index of a key can-
didate K, of a given bit b, for a given stress S (Eq. 4).

ρ(K, b, S) = PearsCorr(SB[0..255,K, b], AlarmRate(0..255, S))
(4)

4. EXPERIMENTAL RESULTS
In this section we focused on the first byte for the sake of clar-

ity. As a result the attack presented in the following section was
perfomed with a divide and conquer strategy. Only one byte of the
input data was modified to recover the corresponding byte of the
key. Results are very similar to those obtained targeting other bytes
of the key. Final results are given in section 4.2.

4.1 "Information leakage" assumption verifi-
cation

A first step was to verify experimentally if the countermeasure
sensitivity variations observed in Fig. 4 was linearly correlated to
sensitive data. If the correlation exists then a DPA-like analysis
could be successfully performed.

Every message was encrypted 1000 times for every different
stress. Then the alarm detection rate (AlarmRate(M,S)) ob-
tained for a specific message M with M ∈ [0..255] and with a
specific stress S ∈ [0..60] was correlated to the selection function
(SB[M,K, b]).

Fig. 5 represents the Pearson correlation score for all the differ-
ent key candidates with SB[M,K, 1] used as a selection function.
In this case the correct key candidate does not appear (for every
key candidate and for every stress, the correlation absolute value is
smaller than 0.3). Thus, this bit does not leak information about the
secret key.
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Figure 6: PearsonCorr(SB[M,K, 4], AlarmRate(M,S)), leakage

In Fig. 6 we turned our attention to the 4th bit of the AES’ first
byte, SB[M,K, 4] was used as a selection function. In this case,
the correct key candidate appears (for one and only one key candi-
date the correlation absolute value is greater than 0.3). As a result,
the countermeasure sensitivity leaks enough information to retrieve
the first byte of the secret key.

However in this case the attack was performed with 15,360,000
(256 plaintexts × 60 stress × 1000 encryptions) glitch injections
(per byte). The following subsections report how to minimize the
number of injections to perform the attack.

4.2 Targeting only one specific stress
The Pearson correlation is efficient at any stress within the non-

deterministic zone of the countermeasure (S such as ∀M ∈ [0..255],
0 < AlarmRate(M,S) < 100) as illustrated in Fig. 6. As a
result, targeting only one well-chosen stress could be enough to
retrieve the secret key.

The effectiveness of different stresses were compared using the
guessing entropy evaluation metric [18]. The guessing entropy
GE(S) returns the average guessing position of the correct key
Kcorrect after a side-channel attack. Concerning passive side chan-
nel attacks such as DPA or CPA, the guessing entropy is usually plot-
ted as a function of the total number of observations. Concerning
this attack which is an active side channel attack, the guessing en-
tropy is plotted as a function of the total number of glitch injections



(total number of messages× number of encryptions per message =
256×Nmax).

Moreover, in this specific case, an alarm had to be triggered to
retrieve the secret key. However, according to the attacker’s ability
to avoid the alarm triggering effects (security strategies), this num-
ber of triggered alarm could be more critical than the total number
of queries.
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Figure 7: Guessing entropy function of the total number of injec-
tions
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Figure 8: Guessing entropy function of the average number of trig-
gered alarms

In order to obtain an average guessing position of the correct key
candidateKcorrect, the attack was performed 200 times and results
are presented in Fig. 7 and Fig. 8.

In Fig. 7, the average guessing position when the attack was
performed with a stress S (GE(S)) is plotted as a function of the
total number of queries. In this figure, it appears that the guessing
entropy tends faster to 1 when the stress applied lead to a medium
range alarm rate (48 ≤ S ≤ 53). In our case, for a stress S = 49,
around 7000 glitch injections were needed to retrieve a correct key
byte. That represents around 1500 triggered alarms. As the number
of triggered alarms could be a practical limitation for the attackers,
Fig. 8 presents the same GE(S) as a function of the average num-
ber of triggered alarms. In this figure, it appears that targeting the
circuit with a low stress could be an interesting strategy to minimize
the number of triggered alarms needed to retrieve the secret key. In

our case, targeting the circuit with a stress S = 49 minimize the
total number of injections needed to retrieve the secret key (1500
alarms / 7000 injections) and a stress S = 46 minimize the total
number of triggered alarms needed (800 alarms / 15000 injections).

It is important to note that the number of triggered alarms could
be a technical limitation of this attack. Indeed, a detection can lead
to a key erasing. However, in the field of smart card for instance,
key material could be kept in the EEPROM and erasing the infor-
mation stored in the floating gate of a memory cell has a significant
impact on the power consumption. This variation on the power con-
sumption due to the injected glitch detection could be monitored by
the attacker and then the chip could be reset and the sensitive infor-
mation will be trapped [19]

Fig. 9, illustrates the successful recovery of the whole bytes of
the secret key with a stress S = 49 and Nmax = 1000 using the
most leaking bit as selection function SB[M,K, bleaking].

5. CONCLUSION AND FURTHER WORKS
In this paper a new attack path has been introduced. This attack

exploits electrical coupling between logically independent blocks
to retrieve secret information. To illustrate this statement an AES
has been implemented on a FPGA board. The AES was protected
against fault injection with a delay-based countermeasure. This
countermeasure and the AES implementation were supposed to be
two logically independent blocks (i.e. the countermeasure sensitiv-
ity should not dependent on the AES’s calculations).

However, experiments point out the existence of a correlation
between the attack detection threshold of the countermeasure and
the data handled by the AES. This information leakage led us to
find the AES key. This result is especially worrying because it casts
doubt on a kind of countermeasure [7] which was designed to pre-
vent FSA. However, this new attack path involved a large number of
alarm triggering, which may be a limitation for its practical effec-
tiveness. Thus, we have completed this study by trying to minimize
the number of these triggered alarms.

Next step of our work will be to perform similar attack on masked
AES’s implementation and discuss the results. Also, a better model
to represent the power consumption and voltage drops propagation
through the power supply grid could be built. With this model
we could probably extract more information from these detection
threshold variations such as voltage drops localization.
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