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ABSTRACT

We investigate a nonlinear phase-resolved reconstruction al-

gorithm and models for the deterministic prediction of ocean

waves based on a large number of spatio-temporal optical mea-

surements of surface elevations. We consider a single sensor

(e.g., LIDAR, stereo-video, etc.) mounted on a fixed offshore

structure and remotely measuring fields of free surface eleva-

tions. Assuming a uniform distribution of measurement points

over the sensor aperture angles, the density of free surface ob-

servation points geometrically decreases with the distance from

the sensor. Additionally, wave shadowing effects occur, which

become more important at small viewing angles (i.e., grazing in-

cidence on the surface). These effects result in observations of

surface elevation that are sparsely distributed. Here, based on

earlier work by [1], we present and discuss the characteristics

of an algorithm, aimed at assimilating such sparse data and able

to deterministically reconstruct and propagate ocean surface el-

evations for their prediction in time and space. This algorithm

could assist in the automatic steering and control of a variety of

surface vehicles. Specifically, we compare prediction results us-

ing linear wave theory and the weakly nonlinear Choppy Wave

Model [2, 3], extended here to an “improved” second order for-

mulation. The latter model is based on an efficient Lagrangian

formulation of the free surface and was shown to be able to model

wave properties that are important to the proper representation

of nonlinear free surfaces, namely wave shape and celerity. Syn-

thetic datasets from highly nonlinear High Order Spectral simu-

lations are used as reference oceanic surfaces. Predicted results

are analyzed over an area that evolves in time, using the theoret-

ical amount of information assimilated during the reconstruction

of the wave field. For typical horizons of prediction, we discuss

the capabilities of our assimilation process for each wave model

considered.
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INTRODUCTION
The availability of real-time phase-resolved wave fields is

important to many offshore applications, such as the optimal

maneuvering and operations of surface vessels or ocean renew-

able energy harvesting systems. However, many standard ocean

wave models [4, 5] only predict phase-averaged quantities based

on spectral representations (e.g., directional wave energy spec-

trum), which do not provide a detailed description of determin-

istic wave properties (e.g., free surface elevation and fluid pres-

sure fields). Nevertheless, under the linear wave superposition

assumption, such spectral representations can be used to generate

phase-resolved wave fields, by combining frequency wave com-

ponent amplitudes with a set of (typically random) phases. Based

on this data, the initial wave field can be computed through an

inverse Fourier transform (FT) and its propagation in space and

time performed using a linear or nonlinear propagation model

(e.g., High Order Spectral (HOS) model [6]).

Here, we instead propose a method for directly reconstruct-

ing a phase-resolved nonlinear wave field, based on spatio-

temporal optical measurements of the ocean surface. Future

sea state conditions are then predicted by propagating the re-

constructed waves in time and space using a weakly nonlinear

model. This problem was studied in some earlier work on the

basis of free surface elevation time series measured at fixed wave

probes [7–9]. However, in situ measurements, typically made

from a moving vessel or vehicle, are more challenging since

wave reconstruction must rely on data acquired at constantly up-

dated locations surrounding the path of the vehicle, which leads

to practical limitations. A successful solution to this problem

was proposed based on X-band radar measurements made from

an onboard sensor, combined with a 3D-FT to reconstruct a large

patch of free surface elevation surrounding the sensor [10–13].

This initial estimate was then used in a direct numerical simula-

tion of future sea states.

Our work is based on the new nonlinear ocean surface re-

construction algorithm proposed by Nouguier et al. [1,14], on the

basis of simulated free surface elevation datasets, such as would

be acquired by an optical sensor that can remotely and simulta-

neously measure surface elevations at many geo-referenced loca-

tions at a high frequency (e.g., a generic LIDAR camera, stereo-

video acquisition system). Their algorithm was based on apply-

ing the weakly nonlinear Choppy Wave Model [2, 3], which is

Lagrangian and thus more efficient for propagating wave fields

in the time domain than Eulerian models based on higher-order

Stokes expansions. In this paper, we both validate and extend this

approach by using simulation results from a HOS model as ref-

erence data. Linear wave propagation models can be used to pro-

vide short-term forecasts in calm sea states. However, as time be-

tween the prediction horizon and the initial sea state reconstruc-

tion increases and/or the sea state becomes more severe, non-

linear wave effects play an increasingly large role in the proper

representation of wave fields, their propagation (e.g., due to am-

plitude dispersion effects on wave celerity), and on the accuracy

of the forecast. Using a nonlinear wave reconstruction and prop-

agation algorithm thus becomes crucial to an accurate sea state

prediction.

In this study, the performance of the weakly nonlinear

Choppy Wave Model (CWM) and its improved second-order for-

mulation developed hereby, are compared with predictions of

the higher-order, but much more computationally demanding,

“HOS-ocean” model [6]. Earlier work on ocean surface recon-

struction and forecasting algorithms [15–17] has shown that the

size of the dataset assimilated during the reconstruction phase

yields a well-defined time evolving spatial area, over which a

sea-state prediction is theoretically possible. Accordingly, in this

paper, we also evaluate the efficiency of our prediction method

with respect to this theoretical prediction zone.

This paper is organized as follows. We first describe the

wave models used for the free surface reconstruction and prop-

agation. Second, for each wave model, we present the inverse

problem that must be solved to perform the initial free surface

reconstruction. Third, we detail the method for generating syn-

thetic spatio-temporal free surface elevation datasets, such as

would be acquired by a the depicted optical sensor. Fourth, for

one-dimensional measurements used for simplicity, we analyze

the effect on the forecast accuracy of reconstruction parameters,

such as high cut-off frequency of the reconstructed spectrum,

heterogeneity of the observation grid, and number of spatial ob-

servation times. For a two-dimensional surface reconstruction,

we finally investigate the effect of directional wave spreading.

WAVE PROPAGATION MODELS

Two types of wave models are applied in this work to re-

construct ocean surfaces, based on a measured spatio-temporal

dataset. These are based on: (i) linear wave theory (LWT); and

(ii) the first- and second-order Lagrangian CWM, which include

some intrinsic nonlinear wave properties. Note that the follow-

ing developments are done under deep water assumption, but the

extension to finite depth is straightforward.

Linear Wave Model

We consider a Cartesian coordinate system (x,y,z), with x

and y axes located on the mean water surface and the z axis be-

ing vertical and positive upward. A linear ocean surface repre-

sentation is derived by superposing N individual wave compo-

nents, propagating in the horizontal plane rrr = (x,y), of ampli-

tude An, wavelength λn and direction θn with respect to the x-axis

(n = 1, ...,N), yielding,

η (rrr, t) =
N

∑
n

An cos(kkkn · rrr−ωnt +ϕn) , (1)
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where t is time, ϕn are random phases uniformly distributed in

[0,2π], and kkkn = knk̂kkn = (kn cosθn,kn sinθn) where kn = 2π/λn

are wavenumbers related to angular frequencies ωn through the

deep water dispersion relationship, ω2
n = kng, where g denotes

the acceleration of gravity. To simplify the mathematical devel-

opments, we will use the equivalent formulation,

η (rrr, t) =
N

∑
n

(an cosψn +bn sinψn) , (2)

where ψn = kkkn · rrr − ωnt are spatio-temporal phases, and

(an,bn) = (An cosϕn,An sinϕn) are wave parameters describing

the ocean surface.

Choppy Wave Model
Optical measurements of the ocean surface provide, at each

time, the surface elevation measured for a set of spatial points

at irregular but defined Eulerian locations in a reference coordi-

nate system. Hence, the wave model used in the reconstruction

algorithm must also be able to provide and use comparable in-

formation. On the other hand, Lagrangian representations of the

free surface of a given order can model nonlinear wave proper-

ties that are not included in Eulerian developments of the same

order [2, 3, 18]. Here, the CWM following our developments

meets both of these requirements, as it is derived as a solution of

Lagrangian dynamical equations in an Eulerian system.

Let RRRL and ZL denote the horizontal and vertical displace-

ments of a particle with initial horizontal position rrr0 and vertical

position z0 = 0 (i.e., on the free surface), respectively. A La-

grangian perturbation expansion in wave steepness of these pa-

rameters yields [19–21],

{

RRRL (rrr0, t) = rrr0 +∑i DDDi (rrr0, t) ,

ZL (rrr0, t) = ∑i Zi (rrr0, t) ,
(3)

where DDDi and Zi are the ith-order terms in the Lagrangian ex-

pansion. Expressing the particle coordinates from Eqn. (3) in

an Eulerian framework requires finding an explicit relationship

between RRRL and ZL, which can be achieved through the implicit

relationship [14],

ZL

(

RRRL −∑
i

DDDi (rrr0, t) , t

)

≃ ZL

(

RRRL −∑
i

DDDi (RRRL, t) , t

)

. (4)

The CWM surface elevation based on this expansion are then

reformulated as,

η̃ (rrr, t) = ∑
i

Zi

(

rrr−∑
i

DDDi (rrr, t) , t

)

. (5)

The zeroth-order Lagrangian solution is the particle position at

rest, i.e., DDD0 = (0,0) and Z0 = 0. The first-order solution yields

[19–21],

{

DDD1 (rrr, t) = ∑N
n k̂kkn (−an sinψn +bn cosψn) ,

Z1 (rrr, t) = ∑N
n an cosψn +bn sinψn.

(6)

Assuming a single wave component, this first-order solution has

been shown to be consistent with a third-order Stokes expansion

for a surface frozen at t = 0 (see Eqn. (63) in [2], with a misprint

in the sign of the cos(2Kx) factor). Apart from the mean sur-

face level this makes the first-order CWM efficient at represent-

ing nonlinear geometrical properties of ocean surface waves (i.e.,

sharper crests and flatter troughs). However, at this order, water

particles located on the free surface move around circles around

their initial position (rrr,z = 0) with a uniform angular velocity

and, hence, their mean position is at z = 0. Thus, the asymmetry

observed in nonlinear wave shape is not properly accounted, as

it would require a non-zero mean surface level [2, 18, 22].

Increasing the order of the Lagrangian expansion, we find

that the second-order term Z2 includes a vertical shift of the mean

water level [19, 21], which causes particles to oscillate around a

higher position. This important feature was added to the recon-

struction process by reformulating the first-order CWM as,

η̃ (rrr, t) =
N

∑
n

(an cos ψ̃n +bn sin ψ̃n)+
1

2
kn

(

a2
n +b2

n

)

,

ψ̃n = kkkn · (rrr−DDD1 (rrr, t))−ωnt. (7)

which, throughout the paper, will be referred to as CWM1.

In addition, we also developed and used an improved formu-

lation for a second-order CWM, denoted ICWM,

η̃ (rrr, t) =
N

∑
n

an cosΨ̃n +bn sinΨ̃n +
1

2
kn

(

a2
n +b2

n

)

,

Ψ̃n = kkkn · [rrr− (DDDI (rrr, t)+Ust)]−Ωnt, (8)

with,

DDDI (rrr, t) =
N

∑
n

k̂kkn (−an sinΨn +bn cosΨn) ,

Ψn = kkkn · rrr−Ωnt, (9)

where Ωn = ωn −1/2kkkn ·Us and Us = ∑N
n ωnkkkn

(

a2
n +b2

n

)

is the

Stokes drift vector. Note that, for a monochromatic wave, this in-

troduces corrections of the phase and group velocities consistent
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FIGURE 1. GEOMETRICAL PARAMETERS LEADING TO THE

OBSERVATION ZONE.

with third-order Stokes theory. In fact, here, we only consider

self-interaction terms at second order, thus neglect the effect of

interactions of different components. The detailed derivation of

this formulation will be presented in future work [23].

METHODS
We present a theoretical, yet realistic, setup for an optical

system able to instantaneously remotely measure a large dataset

of ocean surface elevations. This dataset is used in combination

with various wave models (e.g., LWT, CWM1, ICWM) to per-

form a nowcast (i.e., initial) ocean surface reconstruction, and

based on this to issue short-term forecasts of ocean surface eleva-

tions over a specified area. To this effect, we discuss the suitable

choice of cutoff frequencies and directions of the reconstructed

wave field, and based on this define the area over which the ac-

curacy of the sea state forecast will be evaluated, as compared

to a prediction made with a higher-order HOS model. We detail

the free surface reconstruction process for linear and nonlinear

wave models, and the regularization procedure that is required

for solving the resulting inverse problem.

Setup Description
Let us consider an optical system (denoted by OS throughout

this paper) simply mounted on a fixed offshore structure at loca-

tion (xc,yc,zc) (zc = 30 m is used in the present applications) and

facing the ocean surface with viewing angles (α,β ) = (76◦,0◦)
and aperture angles (αa,βa) (here αa = 20◦), and remotely mea-

suring free surface elevations using J rays (here J = 64× 64 =
4096), uniformly distributed over the aperture angles. This yields

the observation zone shown in Fig. 1. During an assimilation

time Ta, the OS acquires K sets of spatial observations, at a con-

stant sampling frequency fs (here 1 Hz), leading to J ×K = L

spatio-temporal observations.

We assume a random incident wave field, with its main di-

rection along the x-axis, described by a directional JONSWAP

(JS) spectrum, S (k,θ) = F (k)×G(θ) [24], of significant wave

height Hs, peak period Tp, and peakedness parameter γ . The di-

rectional spreading function is standard and defined as,

G(θ) =

{

1
σ cos2

[

π(θ−θdir)
2σ

]

, if |θ −θdir| ≤ π
2
,

0, if |θ −θdir|> π
2
,

(10)

where θdir = 0 is the mean direction of propagation of the wave

field, and σ is a directional parameter.

The combination of wave field parameters selected in the

present simulations is: Hs = 3 m, Tp = 10 s, γ = 3.3, σ = π/4,

which corresponds to a realistic moderately steep sea state, fre-

quently observable in open oceans, with a corresponding, deep

water characteristic steepness, Hs/λp ≃ 2%.

Cutoff Frequencies and Directions
In practical applications, the reconstructed wave field com-

ponents should be limited in frequency and direction to the band-

widths that are meaningful to the dynamic response of the struc-

ture or ocean vehicle of interest. As the study of a specific struc-

tural response is beyond the scope of this paper, we first aim at

accurately reconstructing wave fields without specifying any re-

sponse bandwidth. Hence, the cutoff limits
(

kmin,max,θ min,max
)

are calculated with respect to the reference ocean wave spectrum.

Additionally, both the size of the observation area and the

spatial sampling resolution are related to the minimum and max-

imum wave frequencies that can be reconstructed, respectively.

For the sake of simplicity, here, we only consider spatial ob-

servations (i.e., K = 1) to estimate cutoff frequencies. In this

case, the low cutoff wavenumber (or frequency since ω =
√

gk)

is defined by the largest distance Lobs between two observation

points as, kmin ≥ 2π/Lobs. In the following, we set kmin to its

minimal value by determining Lobs at the first observation time

tobs. When reconstructing a signal over a regular observation

grid (i.e., with constant spatial sampling frequency), the max-

imum high cutoff frequency must satisfy Shannon’s condition,

i.e., kmax ≤ 2π/(2ℓobs), where ℓobs is the distance between two

observation points. Since the observation grid is highly irregular,

we will determine kmax by evaluating its influence on the quality

of the reconstruction.

Cutoff limits in wave directions are set by considering the

fraction of total wave energy beyond which the remaining energy

can be considered as negligible, i.e.,

∫ θ min

−∞
G(θ)dθ =

∫ +∞

θ max
G(θ)dθ = µ

∫ +∞

−∞
G(θ)dθ , (11)

with µ the fraction of total energy considered as negligible. In
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the following µ = 1%, which corresponds to θ min,max ≃ ±35◦

for the spreading function defined above.

Prediction Zone Definition
Only a limited amount of information is assimilated during

the reconstruction process, due to the physical spatio-temporal

limitations of optical free surface observations (e.g., limited size

of observation zone) and the finite bandwidths of the recon-

structed wave field. Hence, only a similarly limited spatio-

temporal region, called prediction zone, is accessible for sea

state forecast, as a result of propagating the assimilated informa-

tion [16, 17]. For a one-dimensional (1D) wave field, this region

is bounded by the time evolution of the amplitude and phase of

the slowest and fastest wave components at the end (xmax
obs ) and

beginning (xmin
obs ) of the observation zone, respectively. It can be

shown that reconstructed information attached to a specific wave

component (i.e., wave amplitude and phase) is traveling at the

wave group velocity Cg = ω/(2k) [15]. Thus, in 1D, as shown

in Fig. 2a, a point (x, t ≥ trec) is included in the prediction zone

if,

xmin
obs +Cmax

g (t − trec)≤ x ≤ xmax
obs +Cmin

g (t − tobs) , (12)

where trec and tobs are the reconstruction and observation times,

respectively. Both the LWT and CWM1 models rely on the lin-

ear deep water dispersion relationship, while ICWM includes a

second order correction term which affects both phase and group

velocity. The two constrains described by Eqn. (12) eventually

cross each other (at point Pmax = (xmax, tmax); Fig. 2a), which

means that the measured information is obsolete and can no

longer be used in a prediction. Note that increasing the assim-

ilation time Ta leads to increasing the size of the prediction zone.

In two-dimensions (2D), the wave field is decomposed

in individual wave components propagating in direction θ ∈
[

θ min,θ max
]

. The corresponding prediction zone can be calcu-

lated for each direction using Eqn. (12), as if it were a 1D case,

by replacing xobs by dobs = rrrobs · k̂kk = xobs cosθ + yobs sinθ , the

distance along the considered direction. The intersection of each

zone forms the 2D prediction zone. To save computational time,

the prediction zone area can be approximated based on the two

extreme directions θ min and θ max, as shown in Fig. 2b. The far-

thest reachable prediction zone P
max corresponds to a segment

(Fig. 2b).

Data Assimilation Process
Linear Reconstruction For a linear wave field repre-

sented by Eqn. (1), the reconstruction process is based on the

minimization of a quadratic cost function representing the mean

square difference between observations and predictions of the

wave model. Here, assuming there are no measuring and model

t 𝒫max

trec

surface elevation

prediction zone

observation points

Lobs

Ta

tobs

(a)

Δt

spatial prediction zone at trec+Δt
observation points

Δt
𝒫max

(b)

FIGURE 2. (a) SPATIO-TEMPORAL EVOLUTION OF THE PRE-

DICTION ZONE FOR A 1D SET OF OBSERVATIONS, AND (b) LO-

CATION OF THE PREDICTION ZONE FOR A 2D SET OF OBSER-

VATIONS FOR A SINGLE TIME RECONSTRUCTION.

errors, the cost function is,

C =
1

L

L

∑
ℓ=1

(η̃ (rrrℓ, tℓ)−ηℓ)
2 , (13)

where η̃ (rrrℓ, tℓ) and ηℓ are the predicted and measured surface

elevations at observation points rrrℓ and at time tℓ (ℓ = 1, ...,L),
respectively. This problem is equivalent to a least-square mini-

mization of a cost function, which can be achieved by specifying

(for n,m = 1, ...,N; note that index summation is implied for re-

peated indices),

{

∂C

∂am

= 0,
∂C

∂bm

= 0

}

⇐⇒ AmnXn = Bm, (14)
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where,

Xn = an, XN+n = bn, (15)

is the control vector of 2N unknown wave parameters and,

Bm =
L

∑
ℓ=1

ηℓ cosψmℓ, BN+m =
L

∑
ℓ=1

ηℓ sinψmℓ, (16)

is a vector containing the observation points information, with

ψmℓ = kkkm · rrrℓ−ωmtℓ, and,

Amn =
L

∑
ℓ=1

cosψmℓ cosψnℓ,

Am,N+n =
L

∑
ℓ=1

cosψmℓ sinψnℓ,

AN+m,n =
L

∑
ℓ=1

sinψmℓ cosψnℓ,

AN+m,N+n =
L

∑
ℓ=1

sinψmℓ sinψnℓ, (17)

is the wave model matrix. The linear system of Eqns. (14) to (17)

can then be solved for the wave model parameters (an,bn).

Nonlinear Reconstruction For a nonlinear sea state re-

construction the cost function of Eqn. (13) is also minimized, us-

ing one of the nonlinear wave models, CWM1 or ICWM, to rep-

resent surface elevations (Eqns. (7) or (8)). Here, we detail the

system construction for CWM1. Following the same methodol-

ogy as for the linear model, we use the cost function minimiza-

tion Eqn. (14) with,

Bm =
L

∑
ℓ=1

ηℓPmℓ, BN+m =
L

∑
ℓ=1

ηℓQmℓ, (18)

with,

Pmℓ = (1+bmkm sinψmℓ)cos ψ̃mℓ−amkm sinψmℓ sin ψ̃mℓ+ kmam,

Qmℓ = (1+amkm cosψmℓ)sin ψ̃mℓ−bmkm cosψmℓ cos ψ̃mℓ+ kmbm.
(19)

Similarly, we have,

Amn =
L

∑
ℓ=1

Pmℓ

(

cos ψ̃nℓ+
1

2
knan

)

,

Am,N+n =
L

∑
ℓ=1

Pmℓ

(

sin ψ̃nℓ+
1

2
knbn

)

,

AN+m,n =
L

∑
ℓ=1

Qmℓ

(

cos ψ̃nℓ+
1

2
knan

)

,

AN+m,N+n =
L

∑
ℓ=1

Qmℓ

(

sin ψ̃nℓ+
1

2
knbn

)

. (20)

Since both Amn and Bm now depend on wave parameters (an,bn),
the system of Eqns. (14) becomes nonlinear and is solved itera-

tively. To do so, equations are linearized by computing A
(p)
mn and

B
(p)
m based on wave parameters obtained at the previous itera-

tion p, when solving for X
(p+1)
n at iteration p+1. The solution is

initialized at p = 1, using A
(0)
mn and B

(0)
m based on the linear recon-

struction problem and thus on Eqns. (16) and (17). Convergence

is typically achieved within 5 to 10 iterations.

A similar approach can be used for ICWM, but the inverse

problem becomes more complex due to the higher-order of ex-

pansion in the formulation. The complete derivation of the so-

lution for this model and its reconstruction system will be pre-

sented in future work.

Regularization In applications, the inverse reconstruc-

tion problem defined above (Eqn. (14)) can become ill-

conditioned due to practical constraints, such as the heteroge-

neous distribution of spatial observation points, the limited ocean

area observed by the OS, and the the frequency and direction

bandwidth cutoffs in the reconstructed wave field. To be able to

find consistent results independently of the conditioning of the

matrix to invert (i.e., Amn), a Tikhonov regularization method is

applied, which yields,

min
{

||AmnXn −Bm||2 − r
2 ||Xm||2

}

, (21)

where r is the regularization parameter and ||.|| denotes the Eu-

clidean norm. The optimal regularization parameter is found us-

ing the “L-curve” method, which consists of finding the r value

corresponding to the point of maximum curvature (i.e., corner)

of the (log ||AmnXn −Bm|| , log ||Xm||) function, hence, providing

an optimal compromise between minimizing the residual error

and ensuring that the norm of the solution does not become too

large. The L-curve corner can be determined analytically through

solving a singular value decomposition problem [25, 26].
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RESULTS AND DISCUSSION

In the following applications, we illustrate and discuss key

characteristics of our proposed ocean wave reconstruction algo-

rithms, for optically measured surface elevation data. In the ab-

sence of field data, the algorithms are applied to reference syn-

thetic surface elevation datasets, generated first in 1D using a

higher-order HOS model. The influence of reconstruction pa-

rameters on the accuracy of the solution with respect to the ref-

erence data is studied, in particular, the number of wave com-

ponents, the high cutoff frequency, the heterogeneity of the ob-

servation grid, and the number of observation times, while high-

lighting differences between linear and nonlinear prediction re-

sults. We then present a 2D case and show how the horizontal

aperture angle can help in the reconstruction.

Synthetic Dataset and Error Definition

The open source HOS-ocean model [6] is used to generate

synthetic reference ocean surfaces from which datasets of obser-

vation points are extracted. Since its first developments [27, 28],

this model, which simulates the nonlinear propagation of direc-

tional wave fields over large spatio-temporal domains, has under-

gone numerous validations and been used in various applications,

such as for simulating freak waves [29], developing a numerical

wave tank [30], or in wave prediction [31, 32]. Based on an ini-

tialization with a JS spectrum and a set of random phases, HOS-

ocean computes the time evolution of the complex amplitude of

wave components. These are then used to construct snapshots of

the reference ocean surface at selected observation times. In the

presented case, the order of the HOS expansion is set to 1 or 5, to

generate a linear or a nonlinear reference surface, respectively. In

each case, the HOS numerical grid and parameters are selected

to ensure converged results.

Based on the computed reference surfaces, synthetic

datasets of surface elevations data such as would be acquired by

the depicted OS are generated by computing the intersection be-

tween J optical rays with the reference ocean surface (see, e.g.,

Fig. 3 for a 1D surface).

The following relative standard error (RSE) is used as an

indicator of the prediction accuracy,

εRSE (t) =

√

√

√

√

∑
Nr
q=1 (η (rrrq, t)−ηq)

2

∑
Nr
q=1 η2

q

, (22)

where rrr defines the footprint of the spatial prediction zone at

time t and Nr is the number of reconstructed points, which is se-

lected large enough to achieved a converged error estimate. RSE

quantifies the scaled mean squared difference between the recon-

structed and reference surfaces over the observation points in the

prediction zone. Since the quality of the prediction depends on

the local surface geometry at the observation time (e.g., through

shadowing effects), an overall RSE is computed by averaging

RSE values for Ns = 50 surface reconstructions of ocean surface

generated at the same time with HOS-ocean for different initial

random phases,

ε̄RSE (t) =
1

Ns

Ns

∑
q=1

εRSEq (t) , (23)

using the same initial wave spectrum.

One-Dimensional Reconstruction
Using a JS spectrum with parameters as defined above, 1D

linear surfaces are first generated and then reconstructed based

on data acquired at a single time (i.e., K = 1), with L = 64 ob-

servation points uniformly distributed over the observation area.

Figure 4 shows the RSE at reconstruction time trec = tobs = 0

(i.e., for a nowcast), as a function of the number of wave com-

ponents N used in the reconstructed wave field, for different

high cutoff frequencies. Note that Shannon’s criterion yields,

kmax ≤ 13.9kp, but the HOS surface was generated using a cutoff

frequency kmax ≃ 16kp. As expected, results show that the recon-

struction error decreases as the high cutoff frequency grows, and

eventually converges to a minimum, here approximately 10%,

for kmax = 10kp. In all cases, the number of wave components

(N = 15 to 60) appears to have a very limited influence on the

accuracy of the reconstruction. However, this number must be
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K = 1.
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FIGURE 5. PREDICTION ERROR OF A NONLINEAR OCEAN

SURFACE AS A FUNCTION OF TIME, FOR DIFFERENT WAVE

RECONSTRUCTION MODELS, OVER A REGULAR GRID FOR

K = 1.

large enough to allow for a proper inversion of the reconstruc-

tion system. We find: N ≥ 30 for kmax ≥ 8kp and N ≥ 40 for

kmax ≥ 12kp. In the following we use kmax = 10kp and N = 50.

Next, nonlinear reference surfaces are generated using the

same parameters and the reconstruction error over the predic-

tion zone is computed as a function of time t = trec = 0 to

3Tp ≃ 0.8tmax, for the same L = 64 uniformly distributed ob-

servation points, using either the LWT, CWM1, or ICWM model
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K = 10, LWT

K = 10, regular grid

K = 10, regular grid, LWT

FIGURE 6. PREDICTION ERROR OF A NONLINEAR OCEAN

SURFACE AS A FUNCTION OF TIME, FOR DIFFERENT NUM-

BERS OF OBSERVATION TIMES, USING ICWM OVER AN IR-

REGULAR GRID. SOME REGULAR GRID RESULTS ARE PLOT-

TED FOR REFERENCE.

in the reconstruction. For each model, the ocean surface is first

reconstructed at t = trec = 0 and then propagated to a later time

where its RSE error with respect to the reference HOS solution is

evaluated; for comparison, the case of Fig. 4 propagated in time

is also marked on the figure (i.e., reconstruction using LWT of a

linear reference surface). Figure 5 shows that at t = trec = 0 all

models give the same results, which is expected since at initial

time the different reconstruction algorithms all solve equivalent

inverse problems. Then, as time increases, each wave model be-

haves according to its own properties. While the CWM1 model

provides a better prediction than the LWT model, the ICWM fur-

ther improves the prediction accuracy as time increases, due to

the additional nonlinear phase speed corrections. Here, the im-

provement of the nonlinear over the linear prediction is on the

order of a few percent. The linear prediction of a linear reference

surface, shown on the same figure, is an indication of the best

reconstruction accuracy that could be achieved for this problem

and dataset, if all nonlinear effects were properly accounted for

in the nonlinear wave models. Hence, the difference between this

linear and nonlinear forecasts using ICWM increases with time

due to the incomplete representation of time-dependent nonlinear

effects in the latter model, to approximately reach 5% at t = 3Tp.

Ocean observations made by an OS such as a LIDAR cam-

era yield highly irregular grids, since the density of observation

points geometrically decreases with the distance from the OS,

which is made worse by wave shadowing effects becoming more

important at grazing incidence angles (i.e., for the most distant

observation points; see Fig. 3). The effect of using an irregu-

lar grid on the accuracy of the ocean surface reconstruction is
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assessed by recalculating the case of Fig. 5, using the ICWM

model, for a dataset of L = 64 irregularly spaced observation

points. First, considering a single observation time (i.e., K = 1),

Fig. 6 shows that the reconstruction error greatly increases (by

more than a factor of 2) as compared to a regular dataset. As

suggested in earlier work [1], however, this deterioration of the

ocean reconstruction and forecasting can be significantly reduced

by increasing the number of observation times. Indeed, this has

the effect of making some portions of the free surface, invisible

to the OS at a given time due to shadowing effects, visible and

hence measurable at a later time. Thus, for K = 2, Fig. 6 shows

that the error already drops by 10% as compared to K = 1, and

then further drops when increasing K to reach a maximum of

∼ 20% for K = 10. The latter, however, is still 5% larger than

the error achieved when using a regular grid, for the same num-

ber of observation times (also shown in the figure). Comparing

results in Figs. 5 and 6 we also see that, when using a regular

grid of observation points, increasing K has no significant effect

on the prediction error; for both the LWT and ICWM models,

maximum errors indeed remain on the order of 15 to 20% for

K = 1 and 10, even if ICWM leads to a consistently better pre-

diction.

Figure 6 also shows that the reconstruction error decreases

when K increases form 1 to 10, but then gradually increases for

larger K values. This might result from increasing numerical

errors in the inverse problem solution, as the observed dataset

becomes larger. Moreover, since reconstructed waves are only

modeled up to second-order in nonlinearity in ICWM, higher-

order time-dependent nonlinear effects included in the HOS-

ocean solution, which affect the reconstruction process when us-

ing temporal data, are not well represented in the wave model as

time increases. Therefore, the model becomes unable to prop-

erly represent the ocean surface when the assimilation time Ta is

too long (e.g., phase shifts resulting from amplitude dispersion

effects). Varying the temporal sampling frequency (set here to 1

Hz) would allow finding out whether it is the assimilation time or

the total number of observations L that is more likely to improve,

and then limit, the quality of the prediction.

In general, increasing the assimilation time Ta results both

in a decrease of the prediction error and in an increase of the

size of the prediction area. Both effects are illustrated in Fig. 7,

which shows the reference and reconstructed surface elevations

at reconstruction time trec, for K = 1 and 30. Observation points

are shown at the first observation time tobs. With K = 30, the re-

constructed surface is much closer to the reference data than for

K = 1, and the prediction area is larger. The figure shows that, for

K = 30, the reconstructed surface remains quite close to the ref-

erence data even beyond the prediction zone (x/λp ≥ 3.8). This

suggests that the estimate for the upper limit of the prediction

zone, which is calculated based on the distance traveled by the

slowest wave component during the assimilation time, is conser-

vative (Eqn. (12)). Since longer waves travel faster, the predic-

tion of low frequency components can still be accurate beyond

the upper limit. A similar effect affects the high frequency com-

ponents at distances below the lower limit, when time increases

(t > trec). This suggests the presence of a “gray area” surround-

ing the prediction zone and growing with time, over which the

amount of measured information could still be enough for an ac-

curate prediction, but with decreasing accuracy as distance in-

creases from the prediction zone boundary.

In Fig. 7, when the density of observation points decreases

(K = 1; 1.2 ≤ x/λp ≤ 2.3), the reconstructed surface tends not

to fit well the reference surface elevation. As Shannon’s condi-

tion is not met over this part of the observation zone, an aliasing

phenomenon leads to overestimating high frequency component

amplitudes, which causes the observed high frequency surface

oscillations. However, since this poorly reconstructed part of the

observation zone is located close to the lower limit of the predic-

tion zone, and the inaccuracy only affects high frequency com-

ponents, the growing “gray area” effect tends to remove that part

of the surface from the prediction zone, while the other part re-

mains within it. This explains the decreasing prediction error as

a function of time for small K values observed in Fig. 6. With

several observation times, this phenomenon disappears due to an

artificial refinement of the observation grid: as indicated before,

parts of the surface that were initially not illuminated by the OS

rays become visible at a different observation time.
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Two-Dimensional Reconstruction

We now generate a 2D nonlinear wave field with HOS-

ocean, for the same input JS spectrum as before, and reconstruct

it using an observation grid of 64×64 spatial points (L = 4096)

with kmax = 10kp, K = 10, and 50 wave frequencies distributed

over 30 directions, yielding N = 1500 wave components. Since

the number of spatial observations is significantly larger than

before, calculating the exact intersection of L optical rays with

time-varying reference surfaces becomes numerically demand-

ing. Thus, we estimate the horizontal location of observation

points, rrrℓ, as if the reference surface were plane, neglecting shad-

owing effects. Results are comparable since the major contribu-

tion to the spatial spreading of observation points, i.e., the in-

creasingly grazing incidence of OS rays at large distances, is ac-

counted for. Also, the reconstruction error is now calculated for

one surface and not averaged over 50 surfaces as in 1D, and the

study presented here is limited to the linear wave reconstruction,

even if the reference oceanic surface is nonlinear.

In the following, we estimate the effect of the directional

spreading of the observation grid on the ocean reconstruction,

which is function of the horizontal aperture angle βa of the OS

(Fig. 1). Figure 8 shows the reconstruction error calculated as

a function of time over the 2D prediction zone. With βa = 10◦,

the error is ∼ 70% at reconstruction time and almost monoton-

ically decreases as time increases up to t = 3Tp. Similar to 1D

cases, this decrease in error results from the growing “gray area”

surrounding the prediction zone boundary. Poorly reconstructed

parts of the ocean surface close to the initial prediction zone

boundary are gradually removed as time increases. However,

with the decreasing size of the prediction zone, the error esti-

mate becomes more subject to slight variations, depending on

FIGURE 9. LOCAL 2D LINEAR PREDICTION ERROR

|η −ηHOS|/Hs, AT RECONSTRUCTION TIME (TOP) AND

AFTER 2Tp OF PROPAGATION (BOTTOM). LINES MARK THE

BOUNDARY OF THE PREDICTION ZONE.

which waves are crossing the prediction zone at the considered

time; this explains the increasing error at t = 2.5Tp. Such ef-

fects did not occur in the 1D cases since errors were averaged

over 50 different surfaces. Figure 8 shows that increasing βa re-

sults in a significantly reduced error, which converges to a min-

imum on the order of 15% for βa = 110◦; this error is similar

to 1D cases. This large error reduction is related to the area

of the ocean surface covered by the observation zone, as com-

pared to the area of the prediction zone, at reconstruction time.

As shown in Fig. 2b, the two-dimensional prediction zone de-

pends on the range of directions of propagation of wave compo-
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nents in the reconstructed wave field. Here, as θ min,max ≃ ±35◦

and the OS is facing the main wave direction, the optimal aper-

ture angle that leads to a maximal prediction zone coverage is

180−
(

|θ max|+
∣

∣θ min
∣

∣

)

≃ 110◦.

Figure 9 shows the horizontal distribution of the local error

|η −ηHOS|/Hs, where η is the reconstructed linear surface and

ηHOS the nonlinear reference surface, at reconstruction time and

after two peak periods of propagation, using an aperture angle

βa = 110◦. The prediction error is clearly much smaller within

the prediction zone than outside of it. At both selected times,

the “gray area” with reduced local error, which surrounds the

prediction zone boundary, can clearly be identified. At recon-

struction time, the “gray area” is close to the the upper limit of

the prediction zone (right side of the boundary in Fig. 9 top) be-

cause the reconstructed longer waves propagate faster, and thus

reach beyond this limit during assimilation time. After 2Tp, the

“gray area” has expanded and is now completely surrounding the

prediction zone. This confirms that the method used here for es-

timating the prediction zone boundary is conservative.

CONCLUDING REMARKS
We showed that both 1D and 2D ocean wave fields (or sea

states) can be accurately reconstructed on the basis of irregular

datasets of realistic, but synthetic (and thus error free), optical

measurements. Reconstruction algorithms based on linear and

various nonlinear wave models were applied and validated. De-

spite its simple analytical formulation, the Choppy Wave Model

(CWM) is able to simulate relevant nonlinear effects in ocean

wave fields. The new improved Choppy models that better pre-

dict wave shape (CWM1) and nonlinear phase velocity (ICWM),

allow improving the accuracy of the wave reconstruction and pre-

diction.

We quantified effects on the reconstruction of the main

characteristic of optical measurements, which is to yield highly

sparsely distributed datasets, making for a particularly chal-

lenging spatial reconstruction. However, we showed that using

spatio-temporal information allows overcoming this issue.

We quantified the influence of several reconstruction param-

eters, which are shown to be of significant importance to the pre-

diction error. In particular, adequately selecting the cutoff limits

of the reconstructed spectrum (in both frequency and direction)

and the optical system viewing angles, allows accurately predict-

ing the wave field up to several peak periods of propagation. The

influence on the prediction results of a growing “gray area” sur-

rounding the prediction zone boundary was highlighted.

The numerical algorithms used in the present work were not

optimized for computational efficiency nor parallelized. On the

basis of theoretical and practical estimations, it is expected that

optimized and efficiently parallelized algorithms (e.g., on multi-

core or GPU processors) will easily cope with the increased com-

plexity and computational demand resulting from including non-

linear effects in a 2D ocean reconstruction. At present, however,

the assessment of such computational performance of the method

is beyond the scope of this paper and will be left out for future

work.
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