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ON A MIXTURE OF BRENIER AND STRASSEN THEOREMS

NATHAEL GOZLAN AND NICOLAS JUILLET

Abstract. We give a characterization of optimal transport plans for a variant of the
usual quadratic transport cost introduced in [31]. Optimal plans are composition of
a deterministic transport given by the gradient of a continuously differentiable convex
function followed by a martingale coupling.

1. Introduction

Given two probability measures µ, ν on R
d, we recall that a coupling between µ and ν

is a probability measure π on R
d × R

d such that

π(A × R
d) = µ(A) and π(Rd × B) = ν(B),

for all Borel sets A, B of R
d. The set of all couplings between µ and ν will be denoted

by C(µ, ν) in all the paper. In the sequel, it will be convenient to represent a coupling
π ∈ C(µ, ν) in the following disintegrated form

(1) dπ(x, y) = dµ(x)dpx(y),

where x 7→ px is a (µ-almost surely unique) probability kernel. By a slight abuse of
vocabulary, a couple (X, Y ) of random variables such that X ∼ µ and Y ∼ ν will be also
called a coupling of µ and ν.

1.1. Existence of structured couplings between probability measures. The ques-
tion to construct couplings between probability measures having some nice structures or
properties is natural both in probability theory and analysis. Let us recall two famous
results guarantying the existence of couplings with rigid but very different structures,
namely the theorems of Brenier and Strassen.

A fundamental result by Brenier [11, 12] (see [54, §1.3] for a discussion of the bibli-
ography around this result) shows that if µ is say absolutely continuous with respect to
Lebesgue measure, then there exists some convex function ϕ : R

d → R such that ∇ϕ
pushes forward µ onto ν. In other words, there exists a deterministic coupling π∗ of the
form

dπ∗(x, y) = dµ(x)δ∇ϕ(x)(y).

Moreover, assuming in addition that µ and ν have finite second moments, this π∗ is the
unique optimal coupling in the Monge-Kantorovich transport problem for the quadratic
cost: ∫∫

|x − y|2 dπ∗(x, y) = inf
π∈C(µ,ν)

∫∫

|x − y|2 dπ(x, y),

denoting by | · | the standard Euclidean norm on R
d. This result has then been extended

to various cost functions [24] and state spaces [53, 26, 3, 22, 21, 19, 7, 27] and has had
numerous applications in PDE, geometric analysis or probability theory, see [2, 4, 69, 70]
and the references therein.

On the other hand, from a probabilistic point of view it is natural to investigate the
existence of martingale couplings, that is to say to look for couplings π ∈ C(µ, ν) which
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correspond to the law of a martingale (Xt)t∈{0;1}. This martingale requirement means
that the kernel p appearing in (1) satisfies

∫

y dpx(y) = x, for µ almost every x ∈ R
d.

As for the Brenier Theorem, it turns out that the existence of a martingale coupling
between µ and ν is not automatic. Assuming that µ and ν have finite first moments,
a necessary and sufficient condition is given by Strassen Theorem [66]: there exists a
martingale coupling between µ and ν if and only if µ is dominated by ν in the convex
order. Recall that given two probability measures with finite first moments µ and ν, one
says that µ is dominated by ν in the convex order if

∫
f dµ ≤

∫
f dν for all convex functions

f : Rd → R. This is denoted as follows in the sequel: µ �c ν. Note that Strassen’s result
has been generalized at the time continuous process level by Kellerer [44, 45] (see also
[5]): if a familly (µt)t≥0 of probability measures on R is increasing for the convex order (a
so-called peacocks using the terminology of [35]), then there exists a process (Xt)t≥0 which
is together Markovian and a martingale such that Xt ∼ µt for all t ≥ 0. See the monograph
[36] on peacocks, [49, 38] for the approach by Lowther and [42, 37, 9] for extensions.

1.2. In between Brenier and Strassen. Given two probability measures µ, ν on R
d

having their first moments finite, it is not always possible to go from µ to ν using a
deterministic mapping given by the gradient of a convex function, nor to go from µ to ν
using a martingale coupling. In this paper we will be interested in couplings obtained by
composition of these two classical transport methods, which as we will see below always
exist.

More precisely, we will look for couplings (X, Y ) of µ and ν such that there exists a
convex function ϕ : Rd → R of class C1 such that

(2) E[Y |X] = ∇ϕ(X), a.s.

Introducing X ′ = ∇ϕ(X), we can see (X, Y ) as the initial and final states of a (time inho-
mogeneous) Markov chain (X, X ′, Y ) where the first transition step is deterministic and
given by the gradient of a convex function and the second transition step is a martingale.
As mention above, such couplings always exist: simply choosing X and Y independent
gives a trivial example.

The purpose of our main result (Theorem 1.2 below) is to distinguish some special
couplings (X, Y ) among those satisfying (2) by showing that they are solutions of an
optimal transport problem that we shall now present.

Let θ : Rd → R
+ be some convex function; using the terminology of [31] the barycentric

optimal transport cost between µ and ν is defined by

(3) T θ(ν|µ) = inf
π∈C(µ,ν)

∫

θ

(

x −

∫

y dpx(y)

)

dµ(x).

In probabilistic notations, this optimal transport cost can be expressed as follows:

T θ(ν|µ) = inf E [θ (X − E[Y |X])]

where the infimum runs over the set of random vectors (X, Y ) such that X ∼ µ and Y ∼ ν.
If dπ(x, y) = dµ(x)dpx(y) ∈ C(µ, ν) is such that T θ(ν|µ) =

∫
θ (x −

∫
y dpx(y)) dµ(x), we

call it an optimal transport plan (or coupling) from µ to ν (for the cost T θ). These
barycentric costs are actually part of a more general family of transport costs, called
‘weak transport costs”, introduced by the first author together with Roberto, Samson and
Tetali in [31] (see Section 1.4 below for a more complete presentation).

In this paper, we will mainly focus on the barycentric transport cost, denoted by T 2 in
the sequel, associated to the function θ(u) = |u|2, u ∈ R

d: for all µ, ν ∈ R
d having finite
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first moments,

T 2(ν|µ) = inf
π∈C(µ,ν)

∫ ∣
∣
∣
∣x −

∫

y dpx(y)

∣
∣
∣
∣

2

dµ(x).

In [31, Theorem 2.11], the following Kantorovich type duality formula has been obtained:

Theorem 1.1. If µ, ν have finite first moments then

T θ(ν|µ) = sup
f

{∫

Qθf dµ −

∫

f dν

}

,

where

Qθf(x) = inf
y∈Rd

{f(y) + θ(x − y)}, x ∈ R
d,

and where the infimum runs over the set of all functions f which are convex, Lipschitz
and bounded from below.

Several applications of this duality formula were already investigated in [31], mainly
in connection with transport-entropy inequalities and deviation inequalities for convex
functions. In particular, let us mention that Strassen Theorem can be derived from this
duality theorem, see [31, Section 3]. Here we shall use this duality result to describe
optimal transport plans for T 2.

Before stating our main result, we need some preparation. First recall that the transport
distance W2 is defined for all probability measures µ, ν having finite second moments by

W 2
2 (µ, ν) = inf

π∈C(µ,ν)

∫∫

|x − y|2 dπ(x, y).

Given a probability ν ∈ P(Rd) (the set of all Borel probability measures on R
d), we denote

by

Cν = {η ∈ P(Rd) : η �c ν}

the set of all probability measures which are dominated by ν in the convex order. This
set Cν is easily seen to be convex in the usual sense and the proof of Proposition 1.1 will
show that (generalized) W2-geodesics with endpoints in Cν are contained in Cν .

Proposition 1.1. Let µ, ν ∈ P(Rd) be probability measures with finite second moment.
There exists a unique probability measure µ∗ ∈ Cν such that

W2(µ∗, µ) = inf
η∈Cν

W2(η, µ) = T2(ν|µ).

We call µ∗ the projection of µ on Cν .

We recall that if h : Rd → R ∪ {+∞} is some convex function, the Legendre transform
h∗ of h is defined by

h∗(y) = sup
x∈Rd

{x · y − h(x)}, y ∈ R
d.

With these notions in hand, we can now state the main result of this paper which describes
the set of all optimal couplings for T 2.

Theorem 1.2. Let µ and ν be probability measures with compact support on R
d.

(a) There exists some convex function f̄ : Rd → R such that

(4) T2(ν|µ) =

∫

Q2f̄ dµ −

∫

f̄ dν,

where, for any function g : Rd → R,

Q2g(x) = inf
y∈Rd

{g(y) + |x − y|2}, x ∈ R
d.
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(b) Let h and ϕ be the convex functions defined by

h(x) =
f̄(x) + |x|2

2
, x ∈ R

d and ϕ(y) = h∗(y), y ∈ R
d.

The function ϕ is C1-smooth on R
d and the map ∇ϕ is 1-Lipschitz on R

d. The
projection µ∗ of µ on Cν is such that

µ∗ = ∇ϕ#µ.

(c) There exists random vectors X, X∗, Y with X ∼ µ, X∗ ∼ µ∗ and Y ∼ ν and such
that X∗ = ∇ϕ(X) and (X∗, Y ) is a martingale. For any such random vectors, it
holds

T 2(ν|µ) = E

[

|X − E[Y |X]|2
]

.

Conversely, if (X ′, Y ′) is a coupling of µ, ν such that T 2(ν|µ) = E[|X ′−E[Y ′|X ′]|2],
then E[Y ′|X ′] has law µ∗, E[Y ′|X ′] = ∇ϕ(X ′) almost surely and (E[Y ′|X ′], Y ′) is
a martingale (which is always true).

Remark 1.1.

- We underline the fact that there is no assumption on the measure µ (as for instance
the condition that it does not give mass to small sets, which is classical for Brenier
transport, see [26] for a minimal condition).

- It follows also from Item (b), that the optimal transport between µ and its projection
µ∗ onto the set Cν is always Lipschitz continuous (without again any assumption
on µ).

- The identity

T 2(ν|µ) = inf
η∈Cν

W 2
2 (η, µ)

of Proposition 1.1 was already observed in [29, Proposition 3.1] in dimension 1
when µ has no atom and then generalized to higher dimensions in [63, Proposition
4.1] when µ is absolutely continuous with respect to Lebesgue.

Before presenting the organization of the paper, let us mention that the methods and
results developed in this work can be easily generalized to study other barycentric (or even
more general) optimal transport problems. We focus on the particular case of T 2 to avoid
unnecessary generality and make the reading of this paper more fluid.

1.3. Other results and organization of the paper. Let us now describe the content
of the paper.

Section 2 adresses the question of characterizing equality cases between W 2
2 and T 2.

We show in Theorem 2.1, that W 2
2 (ν, µ) = T 2(ν|µ) if and only if there exists some

continuously differentiable convex function ϕ such that ∇ϕ is 1-Lipschitz and ν = ∇ϕ#µ.
In other words, this result shows that the Brenier map from µ to ν is a contraction if and
only if µ∗ = ν. This observation is then used in connection with the classical Caffarelli
Theorem [13] showing that probability measures with a log-concave density with respect
to the standard Gaussian are contractions of it.

In Section 3, we generalize the notion of c−monotonicity to the case of the transport
cost T 2. We illustrate the power of this notion, by giving a new proof of Strassen Theorem
for submartingale in dimension 1.

In Section 4, we study a concrete example and describe the function ∇ϕ and the pro-
jected measure µ∗ when µ is some arbitrary probability measure on R

d (with finite second
moment) and ν is a discrete probability measure concentrated on a simplex of Rd.

Section 5 recalls some other examples appearing in the recent literature.
Finally, Section 6 contains the proof of Proposition 1.1 and Theorem 1.2 (and some

auxiliary lemmas).
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1.4. More about weak optimal transport costs. As mentioned above, the barycentric
transport costs (3) enter a more general family of transport costs, that we will now recall.

Let (X, d) be a polish space and P(X) be the set of Borel probability measures on X.
Given a cost function c : X ×P(X) → R

+ and probability measures µ, ν on X the optimal
weak transport cost Tc(ν|µ) from µ to ν is defined by

Tc(ν|µ) = inf
π∈C(µ,ν)

∫

c(x, px) dµ(x),

where π and p are related together by (1). Note that this definition makes sense under
mild regularity assumptions on c, that we will not detail in this exposition.

When c(x, p) =
∫

ρ(x, y) dp(y) for some measurable non-negative function ρ on X2, one
recovers the usual Monge-Kantorovich optimal transport cost

Tρ(µ, ν) = inf
π∈C(µ,ν)

∫

ρ(x, y) dπ(x, y).

On the other hand, the optimal barycentric transport costs presented above corresponds
to cost functions of the form c(x, p) = θ(x −

∫
y dp(y)).

The first appearance of this form of transport cost goes back to the works of Marton
[52, 51] and Talagrand [67, 68] in connections with the concentration of measure phe-
nomenon via the so-called transport-entropy inequalities (see [46] for an introduction to
concentration of measure phenomenon and [28] for a survey on transport-entropy inequal-
ities). For instance, Marton considers in [51] the following simple cost function:

cMarton(x, p) =

(∫

1x 6=y dp(y)

)2

, x ∈ X,

and recovers a fundamental concentration of measure result for product probability mea-
sures of Talagrand [67]. After Marton, some other universal concentration of measures
results by Talagrand were recovered or improved by Dembo [18] and Samson [60, 61, 62]
using variants of Marton’s cost cMarton. Motivated by questions related to concentration
and curvature properties of discrete measures, the paper [31] introduces the general defi-
nition given above and studies some of the properties of this new class of transport costs.
In particular Kantorovich type duality formulas are obtained [31, Theorem 9.6] under the
assumption that c is convex with respect to the p variable (and some additional mild reg-
ularity conditions). We refer to [30, 29, 64, 65, 20] for works directly connected to [31] and
to [63] for an up-to-date survey of applications of weak transport costs to concentration
of measure.

Besides their many applications in the field of functional inequalities and concentration
of measure, it turns out that weak transport costs are also interesting in themselves as
a natural generalization of the transportation problem. Indeed, the main interest of this
definition is that it enables the introduction of additional constraints to the transfers of
mass. For instance, a cost function of the form

c(x, p) =

{ ∫
ρ(x, y) dp(y) if

∫
y dp(y) = x

+∞ otherwise

where ρ : R
d × R

d is some non-negative measurable function gives back the notion of
optimal transport with martingale constraint: if µ �c ν (say compactly supported to
avoid definition problem), then

Tc(ν|µ) = inf{E[ρ(X, Y )] : X ∼ µ, Y ∼ ν, (X, Y ) is a martingale}.

This optimal transport problem with martingale contraint has been thoroughly studied
in [6] for the dimension 1. There, the martingale transport problem is studied for par-
ticular families of costs satisfying the cross derivative condition ∂2

y∂xρ < 0 giving rise to
the left-curtain coupling (on this coupling, see also [33, 43, 41]) and for the cost functions
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ρ : (x, y) 7→ ±|y − x|, generalizing results by Hobson and coauthors [40, 39]. The super-
martingale problem in dimension 1 with cross-derivative condition is studied in [56]. In
higher dimension ρ : (x, y) 7→ ±‖y − x‖ is studied in [25, 48], more general costs are con-
sidered in [50]. We refer to [1] for existence results in the dual optimal transport problem
with martingale contraints making use of the formulation in terms of weak cost as above.

As observed by Conforti [14] and Conforti and Ripani [15] the class of weak transport
costs also entails the notion of entropic costs related to the Schrödinger problem (see the
nice survey by C. Léonard [47]). We refer to the recent articles by Alibert, Bouchitté and
Champion [1] (see also Section 5) and Bowles and Ghoussoub [10] for further developments
and examples.

2. Link with Caffarelli’s contraction theorem

In this section we investigate the question of determining in which case

W 2
2 (ν, µ) = T 2(ν|µ)

and we show how this question is related (when µ is the standard Gaussian) to Caffarelli’s
contraction theorem of [13].

Theorem 2.1. Let µ, ν be two compactly supported probability measures on R
d equipped

with the standard Euclidean norm. The following statements are equivalent:

(a) There exists a convex function ϕ : Rd → R of class C1 such that ∇ϕ is 1-Lipschitz
such that ν = ∇ϕ#µ.

(b) The projection µ∗ of µ on the set Cν = {η ∈ P(Rd) : η �c ν} is equal to ν.
(c) It holds W 2

2 (ν, µ) = T 2(ν|µ).

Let us denote by γd the standard Gaussian measure on R
d. We recall a celebrated result

by Caffarelli [13]:

Theorem 2.2 (Caffarelli [13]). If ν is a probability measure with a density with respect
to γd of the form e−V , with V : Rd → R a convex function, then there exists a convex
function ϕ of class C1 on R

d such that the Brenier transport map ∇ϕ from γd to ν is
1-Lipschitz.

This important result has numerous applications in the field of functional inequalities
[32, 17, 55].

Actually, the conclusion of Theorem 2.1 can be extended to probability measures with
finite moments of order 2. This will be developed in a forthcoming version of the present
paper. The following result then immediately follows from Theorems 2.1 and 2.2.

Corollary 2.1. If ν is a probability measure with a density with respect to γd of the form
e−V , with V : Rd → R a convex function, then the projection γ∗

d of γd on Cν is equal to ν.

Remark 2.1. Let dν = e−V dγd with V convex on R
d.

- According to Theorem 2.1 the conclusion of Caffarelli Theorem 2.2 is logically
equivalent to the statement γ∗

d = ν. It would be very interesting to prove directly
that γ∗

d = ν since this would give an alternative proof of Caffarelli’s result.
- To complete the picture, let us mention a nice result of Hargé [32] that shows that

if in addition
∫

x dν(x) = 0, then ν �c γd.

Now let us turn to the proof of Theorem 2.1. We will need the following lemma whose
proof is postponed to Section 6.

Lemma 2.1. Let g : Rd → R be a function and let g∗(y) = supx∈Rd{x · y − g(x)}, y ∈ R
d.

The following are equivalent:

(a) The function x 7→ g(x) − |x|2

2 is convex on R
d.
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(b) The function y 7→ |y|2

2 − g∗(y) is convex on R
d.

(c) The function g∗ is of class C1 and ∇g∗ is 1-Lipschitz on R
d.

Now let us prove Theorem 2.1.

Proof of Theorem 2.1. Let us show that (a) implies (b). Define h = ϕ∗ and f = 2ϕ∗ −|x|2.
According to Lemma 2.1 (applied with g = ϕ∗) we have that f is convex. An easy
calculation shows that Q2f(x) = |x|2 −2ϕ(x), x ∈ R

d, and moreover it holds ϕ∗(∇ϕ(x)) =
x · ∇ϕ(x) − ϕ(x), x ∈ R

d. This together with the fact that ∇ϕ sends µ onto ν yields that

W 2
2 (ν, µ) ≤

∫

|x − ∇ϕ(x)|2 dµ(x)

=

∫

|x|2 dµ(x) +

∫

|y|2 dν(y) − 2

∫

x · ∇ϕ(x) dµ(x)

=

∫

|x|2 dµ(x) +

∫

|y|2 dν(y) − 2

∫

ϕ(x) + ϕ∗(∇ϕ(x)) dµ(x)

=

∫

Q2f dµ −

∫

f dν

≤ T 2(ν|µ)

≤ W 2
2 (ν, µ),

where the second inequality comes from the convexity of f and the duality formula for T 2.
Therefore, the function f is optimal for the dual problem and so, according to Theorem 1.2,
ν = ∇h∗

#µ = ∇ϕ#µ = µ∗, which shows (b). Now according to Theorem 1.2, W 2
2 (µ∗, µ) =

T 2(ν|µ) so (b) implies (c). On the other hand, if W 2
2 (ν, µ) = T 2(ν|µ), then according

to Proposition 1.1 and Theorem 1.2, it holds µ∗ = µ, so (c) implies (b) as well. Finally,
according to Theorem 1.2, there always exist a convex function ϕ of class C1 on R

d such
that ∇ϕ is 1-Lipschitz and µ∗ = ∇ϕ#µ. So (b) implies (a), which completes the proof. �

3. A monotonicity theorem

In this section, we generalize the notion of c-monotonicity, which plays an important
role in optimal transport [59, 24], to cost functions c defined on R

d × P(Rd) and we use
it to formulate a necessary condition of optimality for transport plans. Then we give a
new proof of Strassen theorem on the existence of submartingale couplings with given
marginals in dimension 1 using this c-monotonicity criterium.

3.1. A necessary condition of optimality. The following definition generalizes the
notion of c-monotonicity ; we refer to [58, 69, 70] and the references therein for a complete
account on the subject. In what follows, we denote by P1(Rd) the set of probability
measures on R

d having finite first moment.

Definition 3.1. Let c : Rd × P1(Rd) → R
+ be a cost function. We will say that a set

Γ ⊂ R
d × P1(Rd) is c-monotone if for any N ≥ 1 and points (xi, pi) ∈ Γ and probability

measures qi ∈ P1(Rd), i ∈ {1, . . . , N} such that
∑N

i=1 pi =
∑N

i=1 qi, it holds

N∑

i=1

c(xi, pi) ≤
N∑

i=1

c(xi, qi).

We now formulate a necessary condition for optimality of a coupling for the transport
cost T2 which we recall is associated to the cost function c2 defined by

c2(x, p) =

∣
∣
∣
∣x −

∫

y dp(y)

∣
∣
∣
∣

2

, x ∈ R
d, p ∈ P1(Rd).
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Theorem 3.1. Let µ, ν be two compactly supported probability measures on R
d. There

exists a set Γ ⊂ R
d × P1(Rd) which is monotone with respect to the cost function c2 and

such that if π(dxdy) = dµ(x)dpx(y) is an optimal coupling for the cost T 2(ν|µ), it holds

µ
(

{x ∈ R
d : (x, px) ∈ Γ}

)

= 1.

Proof. Recall the duality formula

T 2(ν|µ) = sup
f

{∫

Q2f(x) dµ(x) −

∫

f(y) dν(y)

}

,

where the infimum is running over the set of convex functions bounded from below and
Q2f(x) = infy∈Rd{f(y) + |x − y|2}, x ∈ R

d. Note that if f is convex, then

Q2f(x) = inf
p∈P(Rd)

{∫

f dp + c2(x, p)

}

, x ∈ R
d.

Indeed, the inequality ≥ is always true and since f is convex, it holds
∫

f(y) dp(y) + c2(x, p) ≥ f

(∫

y dp(y)

)

+

∣
∣
∣
∣
x −

∫

y dp(y)

∣
∣
∣
∣

2

≥ Q2f(x)

so taking the infimum over p gives the converse inequality. Let f̄ be such that T 2(ν|µ) =
∫

Q2f̄(x) dp(x) −
∫

f̄(y) dν(y) (which exists according to Theorem 1.2). Then, it holds

T 2(ν|µ) =

∫

Q2f̄(x) dµ(x) −

∫

f̄(y) dν(y)

≤

∫ (∫

f̄(y) dpx(y) + c2(x, px)

)

dµ(x) −

∫

f̄(y) dν(y)

=

∫

c2(x, px) dµ(x) = T 2(ν|µ).

Therefore, Q2f̄(x) =
∫

f̄(y) dpx(y)+c2(x, px) for µ-almost all x ∈ R
d. So denoting by Γ the

set of couples (x, p) so that Qf(x) =
∫

f dp + c2(x, p), we have that µ({x ∈ R
d : (x, px) ∈

Γ}) = 1. Now, let us check that Γ is monotone with respect to the cost function c2. Take
a family of points (xi, pi) ∈ Γ and probability measures qi ∈ P(Rd), i ∈ {1, . . . , N} such

that
∑N

i=1 pi =
∑N

i=1 qi. Then, it holds

Q2f(xi) =

∫

f dpi + c2(xi, pi), ∀i ∈ {1, . . . , N}

and on the other hand

Q2f(xi) ≤

∫

f dqi + c2(xi, qi), ∀i ∈ {1, . . . , N}.

Summing these inequalities, and using the fact that
∑N

i=1 pi =
∑N

i=1 qi gives immediately
∑N

i=1 c(xi, pi) ≤
∑N

i=1 c(xi, qi). �

Remark 3.1. With the notation of Theorem 1.2, let us show how one can recover the fact
that ∇ϕ is 1-Lipschitz on the support of µ with the help of Theorem 3.1. Let dπ(x, y) =
dµ(x)dpx(y) be an optimal transport plan from µ to ν and Γ be a c2-monotone set such
that (x, px) ∈ Γ for µ almost every x ∈ R

d. If (x, px) and (y, py) are elements of Γ, then
comparing this pair with (x, (1 − ε)px + εpy) and (y, (1 − ε)py + εpx) where ε ∈ [0, 1] yields

|x − x∗|2 + |y − y∗|2 ≤ |x − [(1 − ε)x∗ + εy∗]|2 + |y − [(1 − ε)y∗ + εx∗]|2,

where x∗ =
∫

zdpx(z) and y∗ =
∫

zdpz(z). Noting that this is an equality for ε = 0 and
taking the right derivative at ε = 0+, we thus obtain

2〈x∗ − x, y∗ − x∗〉 − 2〈y∗ − y, y∗ − x∗〉 = 2〈y − x, y∗ − x∗〉 − 2|y∗ − x∗|2 ≥ 0,

hence |y∗ − x∗| ≤ |y − x|. Since x∗ = ∇ϕ(x) and y∗ = ∇ϕ(y) this proves that ∇ϕ is
1-Lipschitz on the support of µ.
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3.2. An example related to the increasing convex order.

Definition 3.2. Let µ, ν be two probability measures on R ; µ is dominated by ν for
the stochastic order, denoted by µ �sto ν, if

∫
f dµ ≤

∫
f dµ for all bounded increasing

functions f : R → R. Assuming that µ, ν have finite first moments, µ is dominated by ν for
the increasing convex order, denoted by µ �c,sto ν, if

∫
f dµ ≤

∫
f dν for every increasing

convex function f : R → R.

Notice that if
∫

x dµ(x) =
∫

y dν(y) and µ �c,sto ν, then it is easy to see that the
inequality

∫
f dµ ≤

∫
f dν can be extended first to all convex functions f with finite

asymptotic slopes at ±∞ and second, by using the monotone convergence theorem, to all
convex functions. Therefore, for probability measures with finite first moments, µ �c ν is
equivalent to µ �c,sto ν and

∫
x dµ(x) =

∫
x dν(x).

In this section we prove that on R under the assumption µ �c,sto ν, our Theorem 1.2
on the quadratic barycentric transport problem can be completed with new informations.

Theorem 3.2. Let µ and ν be probability measures on R, with compact support and assume
µ �c,sto ν. Then, with the notations of Proposition 1.1 and Theorem 1.2, the probability
measure µ∗ satisfies µ �sto µ∗ and any optimal coupling (X, Y ) satisfies X ≤ E(Y |X)
almost surely.

In the terminology of martingale transport, (X, Y ) is a submartingale coupling and its
law a submartingale transport plan.

Conversely, if (X, Y ) is a coupling of µ and ν such that E(Y |X) ≥ X almost surely,
then for every increasing and convex function f : R → R, it holds

E(f(Y )) ≥ E[E(f(Y )|X)] ≥ E(f(E(Y |X))) ≥ E(f(X)).

and so µ �c,sto ν. We therefore recover the classical result by Strassen [66, Theorem
9] on submartingale couplings (under the additional assumption that the measures are
compactly supported): µ �c,sto ν if and only if there exists X ∼ µ and Y ∼ ν in the same
probability space with E(Y |X) ≥ X almost surely.

Remark 3.2. Theorem 3.2 also gives back Strassen Theorem in the very specific case of the
real line (and for measures of compact support). The fact that E(Y |X) = X implies µ �c ν
is an obvious consequence of the conditional Jensen inequality. Conversely if µ �c ν we
have also µ �c,sto ν. Therefore there exists X ∼ µ and Y ∼ ν in the same probability space
with E(Y |X) ≥ X. Moreover, µ �c ν implies

∫
x dµ(x) =

∫
x dν(x), i.e. E(X) = E(Y ).

Hence E(Y |X) and X have the same expectation. They are therefore almost surely equal,
which proves the converse implication of Strassen Theorem. For another elementary proof,
see [6, Section 2]

Proof of Theorem 3.2. We denote a solution of the quadratic barycentric problem by
dπ(x, y) = dµ(x)dpx(y). Let (X, Y ) such that (X, Y ) ∼ π and denote E(Y |X) by X∗. Ac-
cording to Theorem 1.2, π may not be uniquely determined but the law of X∗ is uniquely
determined and denoted by µ∗. The inequality X ≤ E[Y |X] almost surely immediately
implies that µ �sto µ∗. Now to show that X ≤ E[Y |X] almost surely amounts to show
that

∫
y dpx(y) ≥ x for µ almost all x ∈ R. The rest of the proof is devoted to this question.

According to Theorem 3.1, there exists Γ ⊂ R × P1(R) such that, µ({x ∈ R : (x, px) ∈
Γ}) = 1 and such that if (x, p) ∈ Γ and (x′, p′) ∈ Γ, then for all probability measures q, q′

such that p + p′ = q + q′, it holds

(5)

∣
∣
∣
∣x −

∫

y dp(y)

∣
∣
∣
∣

2

+

∣
∣
∣
∣x

′ −

∫

y dp′(y)

∣
∣
∣
∣

2

≤

∣
∣
∣
∣x −

∫

y dq(y)

∣
∣
∣
∣

2

+

∣
∣
∣
∣x

′ −

∫

y dq′(y)

∣
∣
∣
∣

2

.
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Let us show that if x, x′ ∈ R are such that (x, px) ∈ Γ and (x′, px′) ∈ Γ, then for all
a ∈ Support(px) and b ∈ Support(px′), it holds

(6)

[(∫

y dpx(y) − x

)

−

(∫

y dpx′(y) − x′
)]

(b − a) ≥ 0.

Let a ∈ Support(px) and b ∈ Support(px′) and ε > 0 and define

ra = px( · |[a − ε, a + ε]) and rb = px′( · |[b − ε, b + ε]).

For all t > 0, define

qt
x = px + t(rb − ra) and qt

x′ = px′ + t(ra − rb)

and note that if t is small enough, qt
x and qt

x′ are probability measures such that qt
x + qt

x′ =
px + px′ . Applying (5) and letting t → 0 gives

[(∫

y dpx(y) − x

)

−

(∫

y dpx′(y) − x′
)](∫

y drb(y) −

∫

y dra(y)

)

≥ 0.

Finally, letting ε → 0 yields to (6).
Define Γ1 = {x ∈ R : (x, px) ∈ Γ} and for any interval I ⊂ R, let AI the set of points

x ∈ Γ1 such that
∫

y dpx(y) − x ∈ I. We aim at proving that µ(A]−∞,0[) = 0.
Striving for a contradiction suppose that µ(A]−∞,0[) > 0. Our assumption µ �c,sto ν

implies
∫

x dµ(x) ≤
∫

y dν(y) so that
∫

Γ1 [(
∫

y dpx(y)) − x]dµ(x) ≥ 0. It follows that
µ(A[0,+∞[) > 0. Henceforth A]−∞,0[ and A[0,+∞[ are not empty. Several configurations
may be considered.

- In the first case we assume that there exists x′ ∈ A]−∞,0[ and x ∈ A[0,+∞[ such
that x′ ≤ x. One thus has

∫
y dpx′(y) < x′ ≤ x ≤

∫
y dpx(y). So in this case, one

can find a ∈ Support(px) and b ∈ Support(px′) such that a > b. Applying (6) with
these a, b provides a contradiction.

- We can now assume that A[0,+∞[ has a supremum smaller than or equal to the
infimum of A]−∞,0[. If there exists a ∈ Support(px) and b ∈ Support(px′) such
that a > b, we get the same contradiction as before.

- We are finally reduced to the case where A[0,+∞[ has a supremum smaller than
or equal to the infimum of A]−∞,0[ and moreover every px with x ∈ A[0,+∞[ has
the essential supremum smaller than or equal to the essential infimum of every
px′ with x′ ∈ A]−∞,0[. Let m ∈ R be between supx∈A[0,+∞[

[sup Support(px)] and

infx′∈A]−∞,0[
[inf Support(px′)]. Integration of x 7→ (x − m)+ provides a contradic-

tion to µ �c,sto ν. Indeed, one the one hand, it holds
∫

[x − m]+ dµ(x) ≥

∫

[x − m]+1A]−∞,0[
(x) dµ(x)

(with actually equality). On the other,
∫

[y − m]+ dν(y) =

∫ (∫

[y − m]+ dpx(y)

)

dµ(x)

(i)
=

∫ (∫

[y − m]+ dpx(y)

)

1A]−∞,0[
(x) dµ(x)

(ii)
=

∫ (∫

y − m dpx(y)

)

1A]−∞,0[
(x) dµ(x)

(iii)
<

∫

(x − m) 1A]−∞,0[
(x) dµ(x)

(iv)
=

∫

[x − m]+1A]−∞,0[
(x) dµ(x),

where
– (i) comes from the fact that for any x ∈ A[0,+∞[, Support(px) ⊂] − ∞, m],
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– (ii) comes from the fact that for any x ∈ A]−∞,0[, Support(px) ⊂ [m, +∞[,
– (iii) comes from the definition of A]−∞,0[ and the fact that if f < g on a set

A such that µ(A) > 0, then
∫

A f dµ <
∫

A g dµ,
– (iv) follows from the inequality x >

∫
y dpx(y) ≥ m, for all x ∈ A]−∞,0[.

In any case there is a contradiction to the fact that µ(A]−∞,0[) > 0 and this completes
the proof. �

Remark 3.3.

(1) Optimal transport plans for the weak transport problem are not uniquely deter-
mined. As stated in Theorem 1.2, µ∗ and the transport from µ to µ∗ are uniquely
determined but the martingale transport plan from µ∗ to ν is completely free. It is
precisely the goal of Martingale Optimal Transport to determine special martingale
transport plans from µ∗ to ν.

(2) This remark holds in particular for the dimension 1. Namely, in Theorem 3.2 we
did not defined a submartingale coupling but only the non-decreasing/increasing
part of its Doob decomposition. In relation with this decomposition, the paper [56]
proposes two supermartingale transport problems and describes their solutions, ex-
tending the theory on curtain couplings initiated in [6]. In particular the two
optimal supermartingale couplings respectively corresponding to the two problems
coincide with the curtain coupling when µ �c ν. However, transforming the su-
permartingale problem in submartingale problem, we stress that X∗ = E(Y |X)
and its coupling with X is different from ours as we show in this example: if
X is the uniform measure on [−1, 0] and Y is uniform on [0, 3], our coupling is
E[Y |X] = X∗ = X +2 (it is a translation see the second example). The first super-
martingale coupling by Nutz and Stebegg (reversed in order to be a submartingale)
gives Y = E[Y |X] = 3(X + 1). The second one provides Y = E[Y |X] = −3X.

4. Example of ν concentrated on the vertices of a simplex

In this section we prove the following theorem, mainly by geometric means.

Theorem 4.1. Let µ be a compactly supported probability measure on R
d and ν an atomic

measure whose support is a simplex {y0, . . . , yk} of Rd with k ≤ d. Denote the convex hull
of {y0, . . . , yk} by ∆. Then there exists v ∈ R

d such that the map T defined by

T : Rd → R
d : x 7→ T (x) = proj∆(x + v)

is such that µ∗ = T#µ (with the notations of Proposition 1.1 and Theorem 1.2), where
proj∆ denotes the orthogonal projection on the closed convex set ∆.

Remark 4.1.

- To be consistent with Theorem 1.2, note that the map T given above can be written
as T = ∇ϕ, where ϕ : Rd → R is the convex function of class C1 defined by

ϕ(x) =
|x + v|2

2
−

1

2
d(x + v, ∆)2, x ∈ R

d,

where d(z, ∆) = infy∈∆ |z − y|.
- The assumption that µ is compactly supported could be easily relaxed into the as-

sumption that µ admits a moment of order 2 finite.

Proof. Let µ be a probability with compact support and ν an atomic measure with support
the simplex {y0, . . . , yk} of R

d with k ≤ d. We denote by µ∗ the projection of µ on
Cν = {η ∈ P(Rd) : η �c ν} given by Proposition 1.1 and Theorem 1.2. The assumption
that the support of ν is a simplex is in order for the following property: for any point y
in the convex hull ∆ = Conv(y0, . . . , yk) the barycentric coordinates (λ0, . . . , λk), defined

by
∑k

i=0 λi = 1 and
∑k

i=0 λiyi = y, are uniquely determined. Moreover, notice that all the
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coordinates are non-negative. If v ∈ R
d, we will denote by µv the translation of µ by the

vector v, i.e µv = Law(X + v), with X ∼ µ. The four following properties will permit us
to determine µ∗ and find the optimal coupling between µ and µ∗.

(a) Let η be a probability measure with a finite moment of order 2. A coupling (X, Y )
is an optimal coupling for W2 between µ and η if and only if (X + v, Y ) is an
optimal coupling for W2 between µv and η. Moreover,

W 2
2 (µv, η) = W 2

2 (µ, η) + |v|2 + 2

〈∫

x dµ −

∫

x dη, v

〉

,

(b) As µ∗ �c ν the measure µ∗ is concentrated on ∆ and has the same barycenter as
ν. Conversely any measure η concentrated on ∆ and with the same barycenter as
ν satisfies η �c ν.

(c) Among the measures concentrated on ∆, the one that minimises the quadratic
cost W2 with respect to a given probability measure µ′ having a finite moment of
order 2 is (proj∆)#µ′.

(d) There exists v ∈ R
d such that (proj∆)#µv has the same barycenter as ν.

Before we prove the different four points, let us finish the proof. According to Item (b),
all the elements of Cν have the same barycenter as ν. Therefore, applying Item (a), we
have for any η ∈ Cν

W 2
2 (µv, η) = W 2

2 (µ, η) + |v|2 + 2

〈∫

x dµ −

∫

x dν, v

〉

.

One easily concludes from this identity that (µv)∗ = µ∗ for any v ∈ R
d. According to Item

(d), there exists v ∈ R
d such that ηv := (proj∆)#µv has the same barycenter as ν. Since

ηv is also concentrated on ∆, it follows from Item (b) that ηv belongs to Cν . Therefore,
according to Item (c),

inf
η∈Cν

W 2
2 (µv, η) ≥ inf

η(∆)=1
W 2

2 (µv, η) = W 2
2 (µv, ηv)

and so ηv = (µv)∗ = µ∗. Finally if X ∼ µ, it follows from Item (a) that (X, proj∆(X + v))
is an optimal coupling between µ and µ∗.

The four points above can be proved as follows:

(a) This assumption simply comes from

E[|(X + v) − X∗|2] = E[|X − X∗|2] + |v|2 + 2〈E[X − X∗], v〉
︸ ︷︷ ︸

Depends only on Law(X), Law(X∗)

.

(b) The first implication is obvious. For the second implication, assume η is concen-
trated on ∆ and has the same barycenter as ν. For every x ∈ ∆, let px be the
unique probability measure concentrated on {y0, . . . , yk} with barycenter x and let
ν ′ =

∫
px dη(x). The probability measure ν ′ is concentrated on the same set as ν.

Its barycenter permits to determine it uniquely. The barycenter of ν ′ is
∫

x dη(x),
the barycenter of η that is also the one of ν. Therefore ν ′ = ν. We have proved
that there exists a martingale having η on ν as marginals. Therefore η �c ν.

(c) For every x ∈ R
d, the point proj∆(x) is by definition the closest point in ∆. So if

X ′ ∼ µ′ and Y takes values in ∆ almost surely, one gets

E[|X ′ − Y |2] ≥ E[|X ′ − proj∆(X ′)|2]

and so W 2
2 (µ′, η) ≥ E[|X ′−proj∆(X ′)|2] for any η concentrated in ∆. In particular,

W 2
2 (µ′, (proj∆)#µ′) = E[|X ′ − proj∆(X ′)|2] which proves the claim.

(d) Without loss of generality we can assume k = d for the following reason: if ∆
has positive codimension, the measure (proj∆)#µ′ is exactly (proj∆)# ◦(projA)#µ′

where A is the affine space spanned by ∆. As a consequence, in our investigation
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we can replace µ by (projA)#µ, consider only translations in A and see ∆ as a
simplex with full dimension.

Now, let yν be the barycenter of ν and let us prove the existence of v ∈ R
d

such that the barycenter of (proj∆)#µv is equal to yν . This point can be proved
using the notion of topological degree coming from algebraic topology (we refer
to [57, Chapter IV ] for an introduction). If Ω is a bounded open set of R

d and
f : Ω → R

d is a continuous mapping, the degree of f is a Z-valued quantity
denoted by d(f, Ω, a) defined for every a ∈ R

d \ f(∂Ω). We will use the following
basic properties:

– if f = Id, then d(Id, Ω, a) = 1, for all a ∈ R
d \ ∂Ω;

– if d(f, Ω, a) 6= 0, then the equation f(x) = a, x ∈ Ω, admits at least one
solution;

– if F : Ω × [0, 1] → R
d is a continuous function and a ∈ R

d is such that
for all t ∈ [0, 1], a ∈ R

d \ F (t, ∂Ω), then d(F ( · , 0), Ω, a)) = d(F ( · , 1), Ω, a))
(invariance by homotopy).

Consider X a random variable with law µ and R > 0 a positive number to be fixed
later such that the open ball of center 0 and radius R denoted by B(0, R) contains
∆. The sphere of center 0 and radius R will be denoted by S(0, R) in the sequel.
We are interested in the map

Φ : B(0, R) × [0, 1] → ∆ ⊂ R
d,(7)

defined so that Φ(v, t) is the barycenter of (proj∆)#(Law(v + tX)). Note that
this map is continuous so that it can be seen as an homotopy between proj∆ and
v 7→ (proj∆)#µv. Another homotopy is possible between Id and proj∆

Ψ : B(0, R) × [0, 1] → R
d

defined by Ψ(x, t) = (1 − t)x + tproj∆(x). Note that since yν lies in the interior of
∆, it does not belong to Ψ(S(0, R)× [0, 1]). Therefore, by invariance by homotopy,

1 = d(Id, B(0, R), yν) = d(Ψ(·, 0), B(0, R), yν ) = d(Ψ(·, 1), B(0, R), yν ),

from which we infer that d(Φ(·, 0), B(0, R), yν ) = 1. According to Lemma 4.1
below, if R is large enough then Φ(S(0, R) × [0, 1]) ⊂ ∂∆. Since yν lies in the
interior of ∆, we conclude that Φ(S(0, R) × [0, 1]) does not meet yν , and so using
the homotopy invariance again, we get that d(Φ(·, 1), B(0, R), yν ) = 1 and so the
equation Φ(v, 1) =

∫
proj∆(x) dµv(x) = yν admits at least one solution v ∈ B(0, R)

which completes the proof. �

Lemma 4.1. Under the preceding assumptions, if R is large enough, the map Φ defined
in (7) is such that Φ(S(0, R) × [0, 1]) ⊂ ∂∆.

Proof. Recall that

∆ =

{
d∑

i=0

λiyi :
d∑

i=0

λi = 1, λ0, . . . , λd ≥ 0

}

.

For J a subset of {0, . . . , d} we denote by ∆J the set

∆J =

{
d∑

i=0

λiyi : ∀i ∈ J, λi = 0

}

⊂ ∆.

We denote by uj the outward normal unit vector of the facet ∆{j}. Recall that the relative
interior of a subset is the interior of this set in the topology induced by its affine span.
Every point of Rd whose projection belongs to the relative interior of ∆J can be written
in the form

∑

i/∈J λiyi +
∑

i∈J ξiui where the coefficients (λi)i/∈J are positive and satisfy
∑

i/∈J λi = 1 and the coefficients (ξi)i∈J are non-negative.
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We prove now that for every r > 0, there exists R0 > 0 such that for all R ≥ R0 it holds

- ∆ is contained in B(0, R − r + 1),
- for every v ∈ S(0, R) there exists j ∈ {0, . . . , d} such that proj∆(B(v, r)) ⊂ ∆{j}.

Therefore if X ∼ µ with µ such that µ(B(0, r)) = 1 and v ∈ S(0, R), there exists j such
that the barycenter of (proj∆)#(Law(v + tX)) is in ∆{j} ⊂ ∂∆, which proves the claim.

Let us consider

g : x ∈ R
d \ ∆ 7→ (x − proj∆(x))/|x − proj∆(x)| ∈ S

d−1.

For our proof it is enough to find R such that for every x ∈ S(0, R) the range g(B(x, r))
only contains vectors of Sd−1 that are in the cones (CJ)J∋j, #J≤d for some j, where

CJ =

{

u ∈ R
d : u =

∑

i∈J

ξiui, ξi ≥ 0, ∀i ∈ J

}

.

In particular it does not intersect C{0,...,d}\{j}. Striving for a contradiction we assume that
there exists an increasing sequence Rn → ∞ and xn ∈ S(0, Rn) such that the property is
not satisfied. Therefore, for every n the sets g(B(xn, r)) ⊂ Sd−1 intersects for every j a
cone CJ with j ∈ J . However, the diameter of g(B(xn, r)) tends to zero. Up to selecting
a subsequence, the sequence converges in the Hausdorff topology to a compact set of
diameter zero, i.e a point {u∞} ⊂ S

d−1. We have u∞ ∈ CJ∞
for some J∞ ⊂ {0, . . . , d}. Let

j∞ be in J∞. We have also g(xn) → u∞ (up to a subsequence) and the fact that g is locally
Lipschitz with a constant that tends to zero at infinity tells us that the j∞ coordinate is
not zero in the cone coordinate u =

∑

j ξjuj for all the points u of g(B(xn, r)) ⊂ S
d−1

when n is great enough - a contradiction. �

5. Other examples and discussion of the literature

In this section, we briefly present and discuss other examples of optimal transport
problems involving weak cost functions.

(1) In [29, Theorem 1.5], it is shown that if µ, ν are probability measures on R having
finite first moments and if µ∗ ∈ Cν denotes the projection of µ on Cν as defined in
Proposition 1.1, then for any even convex cost function θ : R → R+, it holds

T θ(ν|µ) = inf
π∈C(µ,µ∗)

∫∫

θ(x − y) dπ(x, y),

where we recall that the barycentric optimal transport cost T θ(ν|µ) is defined by
(3).

(2) In the recent paper [1] (see in particular the section 5.2 of [1]), the authors consider
the family of cost functions (cλ)λ≥0 defined for all x ∈ R

d and p ∈ P(Rd) having a
finite first moment by

cλ(x, p) = (λ − 1)

∫

|x − y|2 dp(y) +

∣
∣
∣
∣x −

∫

y dp(y)

∣
∣
∣
∣

2

and study the associated optimal transport problem:

T cλ
(ν|µ) = inf

π∈C(µ,ν)

∫

cλ(x, px) dµ(x)

(this quantity is denoted by Fλ(µ, ν) in [1]). It turns out that our Theorem 1.2
yields a full description of optimal couplings for these costs for λ > 0 (which
completes the somehow implicit characterization of [1, Theorem 5.6]). Namely, an
easy calculation reveals that if dπ(x, y) = dµ(x)dpx(y) ∈ C(µ, ν) where µ, ν are
compactly supported, then

∫

cλ(x, px) dµ(x) = C(λ) +

∫ ∣
∣
∣
∣x −

∫

y dpx/λ(y)

∣
∣
∣
∣

2

dµλ(x),
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where C(λ) = −λ(λ − 1)
∫

|x|2 dµ(x) + (λ − 1)
∫

|y|2 dν(y) and µλ is the image
of µ under the map x 7→ λx. Since the kernel qx = px/λ, x ∈ Rd, is such that
ν( · ) =

∫
qx( · ) dµλ(x), we conclude that

T cλ
(ν|µ) = C(λ) + T 2(ν|µλ),

and p is optimal in T cλ
(ν|µ) if and only if q is optimal in T 2(ν|µλ). Moreover,

Theorem 1.2 yields that optimal kernels p are all of the form

px = r∇ϕλ(λx), with r s.t.

∫

y dru(y) = u, for (µλ)∗ almost all u ∈ R
d,

where ϕλ is the C1 smooth convex function associated to the transport from µλ to
the projection (µλ)∗ of µλ on Cν . In terms of random vectors, πλ = Law(Xλ, Yλ) ∈
C(µ, ν) is optimal for cλ if and only if E[Yλ|Xλ] = ∇ϕλ(λXλ) (which has distribu-
tion (µλ)∗).

(3) The case λ = 0 is also interesting since, in this case,

T c0(ν|µ) = − sup
π∈C(µ,ν)

∫

Var(px) dµ(x),

where as usual dπ(x, y) = dµ(x)dpx(y) and for all p ∈ P(Rd) having finite first

moment, Var(p) =
∫

|y|2 dp(y)−|
∫

y dp(y)|2 (note that this is a concave function of
p). In this case, as observed in [1], the unique optimal coupling π∗ is the product
one : π∗ = µ ⊗ ν.

(4) As proved in [5, Proposition 5.2], the so-called shadow couplings are solutions to
a weak optimal transport problem. Shadow couplings from µ to ν are martingale
transport parametrised by a measure µ̂ with marginals λ and µ. Let (λx)x∈[0,1] be
a disintegration of µ̂ with respect to µ. Then

cµ̂(x, px) = inf

∫

(1 − u)
√

1 + y2 dα(u, y)

where the inf goes among all α with first marginal λx and second marginal px and
such that we have

∫
f(u)(y − x) dα(u, y) = 0 for every bounded f .

(5) Last but not least, let us mention that after the completion of this work, we
learned that a recent remarkable economics paper on optimal mechanisms for the
multiple-good monopoly problem shows interesting similarities with our context.
In [16], the authors study the maximization problem among convex coordinate-
wise nondecreasing 1-Lipschitz potential functions defined on some d-dimensional
rectangle. In their Theorem 2, they prove the strong duality between this problem
and “strong” dual problem (for us a primal problem). This problem is a transport
problem with ℓ1-norm as cost function and the possibility to replace µ and ν by
µ′ and ν ′ with µ �c,sto µ′ and ν ′ �c,sto ν.

6. Proofs

This section contains the proofs of Proposition 1.1 and Theorem 1.2 and of the technical
Lemma 2.1.

Proof of Proposition 1.1. In this proof, we consider the set P2(Rd) of all probability mea-
sures having a finite moment of order 2 and we equip it with the topology generated by
the metric W2. We recall (see e.g. [69, Theorem 7.12]) that if (ηk)k≥1 is a sequence of
elements of P2(Rd) and η ∈ P2(Rd), then W2(ηk, η) → 0 if and only if

∫
f dηk →

∫
f dη

for any continuous function f satisfying |f |(x) ≤ a + b|x|2, x ∈ R
d, for some a, b ≥ 0.

Let us show that the set Cν is compact for this topology. By assumption,
∫

|x|2 dν <
+∞, therefore, according to the de la Vallée-Poussin Theorem (see e.g. [8, Theorem 4.5.9]),
there exists some increasing convex function θ : [0, ∞) → [0, ∞) such that θ(r)/r → +∞
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as r → ∞ and
∫

θ(|x|2) dν(x) < +∞. Since θ is convex and increasing, the function
x 7→ θ(|x|2) is convex on Rd. Therefore, by definition of Cν , for any η ∈ Cν ,

∫
θ(|x|2) dη ≤

∫
θ(|x|2) dν := D. In particular, applying Markov’s inequality yields that for all R > 0,

sup
η∈Cν

∫

|x|21|x|>R dη(x) ≤ Dε(R)

where ε(R) := supr≥R r/θ(r) → 0 as R → ∞. According to e.g. [31, Theorem 9.10], this
shows that Cν is precompact for the W2-topology. Now, let us show that Cν is also closed.
Namely, Cν can be written as follows

Cν =

{

η ∈ P2(Rd) :

∫

f dη ≤

∫

f dν, ∀f : Rd → R convex and Lipschitz

}

(the fact that one can restrict to convex and Lipschitz functions in the definition of the
convex order is classical ; one can see this by noting that if f is convex then fn =
infx∈Rd{f(y) + n|x − y|}, x ∈ R

d, is a sequence of n-Lipschitz convex functions con-
verging to f monotonically). Since functionals η 7→

∫
f dη with f convex and Lipschitz

are continuous for the W2 topology, it follows that Cν is closed and thus Cν is compact.
The map η 7→ W2(η, µ) therefore reaches its minimum on Cν .

Now let us show that the minimizer is unique. This will follow from the strict convexity
of W 2

2 (µ, · ) along generalized geodesics with base point µ and from the convexity of the set
Cν along those generalized geodesics. More precisely, suppose that η0, η1 are in Cν and let
(X, Y0, Y1) be a random vector such that X ∼ µ, Y0 ∼ η0, Y1 ∼ η1 and so that Law(X, Yi) ∈
C(µ, ηi) and W 2

2 (µ, ηi) = E[|X − Yi|
2], i = 0, 1. Then define ηt = Law((1 − t)Y0 + tY1) for

all t ∈ [0, 1]. First note that ηt ∈ Cν for all t ∈ [0, 1]. Indeed, if f is a convex function on
R

d, it holds
∫

f dηt = E[f((1 − t)Y0 + tY1)] ≤ (1 − t)E[f(Y0)] + tE[f(Y1)] ≤

∫

f dν.

Moreover, according to Lemma 9.2.1 of [2], it holds

W 2
2 (µ, ηt) ≤ (1 − t)W 2

2 (µ, η0) + tW 2
2 (µ, η1) − t(1 − t)W 2

2 (η0, η1), ∀t ∈ [0, 1]

So if W 2
2 (µ, η0) = W 2

2 (µ, η1) = infη∈Cν W 2
2 (µ, η), then necessarily η0 = η1, which shows

uniqueness.
Finally, let us show that T 2(ν|µ) = W 2

2 (µ∗, µ). First, let (X, Y ) be a coupling of µ and
ν and set X ′ = E[Y |X]. Since (X ′, Y ) is a martingale, it follows that Law(X ′) ∈ Cν .
Therefore E[|X − X ′|2] ≥ W 2

2 (µ, µ∗) and so optimizing gives T2(ν|µ) ≥ W 2
2 (µ, µ∗). On the

other hand, let π ∈ C(µ, η) be a coupling between µ and some η ∈ Cν . Since η �c ν,
one can construct a Markov chain (X, X ′, Y ) such that (X, X ′) ∼ π and (X ′, Y ) is a
martingale. Then it holds,

E[|X − X ′|2] = E[|X − E[Y |X, X ′]|2]

= E

[

E[[|X − E[Y |X, X ′]|2|X]
]

≥ E[|X − E[Y |X]|2] ≥ T 2(ν|µ),

where the inequality comes from Jensen inequality for conditional expectation. Optimizing
over X ′ and η gives that T2(ν|µ) ≤ W 2

2 (µ, µ∗) and completes the proof. �

Remark 6.1. Note that it is easy to conclude using similar arguments that there always ex-
ists a deterministic map T transporting µ on µ∗ such that W 2

2 (µ∗, µ) =
∫

|x−T (x)|2 dµ(x).
Indeed, suppose that (X, X∗) is an optimal coupling for W 2

2 (µ∗, µ) and consider X ′ =
E[X∗|X]. Then, Jensen inequality gives

(8) E[|X − X ′|2] = E[|X − E[X∗|X]|2] ≤ E[|X − X∗|2] = W 2
2 (µ∗, µ).
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Let η′ := Law(X ′). Then η′ �c µ∗ and µ∗ �c ν so η′ ∈ Cν. Therefore, E[|X − X ′|2] ≥
infη∈Cν W 2

2 (η, µ) = W 2
2 (µ∗, µ) and there is equality in (8). So X ′ = E[X∗|X] ∼ µ∗ and

(X, X ′) is an optimal coupling. Finally, by definition of conditional expectation, there
exists a measurable T : Rd → R

d such that E[X∗|X] = T (X) almost surely, which proves
the claim.

Our proof of Theorem 1.2 follows closely the scheme developed by Gangbo [23] in
his alternative proof of Brenier Theorem: first we show the dual attainment, and then
we obtain the existence of the transport map ∇ϕ by doing a first variation around the
minimizer f̄ .

Proof of Item (a) of Theorem 1.2. We will assume that µ and ν are supported in a closed
ball B of radius R > 0 centered at 0. Let α be the convex function on [0, ∞) defined by

α(t) = t2 if t ∈ [0, 2R] and α(t) = 4Rt − 4R2 if t ≥ 2R.

and let θ(u) = α(|u|), for all u ∈ R
d. Since µ and ν are supported in B it is easily seen

that

T 2(ν|µ) = T θ(ν|µ) = sup
h

{∫

Qθh dµ −

∫

h dν

}

,

where the supremum runs over the set of convex functions h bounded from below.
Step 1 - Preparation. Let Pθ be the operator acting on functions defined as follows

Pθg(y) = sup
x∈Rd

{g(x) − θ(x − y)}, y ∈ R
d.

First, let us show that

T 2(ν|µ) = sup
f∈F

{∫

Qθf dµ −

∫

f dν

}

,

where Qθ is defined as above and F is the class of functions f which are convex bounded
from below with f(0) = 0 and such that f = Pθ(Qθf). Indeed, let h be a convex function
bounded from below on R

d. Then, by definition of Qθ, it holds

Qθh(x) − θ(x − y) ≤ h(y), ∀x, y ∈ R
d

and so h ≥ Pθ(Qθ(h)). Since Qθh is convex (as an infimum convolution of convex func-
tions), the function f defined by

f(y) = Pθ(Qθh)(y) = sup
u∈Rd

{Qθf(y + u) − θ(u)}, y ∈ R
d

is also convex as a supremum of convex functions. Moreover, it is easily seen that Qθf =
Qθh and so Pθ(Qθf) = f . Therefore,

∫

Qθh dµ −

∫

h dν ≤

∫

Qθf dµ −

∫

f dν,

which shows that the duality formula can be restricted to f ∈ F (the fact that one can
always assume that f(0) = 0 is clear).

Step 2 - Dual attainment. Now, let us show that there is some convex function f̄
satisfying (4). First of all, if f ∈ F , then f is 4R-Lipschitz. This comes from the fact that

f(y) = sup
x∈Rd

{Qθf(x) − θ(x − y)}, ∀y ∈ R
d

which (the function y 7→ θ(x − y) being 4R-Lipschitz on R
d for every x ∈ R

d) shows that
f is a supremum of 4R-Lipschitz functions and is thus 4R-Lipschitz itself. Since f(0) = 0,
this implies in particular that |f | ≤ 20R2 on B′ = 5B (the ball of radius 5R centered at
0). Also, since f is 4R-Lipschitz, it holds

f(y) + |x − y|2 ≥ f(x) − 4R|x − y| + |x − y|2 ∀x, y ∈ R
d.
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Therefore, f(y)+ |x−y|2 ≥ f(x) whenever |x−y| ≥ 4R. Since Q2f(x) ≤ f(x), this implies
that

Q2f(x) = inf
|y−x|≤4R

{f(y) + |x − y|2}, ∀x ∈ R
d.

Now, let fn ∈ F be some minimizing sequence. The functions fn are 4R-Lipschitz and
uniformly bounded on the ball B′. Therefore, it follows from Ascoli’s theorem that fn

admits a sub-sequence (still denoted fn in the sequel) converging uniformly to some f̄ on
B′. This function f̄ is convex on B′ as a pointwise limit of convex functions. It is easily
seen that Q2fn → Q2f̄ (uniformly) on B. Since Q2fn ≥ Qθfn pointwise, it holds

T2(ν|µ) ≥

∫

Q2fn dµ −

∫

fn dν ≥

∫

Qθfn dµ −

∫

fn dν.

Since the right hand side goes to T2(ν|µ) and µ, ν are supported in B, letting n → ∞ yields
to (4). For the moment the convex function f̄ is defined only on B′ but it can be easily
extended outside B′ as follows: the function f̃(x) = infy∈B′{f̄(y) + 4R|x − y|}, x ∈ R

d,

is convex as an infimum convolution of two convex functions, and since f̄ is 4R-Lipschitz
it is easily seen that f̃ = f̄ on B′. In the sequence, we will thus assume that f̄ is a finite
valued convex function defined on the whole R

d. �

In order to prove Item (b) of Theorem 1.2, we will need a technical lemma adapted
from [23, Lemma 2.4].

Lemma 6.1. Let f : Rd → R be a convex function and let h(x) = f(x)+|x|2

2 , x ∈ R
d.

(a) The function h∗ is C1 smooth and it holds

Q2f(x) = f(∇h∗(x)) + |x − ∇h∗(x)|2, ∀x ∈ R
d.

(b) For all convex function u : Rd → R,

lim
t→0+

Q2(f + tu)(x) − Q2(f)(x)

t
= u(∇h∗)(x), ∀x ∈ R

d,

and for any compact set K ⊂ R
d

sup
t∈[0,1],x∈K

∣
∣
∣
∣

Q2(f + tu)(x) − Q2(f)(x)

t

∣
∣
∣
∣ < +∞.

(c) The conclusions of Item (b) also hold for the concave function u = −f .

Let us admit the lemma for a moment and prove Item (b).

Proof of Item (b) of Theorem 1.2. According to Item (a) of Lemma 6.1, the function ϕ =
h∗ is of class C1. The fact that ∇ϕ is 1-Lipschitz follows from Lemma 2.1 (proved below).
Let µ̄ = ∇ϕ#µ and let us show that µ̄ = µ∗. First let us prove that µ̄ �c ν. Let u : Rd → R

be some arbitrary convex function. By optimality of f̄ it holds, for all t > 0,
∫

Q2(f̄ + tu) dµ −

∫

(f̄ + tu) dν ≤

∫

Q2(f̄) dµ −

∫

f̄ dν

Therefore, for all t > 0,
∫

Q2(f̄ + tu) − Q2(f̄)

t
dµ ≤

∫

u dν.

Using Item (b) of Lemma 6.1, one concludes that
∫

u(∇ϕ) dµ ≤

∫

u dν

for all convex function u : Rd → R. This shows that µ̄ �c ν. In particular, taking u = f̄ ,
one gets

∫
f̄ dµ̄ ≤

∫
f̄ dν. Actually, for this special function, equality holds. Indeed, if

u = −f then it is still true that f̄ + tu is convex for 0 ≤ t ≤ 1. So using Item (c) of
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Lemma 6.1 and repeating the argument gives that
∫

f̄ dµ̄ ≥
∫

f̄ dν, which shows equality.
Therefore,

T 2(ν|µ) =

∫

Q2f̄ dµ −

∫

f̄ dν

=

∫

f̄(∇ϕ(x)) + |x − ∇ϕ(x)|2 dµ(x) −

∫

f̄(y) dν(y)

=

∫

|x − ∇ϕ(x)|2 dµ(x)

≥ W 2
2 (µ̄, µ).

Finally, if η �c ν, then

T 2(ν|µ) = sup
h convex

{∫

Q2h dµ −

∫

h dν

}

≤ sup
h convex

{∫

Q2h dµ −

∫

h dη

}

≤ W 2
2 (µ, η),

where the last inequality follows easily from the inequality Q2h(x) − h(y) ≤ |x − y|2,
x, y ∈ R

d. In particular taking η = µ̄ shows that

T 2(ν|µ) = W 2
2 (µ̄, µ) = inf

η�cν
W 2

2 (µ, η)

and completes the proof. �

Proof of Item (c) of Theorem 1.2. Since µ∗ �c ν, Strassen Theorem implies that there
exists a kernel q such that

∫
y dqx(y) = x for µ∗ almost all x and ν( · ) =

∫
qx( · ) dµ∗(x).

Let (X, X∗, Y ) be a time inhomogeneous Markov chain with initial distribution µ and
Law(X∗|X) = δ∇ϕ(X) and Law(Y |X∗) = qX∗ almost surely. Then it holds

E[|X − E[Y |X]|2] = E

[∣
∣
∣
∣X − E

[∫

y dqX∗(y)|X

]∣
∣
∣
∣

2
]

= E

[∣
∣
∣
∣X −

∫

y dq∇ϕ(X)(y)

∣
∣
∣
∣

2
]

= E

[

|X − ∇ϕ(X)|2
]

= T 2(ν|µ),

which shows the optimality of (X, Y ).
Now let dπ(x, y) = dµ(x)dpx(y) be the law of (X, Y ) (with therefore dpx(y) = dq∇ϕ(x)(y))

and suppose that dπ′(x, y) = dµ(x)dp′
x(y) is another weak optimal transport plan, then

∫ ∣
∣
∣
∣x −

∫

y d

(
px + p′

x

2

)

(y)

∣
∣
∣
∣

2

dµ(x) ≤

∫
|x −

∫
y dpx(y)|2 + |x −

∫
y dp′

x(y)|2

2
dµ(x).

By optimality and strict convexity of | · |2 we deduce that
∫

y dpx =
∫

y dp′
x, µ-almost

surely. In other words, E[Y ′|X ′ = u] = E[Y |X = u] = ∇ϕ(u) for µ almost all u ∈ R
d.

So if (X ′, Y ′) is a weak optimal coupling, one has E[Y ′|X ′] = ∇ϕ(X ′) almost surely. In
particular E[Y ′|X ′] ∼ µ∗. The fact that (E[Y ′|X ′], Y ′) is a martingale is always true. �

Finally let us prove Lemmas 6.1 and 2.1.

Proof of Lemma 6.1. (a) It is easily seen that h∗ is everywhere finite on R
d. Furthermore,

the function h being strictly convex, its conjugate h∗ is continuously differentiable on R
d

([34, Theorem E.4.1.1]). Moreover,

Q2f(x) = inf
y∈Rd

{f(y) + |x − y|2} = |x|2 − 2 sup
y∈Rd

{x · y − h(y)} = |x|2 − 2h∗(x)

and one sees that y is optimal in the definition of Q2f(x) if and only if x ·y = h(y)+h∗(x),
that is to say if and only if y ∈ ∂h∗(x) = {∇h∗(x)}. This proves the first formula.
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(b) First observe that for any function u : Rd → R it holds

Q2(f + tu)(x) = inf
y∈Rd

{(f + tu)(y) + |x − y|2} ≤ (f + tu)(∇h∗(x)) + |x − ∇h∗(x)|2

= Q2f(x) + tu(∇h∗(x))

and so it holds

(9)
Q2(f + tu)(x) − Q2f(x)

t
≤ u(∇h∗(x)), ∀x ∈ R

d, ∀t ∈ (0, 1].

Now let us bound this quantity from below. Since the functions f and u are both convex
on R

d, there exist a, b ∈ R
d and c, d ∈ R such that f(y) ≥ a · y + c and u(y) ≥ b · y + d, for

all y ∈ R
d and thus, for all t ∈ [0, 1],

(10) (f + tu)(y) ≥ (a + tb) · y + (c + td) ≥ −(|a| + |b|)|y| − (|c| + |d|), ∀y ∈ R
d.

Therefore, for all t ∈ [0, 1] and x ∈ R
d, the continuous function y 7→ (f + tu)(y) + |x − y|2

tends to +∞ when |y| → +∞ and so it achieves its minimum at some point yt(x) (which
is actually unique by strict convexity). Moreover, it holds

Q2(f+tu)(x)−Q2f(x) ≥ (f+tu)(yt(x))+|x−yt(x)|2−
(

f(yt(x)) + |x − yt(x)|2
)

= tu(yt(x))

and so

(11)
Q2(f + tu)(x) − Q2f(x)

t
≥ u(yt(x)), ∀x ∈ R

d, ∀t ∈ (0, 1].

The function u being convex it is continuous and so to complete the proof of Item (b) it
is enough to show that yt → ∇h∗ pointwise as t → 0+ and that for any compact set K,
the family {yt(x) : t ∈ [0, 1], x ∈ K} is bounded. Fix some compact set K ⊂ R

d and let
C = supx∈K,t∈[0,1]{f(x)+tu(x)}. For all t ∈ [0, 1], it holds Q2(f +tu)(x) ≤ (f +tu)(x) ≤ C,
for all x ∈ K. So letting

L =

{

y ∈ R
d : −(|a| + |b|)|y| − (|c| + |d|) + inf

x∈K
|x − y|2 ≤ C

}

one easily sees that yt(x) ∈ L for all x ∈ K and t ∈ [0, 1]. This set L being compact, it
follows that if tn ∈ (0, 1] is some sequence converging to 0, the sequence ytn(x) admits a
subsequence (still denoted ytn(x) for simplicity) converging to some ℓ(x). According to (9)
and (11) Q2(f + tnu)(x) → Q2f(x). But on the other hand, Q2(f + tnu)(x) = f(ytn(x)) +
|x−ytn(x)|2 +tnu(ytn(x)) → f(ℓ(x))+|x−ℓ(x)|2. So we get Q2f(x) = f(ℓ(x))+|x−ℓ(x)|2,
which implies according to the proof of Item (a) that ℓ(x) = ∇h∗(x). It follows that ∇h∗(x)
it the unique limit point of the family (yt(x))t∈(0,1] when t → 0+.

(c) If u = −f , it is easy to see that

(f + tu)(y) = (1 − t)f(y) ≥ (1 − t)(a · y + c) ≥ −|a||y| − |c|, ∀y ∈ R
d, ∀t ∈ [0, 1].

Using this inequality instead of (10) the preceding proof can be repeated step by step. �

Proof of Lemma 2.1. Let us show that (a) implies (b). Let f(x) = g(x) − |x|2

2 , x ∈ R
d so

that g = f + | · |2

2 . According to e.g. [34, Theorem E.2.3.1] the convex conjugate of g is
therefore given by

g∗(y) = inf
x∈Rd

{

g(x) +
|x − y|2

2

}

=
|y|2

2
− sup

x∈Rd

{

x · y −

(

g(x) +
|x|2

2

)}

The function defined by the supremum being clearly convex, it follows that y 7→ |y|2

2 −g∗(y)

is convex on R
d, which shows (b). Conversely, let us show that (b) ⇒ (a). Let k(y) =
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|y|2

2 −g∗(y), y ∈ R
d, which is convex by assumption. By Fenchel-Legendre duality, it holds

g(x) = sup
y∈Rd

{x · y − g∗(y)} = sup
y∈Rd

{

x · y −
|y|2

2
+ k(y)

}

, ∀x ∈ R
d

and so

g(x) −
|x|2

2
= sup

y∈Rd

{

k(y) −
|x − y|2

2

}

= sup
u∈Rd

{

k(x − u) −
|u|2

2

}

∀x ∈ R
d.

The function x 7→ g(x) − |x|2

2 is therefore convex as a supremum of convex functions.

Now let us show that (a) implies (c). We have already seen that g∗ is of class C1 in the
proof of Item (a) of Lemma 6.1. It remains to prove that ∇g∗ is 1-Lipschitz. Since the

function x 7→ g(x) − |x|2

2 is convex, its subgradient is a monotone operator, which means
that

(b − a) · (y − x) ≥ |y − x|2, ∀x, y ∈ R
d, ∀b ∈ ∂g(y), ∀a ∈ ∂g(x)

Since u ∈ ∂g(v) is equivalent to v ∈ ∂g∗(u) = {∇g∗(u)}, the statement above is equivalent
to

(∇g∗(b) − ∇g∗(a)) · (b − a) ≥ |∇g∗(b) − ∇g∗(a)|2, ∀a, b ∈ R
d

which immediately implies that ∇g∗ is 1-Lipschitz. Finally, let us show that (c) implies
(b). Since ∇g∗ is 1-Lipschitz, it holds

(∇g∗(y) − ∇g∗(x)) · (y − x) ≤ |y − x|2, ∀x, y ∈ R
d

which easily implies that x 7→ |x|2

2 − g∗(x) is convex. This completes the proof. �
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21. D. Feyel and A. S. Üstünel, Monge-Kantorovitch measure transportation and Monge-Ampère equa-

tion on Wiener space, Probab. Theory Related Fields 128 (2004), no. 3, 347–385. MR 2036490
(2004m:60121) 1

22. Alessio Figalli and Ludovic Rifford, Mass transportation on sub-Riemannian manifolds, Geom. Funct.
Anal. 20 (2010), no. 1, 124–159. MR 2647137 (2012a:49081) 1

23. Wilfrid Gangbo, An elementary proof of the polar factorization of vector-valued functions, Arch. Ra-
tional Mech. Anal. 128 (1994), no. 4, 381–399. MR 1308860 17, 18

24. Wilfrid Gangbo and Robert J. McCann, The geometry of optimal transportation, Acta Math. 177

(1996), no. 2, 113–161. MR 1440931 1, 7
25. Nassif Ghoussoub, Young-Heon Kim, and Tongseok Lim, Structure of optimal martingale transport

plans in general dimensions, to appear in AoP. 6
26. Nicola Gigli, On the inverse implication of Brenier-McCann theorems and the structure of

(P2(M), W2), Methods Appl. Anal. 18 (2011), no. 2, 127–158. MR 2847481 1, 4
27. Nicola Gigli, Tapio Rajala, and Karl-Theodor Sturm, Optimal maps and exponentiation on finite-

dimensional spaces with Ricci curvature bounded from below, J. Geom. Anal. 26 (2016), no. 4, 2914–
2929. MR 3544946 1
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59. L. Rüschendorf and S. T. Rachev, A characterization of random variables with minimum L2-distance,
J. Multivariate Anal. 32 (1990), no. 1, 48–54. MR 1035606 7

60. P.-M. Samson, Concentration of measure inequalities for Markov chains and Φ-mixing processes, Ann.
Probab. 28 (2000), no. 1, 416–461. 5

61. , Concentration inequalities for convex functions on product spaces, Stochastic inequalities and
applications, Progr. Probab., vol. 56, Birkhäuser, Basel, 2003, pp. 33–52. 5
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