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Abstract. We give a characterization of optimal transport plans for a variant of the
usual quadratic transport cost introduced in [33]. Optimal plans are composition of
a deterministic transport given by the gradient of a continuously differentiable convex
function followed by a martingale coupling. We also establish some connections with
Caffarelli’s contraction theorem [14].

1. Introduction

Given two probability measures µ, ν on R
d, we recall that a transport plan between µ

and ν is a probability measure π on R
d × R

d such that

π(A× R
d) = µ(A) and π(Rd ×B) = ν(B),

for all Borel sets A,B of Rd. The set of all transport plans between µ and ν will be denoted
by C(µ, ν) in all the paper. It will be convenient to represent a transport plan π ∈ C(µ, ν)
in the following disintegrated form

(1) dπ(x, y) = dµ(x)dpx(y),

where x 7→ px is a (µ-almost surely unique) probability kernel called a transport kernel.
A couple (X,Y ) of random variables such that X ∼ µ and Y ∼ ν is called a coupling of
µ and ν. By a slight abuse of vocabulary, we also call couplings of µ and ν the transport
plans of C(µ, ν), which also explains the notation with letter C. In all the paper, | · |
will denote the standard Euclidean norm on R

d. The corresponding scalar product will
be denoted by x · y or 〈x, y〉 when the expression of x or y is too long. For k ≥ 1, we will
denote by Pk(Rd) the Wasserstein space of order k, i.e the set of probability measures µ
such that

∫
|x|k dµ(x) < ∞.

1.1. Existence of structured couplings between probability measures. The ques-
tion to construct couplings between probability measures having some nice structures or
properties is natural both in probability theory and analysis. Let us recall two famous
results guarantying the existence of couplings with rigid but very different structures,
namely the theorems of Brenier and Strassen.

A fundamental result by Brenier [12, 13] (see [55, §1.3] for a discussion of the bibli-
ography around this result) shows that if µ is say absolutely continuous with respect to
Lebesgue measure, then there exists some convex function ϕ : R

d → R such that ∇ϕ
pushes forward µ onto ν. In other words, there exists a deterministic coupling π◦ of the
form

dπ◦(x, y) = dµ(x)δ∇ϕ(x)(y).

Moreover, assuming in addition that µ and ν belong to P2(Rd), this π◦ is the unique
optimal coupling in the Monge-Kantorovich transport problem for the quadratic cost:

∫∫

|x− y|2 dπ◦(x, y) = inf
π∈C(µ,ν)

∫∫

|x− y|2 dπ(x, y).
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This result has then been extended to various cost functions [26] and state spaces [54,
28, 4, 24, 23, 21, 9, 29] and has had numerous applications in PDE, geometric analysis or
probability theory, see [3, 6, 72, 73] and the references therein.

On the other hand, from a probabilistic point of view it is natural to investigate the
existence of martingale couplings between elements of P1(Rd), that is to say to look for
couplings π ∈ C(µ, ν) which correspond to the law of a martingale (Xt)t∈{0;1}. This
martingale requirement means that the kernel p appearing in (1) satisfies

∫

y dpx(y) = x, for µ almost every x ∈ R
d.

As for the Brenier Theorem, it turns out that the existence of a martingale coupling be-
tween µ and ν is not automatic. Given µ, ν ∈ P1(Rd), a necessary and sufficient condition
is given by Strassen Theorem [69]: there exists a martingale coupling between µ and ν if
and only if µ is dominated by ν in the convex order. Recall that if µ, ν ∈ P1(Rd), one says
that µ is dominated by ν in the convex order if

∫
f dµ ≤

∫
f dν for all convex functions

f : Rd → R. 1 This is denoted as follows in the what follows: µ �c ν. Note that Strassen’s
result has been generalized at the time continuous process level by Kellerer [46, 47] (see
also [8]): if a family (µt)t≥0 of elements of P1(R) is increasing for the convex order (a so-
called peacocks using the terminology of [40]), then there exists a process (Xt)t≥0 which is
together Markovian and a martingale such that Xt ∼ µt for all t ≥ 0. See the monograph
[37] on peacocks, [51, 39] for the approach by Lowther and [44, 38, 10] for extensions.

1.2. In between Brenier and Strassen. Given two probability measures µ, ν on R
d

having their first moments finite, it is not always possible to go from µ to ν using a
deterministic mapping given by the gradient of a convex function, nor to go from µ to
ν using a martingale coupling. In this paper we will be interested in couplings obtained
by composition of these two classical transport methods, which as we will see in the next
paragraph always exist.

More precisely, we will look for couplings (X,Y ) of µ and ν such that there exists a
convex function ϕ : Rd → R of class C1 such that

(2) E[Y |X] = ∇ϕ(X), a.s.

Introducing X ′ = ∇ϕ(X), we can see (X,Y ) as the initial and final states of a (time inho-
mogeneous) Markov chain (X,X ′, Y ) where the first transition step is deterministic and
given by the gradient of a convex function and the second transition step is a martingale.
As mentioned above, such couplings always exist: simply choosing X and Y independent
gives a trivial example corresponding to ϕ(x) = x · E[Y ], x ∈ R

d.
The purpose of our main result (Theorem 1.2 below) is therefore to distinguish some

special couplings (X,Y ) among those satisfying (2) by showing that they are solutions of
an optimal transport problem that we shall now present.

Let θ : Rd → R
+ be some convex function and µ, ν ∈ P1(Rd) ; using the terminology of

[33], the barycentric optimal transport cost between µ and ν is defined by

(3) T θ(ν|µ) = inf
π∈C(µ,ν)

∫

θ

(∫

y dpx(y) − x

)

dµ(x),

where p is the kernel appearing in the disintegration formula (1) for π. Notice that the bar
over Tθ in (3) stands for the beginning of the word barycentric. In probabilistic notations,
this optimal transport cost can be expressed as follows:

T θ(ν|µ) = inf E [θ (E[Y |X] −X)]

1Note that since a convex function f on R
d is always bounded from below by some affine function,

the integral of f with respect to a probability measure with finite first moment always makes sense in
R ∪ {+∞}.
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where the infimum runs over the set of random vectors (X,Y ) such that X ∼ µ and Y ∼ ν.
If dπ(x, y) = dµ(x)dpx(y) ∈ C(µ, ν) is such that T θ(ν|µ) =

∫
θ (
∫
y dpx(y) − x) dµ(x), we

call it an optimal transport plan (or coupling) from µ to ν (for the cost T θ). These
barycentric costs are actually part of a more general family of transport costs, called
“weak transport costs” or “generalized transport costs”, introduced under the first name
by the first author together with Roberto, Samson and Tetali in [33] (see Section 1.4 below
for a more complete presentation).

In this paper, we will mainly focus on the barycentric transport cost, denoted by T 2 in
the remainder of the present text, in relation to T θ defined in (3), as it is associated to
the function θ(u) = |u|2, u ∈ R

d. For all µ, ν ∈ P1(Rd)

T 2(ν|µ) = inf
π∈C(µ,ν)

∫ ∣
∣
∣
∣

∫

y dpx(y) − x

∣
∣
∣
∣

2

dµ(x).

In [33, Theorem 2.11], the following Kantorovich type duality formula has been obtained:

Theorem 1.1. If µ, ν ∈ P1(Rd) then

T θ(ν|µ) = sup
f

{∫

Qθf dµ−

∫

f dν

}

,

where

Qθf(x) = inf
y∈Rd

{f(y) + θ(y − x)}, x ∈ R
d,

and where the supremum runs over the set of all functions f which are convex, Lipschitz
and bounded from below.

Note that Qθ(f) is the c-transform of f related to the cost c(x, y) = θ(y−x), x, y ∈ R
d, as

defined in optimal transport theory (see for instance [73, Definition 5.2]). The difference
with respect to the usual duality formula for the global transport cost associated to θ
(see [73, Theorem 5.10]) is that we optimize over a class of convex functions. Several
applications of this duality formula were already investigated in [33], mainly in connection
with transport-entropy inequalities and deviation inequalities for convex functions. In
particular, let us mention that Strassen Theorem can be derived from this duality theorem,
see [33, Section 3]. Here we shall use this duality result to describe optimal transport plans
for T 2.

Before stating our main result, we need some preparation. First recall that the transport
distance W2 is defined for all probability measures µ, ν ∈ P2(Rd) by

W 2
2 (µ, ν) = inf

π∈C(µ,ν)

∫∫

|y − x|2 dπ(x, y).

Given a probability ν ∈ P1(Rd), we denote by

Bν = {η ∈ P1(Rd) : η �c ν}

the set of all probability measures which are dominated by ν in the convex order. This
set Bν is easily seen to be convex in the usual sense and the proof of Proposition 1.1 will
show that (generalized) W2-geodesics with endpoints in Bν are contained in Bν .

Proposition 1.1. Let µ, ν ∈ P2(Rd). There exists a unique probability measure µ̄ ∈ Bν

such that

W2(µ̄, µ) = inf
η∈Bν

W2(η, µ) = T2(ν|µ).

We call µ̄ the projection of µ on Bν .

Remark 1.1. The identity

T 2(ν|µ) = inf
η∈Bν

W 2
2 (η, µ)
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of Proposition 1.1 was already observed in [31, Proposition 3.1] in dimension 1 when µ
has no atom and then generalized to higher dimensions in [65, Proposition 4.1] when µ
is absolutely continuous with respect to Lebesgue. After a first version of this work has
been released, we learned that Proposition 1.1 has been independently obtained by Alfonsi,
Corbetta and Jourdain in [1] in connections with the study of algorithms approximating
the martingale transport problem.

We recall that if g : Rd → R ∪ {+∞} is some convex function, the Legendre transform
g 7→ g∗ is defined by

g∗(y) = sup
x∈Rd

{x · y − g(x)}, y ∈ R
d.

We will keep on using notation “∗” for the Legendre transform all along the paper. With
these notions in hand, we can now state the main result of this paper which describes the
set of all optimal couplings for T 2.

Theorem 1.2. Let µ, ν ∈ P2(Rd).

(a) There exists some lower semi-continuous convex function f◦ : Rd → R ∪ {+∞},
which is integrable with respect to ν and such that

(4) T2(ν|µ) =

∫

Q2f
◦ dµ−

∫

f◦ dν.

In this equation Q2 corresponds to Qθ, defined in Theorem 1.1, where θ is the
quadratic cost. It is given for any function g : Rd → R by

Q2g(x) = inf
y∈Rd

{g(y) + |y − x|2}, x ∈ R
d.

(b) Let h and ϕ be the convex functions defined by

h(x) =
f◦(x) + |x|2

2
, x ∈ R

d and ϕ(y) = h∗(y), y ∈ R
d.

The function ϕ is C1-smooth on R
d and the map ∇ϕ is 1-Lipschitz on R

d. The
projection µ̄ of µ on Bν is such that

µ̄ = ∇ϕ#µ.

(c) The set of optimal transport plans for T 2(ν|µ) is non-empty. Moreover if (X,Y )
is a coupling of µ, ν such that T 2(ν|µ) = E[|E[Y |X] − X|2], then E[Y |X] has law
µ̄, E[Y |X] = ∇ϕ(X) almost surely and (E[Y |X], Y ) is a martingale (this last point
being of course always true).

Remark 1.2.

- The fact that ϕ is convex and µ̄ = ∇ϕ#µ implies that x 7→ ∇ϕ(x) provides the
optimal transport plan π = (Id × ∇ϕ)#µ ∈ C(µ, µ̄) for the quadratic cost. In other
words, if X has law µ then

(5) W 2
2 (µ̄, µ) = E[|∇ϕ(X) −X|2].

As in the classical optimal transport theory the conjugate potential ψ = ϕ∗(= h) is
such that x ∈ ∂ψ(y), π-almost surely. Here ∂ψ is the subgradient of ψ.

- We underline the fact that there is no assumption on the measure µ (as for instance
the condition that it does not give mass to small sets, which is classical for Brenier
transport, see [28] for a minimal condition). As the potential function ϕ is C1-
smooth its gradient is well defined everywhere. Hence, the optimal transport map
x 7→ ∇ϕ(x) is pointwise well-defined and there is no ambiguity on the range of
small sets.

- We stress that the optimal transport map from µ to µ̄ is continuous and even
1-Lipschitz continuous, which is not automatic for quadratic optimal transport be-
tween arbitrary measures of P2(Rd).
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- In a previous version of this paper, Theorem 1.2 appeared with the additional as-
sumption that µ and ν are compactly supported. Soon after this first version has
been released, a paper by Backhoff-Veraguas, Beiglböck and Pammer [5] proposed
an improved version of Items (b) and (c) of our main result removing this compact-
ness assumption. Their approach is based on a clever combination of generalized
cyclical monotonicity arguments and on the first compact version of our Theorem
1.2. In the present version of our paper, we improve our preceding proof of Item
(a) of Theorem 1.2 in order to remove also the compactness of supports assumption
(the proof of Items (b) and (c) being essentially unchanged). The main difference
between the previous proof and the present one is that the existence of the dual
optimizer is obtained using some version of Ascoli Theorem adapted to convex
functions instead of the usual version. To keep visible the incremental progresses
around Theorem 1.2, we have treated separately the compact and the general cases
in the proof Section 6.

Before presenting the organization of the paper, let us mention that the methods and
results developed in this work are likely to extend to more general barycentric or even
some classes of weak optimal transport problems, see §1.4 for a presentation of the weak
transport costs. We focus on the particular case of T 2 to avoid unnecessary generality
and make the reading of this paper more fluid.

1.3. Other results and organization of the paper. Let us now describe the content
of the paper.

Section 2 adresses the question of characterizing equality cases between W 2
2 and T 2.

The second main result of the paper, Theorem 2.1, states that W 2
2 (ν, µ) = T 2(ν|µ) if and

only if there exists some continuously differentiable convex function ϕ such that ∇ϕ is
1-Lipschitz and ν = ∇ϕ#µ. In other words, this result shows that the Brenier map from
µ to ν is a contraction, i.e a 1-Lipschitz map, if and only if µ̄ = ν. This observation is then
compared to a classical theorem by Caffarelli [14] that states that probability measures
with a log-concave density with respect to the standard Gaussian measure are contractions
of it.

In Section 3, we generalize the notion of c−monotonicity to the case of the transport
cost T 2. We illustrate the power of this notion, by giving a new proof of Strassen Theorem
for submartingales in dimension 1.

In Section 4, we study a concrete example and describe the function ∇ϕ and the pro-
jected measure µ̄ when µ is some arbitrary probability measure on R

d (with finite second
moment) and ν is a discrete probability measure concentrated on the vertices of a simplex
in R

d.
Section 5 recalls some other examples and results appearing in the recent literature.
Finally, Section 6 contains the postponed proofs of Proposition 1.1 and Theorem 1.2

(for both the compact and general cases) and of some auxiliary lemmas.

1.4. More about weak optimal transport costs. As mentioned at the end of §1.2,
the barycentric transport costs (3) enter a more general family of transport costs, that we
will now recall.

Let (X , d) be a Polish space and P(X ) be the set of Borel probability measures on X .
Given a cost function c : X ×P(X ) → R

+ and probability measures µ, ν on X the optimal
weak transport cost Tc(ν|µ) from µ to ν is defined by

Tc(ν|µ) = inf
π∈C(µ,ν)

∫

c(x, px) dµ(x),

where π and p are related together by (1). Note that this definition makes sense under
mild regularity assumptions on c, that we will not detail in this exposition.
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On the one hand, when c(x, p) =
∫
ρ(x, y) dp(y) for some measurable non-negative

function ρ on X 2, one recovers the usual Monge-Kantorovich optimal transport cost

Tρ(µ, ν) = inf
π∈C(µ,ν)

∫

ρ(x, y) dπ(x, y).

On the other hand, the optimal barycentric transport costs presented in (3) corresponds
to cost functions of the form c(x, p) = θ(

∫
y dp(y) − x).

The first appearance of this form of transport cost goes back to the works of Marton
[53, 52] and Talagrand [70, 71] in connections with the concentration of measure phe-
nomenon via the so-called transport-entropy inequalities (see [48] for an introduction to
concentration of measure phenomenon and [30] for a survey on transport-entropy inequal-
ities). For instance, Marton considers in [52] the following simple cost function:

cMarton(x, p) =

(∫

1x 6=y dp(y)

)2

, x ∈ X ,

and recovers a fundamental concentration of measure result by Talagrand [70] for prod-
uct probability measures. After Marton, some other universal concentration of measures
results by Talagrand were recovered or improved by Dembo [20] and Samson [62, 63, 64]
using variants of Marton’s cost cMarton. Motivated by questions related to concentration
and curvature properties of discrete measures, the paper [33] introduces the general defi-
nition given above and studies some of the properties of this new class of transport costs.
In particular Kantorovich type duality formulas are obtained [33, Theorem 9.6] under the
assumption that c is convex with respect to the p variable (and some additional mild reg-
ularity conditions). We refer to [32, 31, 66, 68, 22] for works directly connected to [33] and
to [65] for an up-to-date survey of applications of weak transport costs to concentration
of measure.

Besides their many applications in the field of functional inequalities and concentration
of measure, it turns out that weak transport costs are also interesting in themselves as
a natural generalization of the transportation problem. Indeed, the main interest of this
definition is that it enables the introduction of additional constraints to the transfers of
mass. For instance, a cost function of the form

c(x, p) =

{ ∫
ρ(x, y) dp(y) if

∫
y dp(y) = x

+∞ otherwise

where ρ : R
d × R

d is some non-negative measurable function gives back the notion of
optimal transport with martingale constraint: if µ �c ν (say compactly supported to
avoid definition problem), then

Tc(ν|µ) = inf{E[ρ(X,Y )] : X ∼ µ, Y ∼ ν, (X,Y ) is a martingale}.

This optimal transport problem with martingale contraint has been thoroughly studied in
[7] for the dimension 1. There, the martingale transport problem is studied for particular
families of costs satisfying the cross derivative condition ∂x∂

2
yρ < 0 giving rise to the

left-curtain coupling (on this coupling, see also [35, 45, 43]) and for the cost functions
ρ : (x, y) 7→ ±|y − x|, generalizing results by Hobson and his coauthors, Neuberger and
Klimmek [42, 41], respectively. The supermartingale problem in dimension 1 with cross-
derivative condition is studied in [57]. In higher dimension ρ : (x, y) 7→ ±‖y − x‖ is
studied in [27, 50], more general costs are considered in [19]. We refer to [2] for existence
results in the dual optimal transport problem with martingale contraints making use of
the formulation in terms of weak costs as above.

As observed by Conforti [15] and Conforti and Ripani [16] the class of weak transport
costs also entails the notion of entropic costs related to the Schrödinger problem (see
the nice survey by C. Léonard [49]). We also refer to the recent articles by Alibert,
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Bouchitté and Champion [2] (see also Section 5) and Bowles and Ghoussoub [11] for
further developments and examples.

2. Link with Caffarelli’s contraction theorem

In this section we admit the main theorem of this paper, Theorem 1.2, and derive a
link with the celebrated Caffarelli’s contraction theorem of [14]. Precisely we investigate
the question of determining in which case

W 2
2 (ν, µ) = T 2(ν|µ)

and we show how this question is related (when µ is the standard Gaussian) to Caffarelli’s
result. The following result is the second main contribution of the paper:

Theorem 2.1. Let µ, ν ∈ P2(Rd) with R
d equipped with the standard Euclidean norm.

The following statements are equivalent:

(a) There exists a convex function ϕ : Rd → R of class C1 such that ∇ϕ is 1-Lipschitz
such that ν = ∇ϕ#µ.

(b) The projection µ̄ of µ on the set Bν = {η ∈ P1(Rd) : η �c ν} is ν.
(c) It holds W 2

2 (ν, µ) = T 2(ν|µ).

In dimension 1, the equivalence between (c) and (a) has been obtained by Shu in a
slightly different form in [67].

Let us denote by γd the standard Gaussian measure on R
d and recall the statement of

Caffarelli’s contraction theorem.

Theorem 2.2 (Caffarelli’s contraction theorem [14]). If ν is a probability measure with
a density with respect to γd of the form e−V , with V : Rd → R ∪ {∞} a convex function,
then there exists a convex function ϕ of class C1 on R

d such that the Brenier transport
map ∇ϕ from γd to ν is 1-Lipschitz.

Theorem 2.2 is an important result with numerous applications in the field of functional
inequalities [34, 18, 56]. Note that the assumption on ν can equivalently be formulated as:
ν has density e−U with respect to the Lebesgue measure where x 7→ U(x)−|x|2/2 ∈ R∪{∞}
is convex. Such measures are called 1-uniformly log-concave in the literature.

The following corollary is an immediate consequence of Theorems 2.1 and 2.2.

Corollary 2.1. If ν is a probability measure with a density with respect to γd of the form
e−V , with V : Rd → R ∪ {+∞} a convex function, then the projection γd of γd on Bν is
equal to ν.

Remark 2.1. Let dν = e−V dγd with V convex on R
d.

- According to Theorem 2.1 the conclusion of Theorem 2.2 is logically equivalent to
the statement γd = ν. It would be very interesting to prove directly that γd = ν since
this would give an alternative proof Theorem 2.2. This question will be considered
elsewhere.

- To complete the picture, let us mention a nice result of Hargé [34] that states that
if in addition

∫
x dν(x) = 0, then ν �c γd.

Now let us turn to the proof of Theorem 2.1. We will need the following classical lemma
(see [36, Theorem E 4.2.1]) whose proof is recalled in Section 6 for the sake of completeness.

Lemma 2.1. Let g : Rd → R ∪ {+∞} be a lower semi-continuous convex function such
that g(xo) < +∞ for some xo ∈ R

d and recall g∗(y) = supx∈Rd{x · y − g(x)}, y ∈ R
d.

The following are equivalent:

(a) The function x 7→ g(x) − |x|2

2 is convex on R
d.

(b) The function y 7→ |y|2

2 − g∗(y) is convex and finite valued on R
d.
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(c) The function g∗ is of class C1 and ∇g∗ is 1-Lipschitz on R
d.

Notice that (a) quantitatively states that g is more convex than x 7→ |x|2/2 while (b)
states that g∗ is less convex than x 7→ |x|2/2. Now let us prove Theorem 2.1.

Proof of Theorem 2.1. Let us show that (a) implies (b). Define h = ϕ∗ and f = 2ϕ∗ −|x|2.
According to Lemma 2.1 (the implication (c) ⇒ (a) applied with g = ϕ∗), we have that f
is convex. An easy calculation shows that Q2f(x) = |x|2 − 2ϕ(x), for every x ∈ R

d, and
moreover it holds ϕ∗(∇ϕ(x)) = x · ∇ϕ(x) −ϕ(x), x ∈ R

d. This together with the fact that
∇ϕ sends µ onto ν yields that

W 2
2 (ν, µ) ≤

∫

|∇ϕ(x) − x|2 dµ(x)

=

∫

|x|2 dµ(x) +

∫

|y|2 dν(y) − 2

∫

x · ∇ϕ(x) dµ(x)

=

∫

|x|2 dµ(x) +

∫

|y|2 dν(y) − 2

∫

ϕ(x) + ϕ∗(∇ϕ(x)) dµ(x)

=

∫

Q2f dµ−

∫

f dν

≤ T 2(ν|µ)

≤ W 2
2 (ν, µ),

where the second inequality comes from the convexity of f and the duality formula for T 2,
see Theorem 1.2 (a). Note that, according to Lemma 2.1 (the implication (c) ⇒ (b) with
g = ϕ∗) we have that y 7→ |y|2/2 −ϕ(y) is convex. Therefore it is bounded from below by
some affine function and so ϕ is bounded from above by some quadratic function, which
shows that ϕ is integrable with respect to µ. Since x 7→ ϕ(x) + ϕ∗(∇ϕ(x)) is integrable
with respect to µ, one concludes that ϕ∗(∇ϕ(x)) is also integrable with respect to µ, which
enables to split the integral at the fourth line. This also shows that f is integrable with
respect to ν.

Therefore, the function f is optimal for the dual problem and so, according to The-
orem 1.2, ν = ∇h∗

#µ = ∇ϕ#µ = µ̄, which shows (b). Now according to Theorem 1.2,

W 2
2 (µ̄, µ) = T 2(ν|µ) so (b) implies (c). On the other hand, if W 2

2 (ν, µ) = T 2(ν|µ), then
according to Proposition 1.1 and Theorem 1.2, it holds µ̄ = µ, so (c) implies (b) as well.
Finally, according to Theorem 1.2, there always exist a convex function ϕ of class C1 on
R

d such that ∇ϕ is 1-Lipschitz and µ̄ = ∇ϕ#µ. So (b) implies (a), which completes the
proof. �

3. A monotonicity theorem

In this section we still admit the main theorem of this paper, Theorem 1.2. We generalize
the notion of c-monotonicity, which plays an important role in optimal transport theory
[61, 26], to cost functions c defined on R

d × P(Rd) and we use it to formulate a necessary
condition of optimality for transport plans. Then we give a new proof of Strassen theorem
on the existence of submartingale couplings with given marginals in dimension 1 using
this c-monotonicity criterium.

3.1. A necessary condition of optimality. The following definition generalizes the
notion of c-monotonicity ; we refer to [59, 72, 73] and the references therein for a complete
account on the subject. In what follows, we denote by P1(Rd) the set of probability
measures on R

d having finite first moment.

Definition 3.1. Let c : Rd × P1(Rd) → R
+ be a cost function. We will say that a set

Γ ⊂ R
d × P1(Rd) is c-monotone if for any N ≥ 1 and points (xi, pi) ∈ Γ and probability



ON A MIXTURE OF BRENIER AND STRASSEN THEOREMS 9

measures qi ∈ P1(Rd), i ∈ {1, . . . , N} such that
∑N

i=1 pi =
∑N

i=1 qi, it holds

N∑

i=1

c(xi, pi) ≤
N∑

i=1

c(xi, qi).

We now formulate a necessary condition for optimality of a coupling for the transport
cost T2 which we recall is associated to the cost function c2 defined by

c2(x, p) =

∣
∣
∣
∣

∫

y dp(y) − x

∣
∣
∣
∣

2

, x ∈ R
d, p ∈ P1(Rd).

Theorem 3.1. Let µ, ν ∈ P2(Rd). There exists a set Γ ⊂ R
d × P1(Rd) which is monotone

with respect to the cost function c2 and such that if dπ(x, y) = dµ(x)dpx(y) is an optimal
coupling for the cost T 2(ν|µ), it holds

µ
(

{x ∈ R
d : (x, px) ∈ Γ}

)

= 1.

Remark 3.1. The paper [5] contains a general version of Theorem 3.1 relying on a
completely different proof (see [5, Theorem 3.4]). It is also shown in [5, Theorem 3.6]
that, under mild assumptions on the cost function (verified for instance by the cost c2),
c−monotonicity is also a sufficient condition of optimality.

Proof. Recall the duality formula

T 2(ν|µ) = sup
f

{∫

Q2f(x) dµ(x) −

∫

f(y) dν(y)

}

,

where the infimum is running over the set of convex functions bounded from below and
Q2f(x) = infy∈Rd{f(y) + |y − x|2}, x ∈ R

d. Note that if f is convex, then

Q2f(x) = inf
p∈P1(Rd)

{

c2(x, p) +

∫

f dp

}

, x ∈ R
d.

Indeed, the inequality ≥ is obtained by taking p = δy. Moreover, since f is convex, it
holds

∫

f(y) dp(y) + c2(x, p) ≥ f

(∫

y dp(y)

)

+

∣
∣
∣
∣

∫

y dp(y) − x

∣
∣
∣
∣

2

≥ Q2f(x)

so taking the infimum over p gives the converse inequality. Let f◦ be such that T 2(ν|µ) =
∫
Q2f

◦(x) dp(x) −
∫
f◦(y) dν(y) (which exists according to Theorem 1.2). Then, it holds

T 2(ν|µ) =

∫

Q2f
◦(x) dµ(x) −

∫

f◦(y) dν(y)

≤

∫ (∫

f◦(y) dpx(y) + c2(x, px)

)

dµ(x) −

∫

f◦(y) dν(y)

=

∫

c2(x, px) dµ(x) = T 2(ν|µ).

Therefore, Q2f
◦(x) =

∫
f◦(y) dpx(y) + c2(x, px) for µ-almost all x ∈ R

d. So denoting
by Γ the set of couples (x, p) so that Qf◦(x) =

∫
f◦ dp + c2(x, p), we have that µ({x ∈

R
d : (x, px) ∈ Γ}) = 1. Now, let us check that Γ is monotone with respect to the cost

function c2. Take a family of points (xi, pi) ∈ Γ and probability measures qi ∈ P1(Rd),

i ∈ {1, . . . , N} such that
∑N

i=1 pi =
∑N

i=1 qi. Then, it holds

Q2f
◦(xi) = c2(xi, pi) +

∫

f◦ dpi, ∀i ∈ {1, . . . , N}

and on the other hand

Q2f
◦(xi) ≤ c2(xi, qi) +

∫

f◦ dqi, ∀i ∈ {1, . . . , N}.
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Summing these inequalities, and using the fact that
∑N

i=1 pi =
∑N

i=1 qi gives immediately
∑N

i=1 c(xi, pi) ≤
∑N

i=1 c(xi, qi). �

Remark 3.2. Using the notation of Theorem 1.2, let us show how, with Theorem 3.1, one
can recover the fact proved in Theorem 1.2 that ∇ϕ is 1-Lipschitz on the support of µ. Let
dπ(x, y) = dµ(x)dpx(y) be an optimal transport plan from µ to ν and Γ be a c2-monotone
set such that (x, px) ∈ Γ for µ almost every x ∈ R

d. If (x, px) and (y, py) are elements of
Γ, then comparing this pair with (x, (1−ε)px +εpy) and (y, (1−ε)py +εpx) where ε ∈ [0, 1]
yields

|x− x̄|2 + |y − ȳ|2 ≤ |x− [(1 − ε)x̄+ εȳ]|2 + |y − [(1 − ε)ȳ + εx̄]|2,

where x̄ =
∫
z dpx(z) and ȳ =

∫
z dpz(z). Noting that this is an equality for ε = 0 and

taking the right derivative at ε = 0+, we thus obtain

2〈x̄− x, ȳ − x̄〉 − 2〈ȳ − y, ȳ − x̄〉 = 2〈y − x, ȳ − x̄〉 − 2|ȳ − x̄|2 ≥ 0,

hence |ȳ− x̄| ≤ |y−x|. Since x̄ = ∇ϕ(x) and ȳ = ∇ϕ(y) this proves that ∇ϕ is 1-Lipschitz
on the support of µ.

3.2. An example related to the increasing convex order.

Definition 3.2. Let µ, ν be two probability measures on R ; µ is dominated by ν for
the stochastic order, denoted by µ �sto ν, if

∫
f dµ ≤

∫
f dν for all bounded increasing

functions f : R → R. Assuming that µ, ν have finite first moments, µ is dominated by ν for
the increasing convex order, denoted by µ �c,sto ν, if

∫
f dµ ≤

∫
f dν for every increasing

convex function f : R → R.

Notice that if
∫
x dµ(x) =

∫
y dν(y) and µ �c,sto ν, then it is easy to see that the

inequality
∫
f dµ ≤

∫
f dν can be extended, first to all convex functions f with finite

asymptotic slopes at −∞, and second, by using the monotone convergence theorem, to all
convex functions. Therefore, for probability measures with finite first moments, µ �c ν is
equivalent to “µ �c,sto ν and

∫
x dµ(x) =

∫
x dν(x)”.

In this section we prove that on R under the assumption µ �c,sto ν, our Theorem 1.2
on the quadratic barycentric transport problem can be completed with new informations.

Theorem 3.2. Let µ, ν ∈ P2(R) be such that µ �c,sto ν. Then, with the notations of
Proposition 1.1 and Theorem 1.2, the probability measure µ̄ satisfies µ �sto µ̄ and any
optimal coupling (X,Y ) satisfies X ≤ E[Y |X] almost surely.

In the terminology of martingale transport, (X,Y ) is a submartingale coupling and its
law a submartingale transport plan.

Before we prove Theorem 3.2, note that conversely to it, if (X,Y ) is a coupling of µ
and ν such that X ≤ E[Y |X] almost surely, then for every increasing and convex function
f : R → R, it holds

E[f(Y )] ≥ E[E[f(Y )|X]] ≥ E[f(E[Y |X])] ≥ E[f(X)].

and so µ �c,sto ν. We therefore recover the classical result by Strassen [69, Theorem 9] on
submartingale couplings (under the additional assumption that the measures have finite
second moments): µ �c,sto ν if and only if there exists X ∼ µ and Y ∼ ν in the same
probability space with X ≤ E[Y |X] almost surely.

Remark 3.3. Theorem 3.2 also gives back Strassen Theorem in the very specific case of
the real line and measures with finite second moments. Let us prove both implications.
The fact that E[Y |X] = X implies µ �c ν is an obvious consequence of the conditional
Jensen inequality. Conversely, if µ �c ν first notice µ �c,sto ν. Therefore according to
Theorem 3.2 there exists X ∼ µ and Y ∼ ν in the same probability space with E[Y |X] ≥ X.
Moreover, µ �c ν implies

∫
x dµ(x) =

∫
x dν(x), i.e. E[X] = E[Y ]. Hence E[Y |X] and X

are ordered random variables with the same expectation. They are therefore almost surely
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equal, which proves the converse implication of Strassen Theorem. For another elementary
proof, see [7, Section 2]

Proof of Theorem 3.2. We denote a solution of the quadratic barycentric problem by
dπ(x, y) = dµ(x)dpx(y). Let (X,Y ) such that (X,Y ) ∼ π and denote E[Y |X] by X̄. Ac-
cording to Theorem 1.2, π may not be uniquely determined but the law of X̄ is uniquely
determined and denoted by µ̄. The inequality X ≤ E[Y |X] almost surely immediately
implies that µ �sto µ̄. Now to show that X ≤ E[Y |X] almost surely amounts to show that
∫
y dpx(y) ≥ x for µ almost all x ∈ R. The rest of the proof is devoted to this question.
According to Theorem 3.1, there exists Γ ⊂ R × P1(R) such that, µ({x ∈ R : (x, px) ∈

Γ}) = 1 and such that if (x, p) ∈ Γ and (x′, p′) ∈ Γ, then for all probability measures q, q′

such that p+ p′ = q + q′, it holds

(6)

∣
∣
∣
∣

∫

y dp(y) − x

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∫

y dp′(y) − x′

∣
∣
∣
∣

2

≤

∣
∣
∣
∣

∫

y dq(y) − x

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∫

y dq′(y) − x′

∣
∣
∣
∣

2

.

Let us show that if x, x′ ∈ R are such that (x, px) ∈ Γ and (x′, px′) ∈ Γ, then for all
a ∈ Support(px) and b ∈ Support(px′), it holds

(7)

[(∫

y dpx(y) − x

)

−

(∫

y dpx′(y) − x′
)]

(b− a) ≥ 0.

Let a ∈ Support(px) and b ∈ Support(px′) and ε > 0 and define

ra = px( · |[a − ε, a+ ε]) and rb = px′( · |[b − ε, b+ ε]).

For all t > 0, define

qt
x = px + t(rb − ra) and qt

x′ = px′ + t(ra − rb)

and note that if t is small enough, qt
x and qt

x′ are probability measures such that qt
x + qt

x′ =
px + px′ . Applying (6) and letting t → 0 gives

[(∫

y dpx(y) − x

)

−

(∫

y dpx′(y) − x′
)](∫

y drb(y) −

∫

y dra(y)

)

≥ 0.

Finally, letting ε → 0 yields to (7).
Define Γ1 = {x ∈ R : (x, px) ∈ Γ} and for any interval I ⊂ R, let AI the set of points

x ∈ Γ1 such that
∫
y dpx(y) − x ∈ I. We aim at proving that µ(A]−∞,0[) = 0.

Striving for a contradiction suppose that µ(A]−∞,0[) > 0. Our assumption µ �c,sto ν
implies

∫
x dµ(x) ≤

∫
y dν(y) so that

∫

Γ1 [(
∫
y dpx(y)) − x]dµ(x) ≥ 0. It follows that

µ(A[0,+∞[) > 0. Henceforth A]−∞,0[ and A[0,+∞[ are not empty. Several configurations
may be considered.

- In the first case we assume that there exists x′ ∈ A]−∞,0[ and x ∈ A[0,+∞[ such

that x′ ≤ x. One thus has
∫
y dpx′(y) < x′ ≤ x ≤

∫
y dpx(y). So in this case, one

can find a ∈ Support(px) and b ∈ Support(px′) such that a > b. Applying (7) with
these a, b provides a contradiction.

- We can now assume that A[0,+∞[ has a supremum smaller than or equal to the
infimum of A]−∞,0[. If there exists a ∈ Support(px) and b ∈ Support(px′) such
that a > b, we get the same contradiction as before.

- We are finally reduced to the case where A[0,+∞[ has a supremum smaller than
or equal to the infimum of A]−∞,0[ and moreover every px with x ∈ A[0,+∞[ has
the essential supremum smaller than or equal to the essential infimum of every
px′ with x′ ∈ A]−∞,0[. Let m ∈ R be between supx∈A[0,+∞[

[sup Support(px)] and

infx′∈A]−∞,0[
[inf Support(px′)]. Integration of x 7→ (x− m)+ provides a contradic-

tion to µ �c,sto ν. Indeed, one the one hand, it holds
∫

[x−m]+ dµ(x) ≥

∫

[x−m]+1A]−∞,0[
(x) dµ(x)
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(with actually equality). On the other hand,
∫

[y −m]+ dν(y) =

∫ (∫

[y −m]+ dpx(y)

)

dµ(x)

(i)
=

∫ (∫

[y −m]+ dpx(y)

)

1A]−∞,0[
(x) dµ(x)

(ii)
=

∫ (∫

y −mdpx(y)

)

1A]−∞,0[
(x) dµ(x)

(iii)
<

∫

(x−m) 1A]−∞,0[
(x) dµ(x)

(iv)
=

∫

[x−m]+1A]−∞,0[
(x) dµ(x),

where
– (i) comes from the fact that for any x ∈ A[0,+∞[, Support(px) ⊂] − ∞,m],
– (ii) comes from the fact that for any x ∈ A]−∞,0[, Support(px) ⊂ [m,+∞[,
– (iii) comes from the definition of A]−∞,0[ and the fact that if f < g on a set
A such that µ(A) > 0, then

∫

A f dµ <
∫

A g dµ,
– (iv) follows from the inequality x >

∫
y dpx(y) ≥ m, for all x ∈ A]−∞,0[.

In any case there is a contradiction to the fact that µ(A]−∞,0[) > 0 and this completes
the proof. �

Remark 3.4.

(1) Optimal transport plans for the weak transport problem are not uniquely deter-
mined. As stated in Theorem 1.2, µ̄ and the transport from µ to µ̄ are uniquely
determined but the martingale transport plan from µ̄ to ν is completely free. It is
precisely the goal of Martingale Optimal Transport to determine special martingale
transport plans from µ̄ to ν.

(2) This remark holds in particular for the dimension 1. Namely, in Theorem 3.2 we
did not defined a submartingale coupling but only the non-decreasing/increasing
part of its Doob decomposition. In relation with this decomposition, the paper
[57] proposes two supermartingale transport problems and describes their solu-
tions, extending the theory on curtain couplings initiated in [7]. In particular
the two optimal supermartingale couplings respectively corresponding to the two
problems coincide with the curtain coupling when µ �c ν. However, transforming
the supermartingale problem in submartingale problem, we stress that X̄ = E[Y |X]
and its coupling with X is different from ours as we show in this example: if
X is the uniform measure on [−1, 0] and Y is uniform on [0, 3], our coupling is
E[Y |X] = X̄ = X + 2 (it is a translation see Section 4). The first supermartin-
gale coupling by Nutz and Stebegg (reversed in order to be a submartingale) gives
Y = E[Y |X] = 3(X + 1). The second one provides Y = E[Y |X] = −3X.

4. Example of ν concentrated on the vertices of a simplex

In this section we prove the following theorem, mainly by geometric means.

Theorem 4.1. Let µ be a compactly supported probability measure on R
d and ν an atomic

measure whose support is a simplex {y0, . . . , yk} of Rd with k ≤ d. Denote the convex hull
of {y0, . . . , yk} by ∆. Then there exists v ∈ R

d such that the map T defined by

T : Rd → R
d : x 7→ T (x) = proj∆(x+ v)

is such that µ̄ = T#µ (with the notations of Proposition 1.1 and Theorem 1.2), where
proj∆ denotes the orthogonal projection on the closed convex set ∆.

Remark 4.1.
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- To be consistent with Theorem 1.2, note that the map T given above can be written
as T = ∇ϕ, where ϕ : Rd → R is the convex function of class C1 defined by

ϕ(x) =
|x+ v|2

2
−

1

2
d(x+ v,∆)2, x ∈ R

d,

where d(z,∆) = infy∈∆ |z − y|.
- The assumption that µ is compactly supported could be easily relaxed into the as-

sumption that µ admits a moment of order 2 finite.

Proof. Let µ be a probability with compact support and ν an atomic measure with support
the simplex {y0, . . . , yk} of R

d with k ≤ d. We denote by µ̄ the projection of µ on
Bν = {η ∈ P(Rd) : η �c ν} given by Proposition 1.1 and Theorem 1.2. The assumption
that the support of ν is a simplex is in order for the following property: for any point y
in the convex hull ∆ = Conv(y0, . . . , yk) the barycentric coordinates (λ0, . . . , λk), defined

by
∑k

i=0 λi = 1 and
∑k

i=0 λiyi = y, are uniquely determined. Moreover, notice that all the
coordinates are non-negative. If v ∈ R

d, we will denote by µv the translation of µ by the
vector v, i.e µv = Law(X + v), with X ∼ µ. The four following properties will permit us
to determine µ̄ and find the optimal coupling between µ and µ̄.

(a) Let η be a probability measure with a finite moment of order 2. A coupling (X,Y )
is an optimal coupling for W2 between µ and η if and only if (X + v, Y ) is an
optimal coupling for W2 between µv and η. Moreover,

W 2
2 (µv, η) = W 2

2 (µ, η) + |v|2 + 2

〈∫

x dµ−

∫

x dη, v

〉

,

(b) As µ̄ �c ν the measure µ̄ is concentrated on ∆ and has the same barycenter as ν.
Conversely any measure η concentrated on ∆ and with the same barycenter as ν
satisfies η �c ν.

(c) Among the measures concentrated on ∆, the one that minimises the quadratic
cost W2 with respect to a given probability measure µ′ having a finite moment of
order 2 is (proj∆)#µ

′.

(d) There exists v ∈ R
d such that (proj∆)#µv has the same barycenter as ν.

Before we prove the different four points, let us finish the proof. According to Item (b),
all the elements of Bν have the same barycenter as ν. Therefore, applying Item (a), we
have for any η ∈ Bν

W 2
2 (µv, η) = W 2

2 (µ, η) + |v|2 + 2

〈∫

x dµ −

∫

x dν, v

〉

.

One easily concludes from this identity that µv = µ̄ for any v ∈ R
d. According to Item

(d), there exists v ∈ R
d such that ηv := (proj∆)#µv has the same barycenter as ν. Since

ηv is also concentrated on ∆, it follows from Item (b) that ηv belongs to Bν . Therefore,
according to Item (c),

inf
η∈Bν

W 2
2 (µv, η) ≥ inf

η(∆)=1
W 2

2 (µv, η) = W 2
2 (µv, ηv)

and so ηv = µv = µ̄. Finally if X ∼ µ, it follows from Item (a) that (X,proj∆(X + v)) is
an optimal coupling between µ and µ̄.

The four points above can be proved as follows:

(a) This assumption simply comes from

E[|(X + v) − X̄ |2] = E[|X − X̄ |2] + |v|2 + 2〈E[X − X̄], v〉
︸ ︷︷ ︸

Depends only on Law(X), Law(X̄)

.

(b) The first implication is obvious. For the second implication, assume η is concen-
trated on ∆ and has the same barycenter as ν. For every x ∈ ∆, let px be the
unique probability measure concentrated on {y0, . . . , yk} with barycenter x and let
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ν ′ =
∫
px dη(x). The probability measure ν ′ is concentrated on the same set as ν.

Its barycenter permits to determine it uniquely. The barycenter of ν ′ is
∫
x dη(x),

the barycenter of η that is also the one of ν. Therefore ν ′ = ν. We have proved
that there exists a martingale having η on ν as marginals. Therefore η �c ν.

(c) For every x ∈ R
d, the point proj∆(x) is by definition the closest point in ∆. So if

X ′ ∼ µ′ and Y takes values in ∆ almost surely, one gets

E[|X ′ − Y |2] ≥ E[|X ′ − proj∆(X ′)|2]

and so W 2
2 (µ′, η) ≥ E[|X ′−proj∆(X ′)|2] for any η concentrated in ∆. In particular,

W 2
2 (µ′, (proj∆)#µ

′) = E[|X ′ − proj∆(X ′)|2] which proves the claim.
(d) Without loss of generality we can assume k = d for the following reason: if ∆

has positive codimension, the measure (proj∆)#µ
′ is exactly (proj∆)# ◦(projA)#µ

′

where A is the affine space spanned by ∆. As a consequence, in our investigation
we can replace µ by (projA)#µ, consider only translations in A and see ∆ as a
simplex with full dimension.

Now, let yν be the barycenter of ν and let us prove the existence of v ∈ R
d

such that the barycenter of (proj∆)#µv is equal to yν . This point can be proved
using the notion of topological degree coming from algebraic topology (we refer
to [58, Chapter IV ] for an introduction). If Ω is a bounded open set of R

d and
f : Ω → R

d is a continuous mapping, the degree of f is a Z-valued quantity
denoted by d(f,Ω, a) defined for every a ∈ R

d \ f(∂Ω). We will use the following
basic properties:

– if f = Id, then d(Id,Ω, a) = 1, for all a ∈ Ω;
– if d(f,Ω, a) 6= 0, then the equation f(x) = a, x ∈ Ω, admits at least one

solution;
– if F : Ω × [0, 1] → R

d is a continuous function and a ∈ R
d is such that

for all t ∈ [0, 1], a ∈ R
d \ F (t, ∂Ω), then d(F ( · , 0),Ω, a)) = d(F ( · , 1),Ω, a))

(invariance by homotopy).
Consider X a random variable with law µ and R > 0 a positive number to be fixed
later such that the open ball of center 0 and radius R denoted by B(0, R) contains
∆. From now on the sphere of center 0 and radius R will be denoted by S(0, R).
We are interested in the map

Φ : B(0, R) × [0, 1] → ∆ ⊂ R
d,(8)

defined so that Φ(v, t) is the barycenter of (proj∆)#(Law(v + tX)). Note that
this map is continuous so that it can be seen as an homotopy between proj∆ and
v 7→

∫
y d(proj∆)#µv(y). Another homotopy is possible between Id and proj∆

Ψ : B(0, R) × [0, 1] → R
d

defined by Ψ(x, t) = (1 − t)x+ tproj∆(x). Note that since yν lies in the interior of
∆, it does not belong to Ψ(S(0, R)× [0, 1]). Therefore, by invariance by homotopy,

1 = d(Id,B(0, R), yν) = d(Ψ(·, 0),B(0, R), yν ) = d(Ψ(·, 1),B(0, R), yν ),

from which we infer that d(Φ(·, 0),B(0, R), yν ) = 1. According to Lemma 4.1
below, if R is large enough then Φ(S(0, R) × [0, 1]) ⊂ ∂∆. Since yν lies in the
interior of ∆, we conclude that Φ(S(0, R) × [0, 1]) does not meet yν , and so using
the homotopy invariance again, we get that d(Φ(·, 1),B(0, R), yν ) = 1 and so the
equation Φ(v, 1) =

∫
proj∆(x) dµv(x) = yν admits at least one solution v ∈ B(0, R)

which completes the proof. �

Lemma 4.1. Under the preceding assumptions, if R is large enough, the map Φ defined
in (8) is such that Φ(S(0, R) × [0, 1]) ⊂ ∂∆.
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Proof. Recall that

∆ =

{
d∑

i=0

λiyi :
d∑

i=0

λi = 1, λ0, . . . , λd ≥ 0

}

.

For J a subset of {0, . . . , d} we denote by ∆J the set

∆J =

{
d∑

i=0

λiyi : ∀i ∈ J, λi = 0

}

⊂ ∆.

We denote by uj the outward normal unit vector of the facet ∆{j}. Recall that the relative
interior of a subset is the interior of this set in the topology induced by its affine span.
Every point of Rd whose projection belongs to the relative interior of ∆J can be written
in the form

∑

i/∈J λiyi +
∑

i∈J ξiui where the coefficients (λi)i/∈J are positive and satisfy
∑

i/∈J λi = 1 and the coefficients (ξi)i∈J are non-negative.
We prove now that for every r > 0, there exists R0 > 0 such that for all R ≥ R0 it holds

- ∆ is contained in B(0, R− r + 1),
- for every v ∈ S(0, R) there exists j ∈ {0, . . . , d} such that proj∆(B(v, r)) ⊂ ∆{j}.

Therefore if X ∼ µ with µ such that µ(B(0, r)) = 1 and v ∈ S(0, R), there exists j such
that the barycenter of (proj∆)#(Law(v + tX)) is in ∆{j} ⊂ ∂∆, which proves the claim.

Let us consider

g : x ∈ R
d \ ∆ 7→ (x− proj∆(x))/|x − proj∆(x)| ∈ S

d−1.

For our proof it is enough to find R such that for every x ∈ S(0, R) the range g(B(x, r))
only contains vectors of Sd−1 that are in the cones (CJ)J∋j, #J≤d for some j, where

CJ =

{

u ∈ R
d : u =

∑

i∈J

ξiui, ξi ≥ 0, ∀i ∈ J

}

.

In particular it does not intersect C{0,...,d}\{j}. Striving for a contradiction we assume that
there exists an increasing sequence Rn → ∞ and xn ∈ S(0, Rn) such that the property is
not satisfied. Therefore, for every n the sets g(B(xn, r)) ⊂ S

d−1 intersects for every j a
cone CJ with j ∈ J . However, the diameter of g(B(xn, r)) tends to zero. Up to selecting
a subsequence, the sequence converges in the Hausdorff topology to a compact set of
diameter zero, i.e a point {u∞} ⊂ S

d−1. We have u∞ ∈ CJ∞
for some J∞ ⊂ {0, . . . , d}. Let

j∞ be in J∞. We have also g(xn) → u∞ (up to a subsequence) and the fact that g is locally
Lipschitz with a constant that tends to zero at infinity tells us that the j∞ coordinate is
not zero in the cone coordinate u =

∑

j ξjuj for all the points u of g(B(xn, r)) ⊂ S
d−1

when n is great enough - a contradiction. �

5. Other examples and discussion of the literature

In this section, we briefly present and discuss other examples of optimal transport
problems involving weak cost functions.

(1) In [31, Theorem 1.5], it is shown that if µ, ν are probability measures on R having
finite first moments and if µ̄ ∈ Bν denotes the projection of µ on Bν as defined in
Proposition 1.1, then for any even convex cost function θ : R → R+, it holds

T θ(ν|µ) = inf
π∈C(µ,µ̄)

∫∫

θ(y − x) dπ(x, y),

where we recall that the barycentric optimal transport cost T θ(ν|µ) is defined by
(3). This result has been recently recovered and completed by Alfonsi, Corbetta
and Jourdain in [1], where an explicit expression is given for µ̄ (see [1, Proposition
3.4]).
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(2) In the recent paper [2] (see in particular the section 5.2 of [2]), Alibert, Bouchitté
and Champion consider the family of cost functions (cλ)λ≥0 defined for all x ∈ R

d

and p ∈ P(Rd) having a finite first moment by

cλ(x, p) = (λ− 1)

∫

|y − x|2 dp(y) +

∣
∣
∣
∣

∫

y dp(y) − x

∣
∣
∣
∣

2

and study the associated optimal transport problem:

T cλ
(ν|µ) = inf

π∈C(µ,ν)

∫

cλ(x, px) dµ(x)

(this quantity is denoted by Fλ(µ, ν) in [2]). It turns out that our Theorem 1.2
yields a full description of optimal couplings for these costs for λ > 0 (which
completes the somehow implicit characterization of [2, Theorem 5.6]). Namely, an
easy calculation reveals that if dπ(x, y) = dµ(x)dpx(y) ∈ C(µ, ν) where µ, ν are
compactly supported, then

∫

cλ(x, px) dµ(x) = C(λ) +

∫ ∣
∣
∣
∣

∫

y dpx/λ(y) − x

∣
∣
∣
∣

2

dµλ(x),

where C(λ) = −λ(λ − 1)
∫

|x|2 dµ(x) + (λ − 1)
∫

|y|2 dν(y) and µλ is the image
of µ under the map x 7→ λx. Since the kernel qx = px/λ, x ∈ R

d, is such that
ν( · ) =

∫
qx( · ) dµλ(x), we conclude that

T cλ
(ν|µ) = C(λ) + T 2(ν|µλ),

and p is optimal in T cλ
(ν|µ) if and only if q is optimal in T 2(ν|µλ). Moreover,

Theorem 1.2 yields that optimal kernels p are all of the form

px = r∇ϕλ(λx), with r such that

∫

y dru(y) = u, for µλ almost all u ∈ R
d,

where ϕλ is the C1 smooth convex function associated to the transport from µλ to
the projection µλ of µλ on Bν . In terms of random vectors, πλ = Law(Xλ, Yλ) ∈
C(µ, ν) is optimal for cλ if and only if E[Yλ|Xλ] = ∇ϕλ(λXλ) (which has distribu-
tion µλ).

(3) The case λ = 0 is also interesting since, in this case,

T c0(ν|µ) = − sup
π∈C(µ,ν)

∫

Var(px) dµ(x),

where as usual dπ(x, y) = dµ(x)dpx(y) and for all p ∈ P(Rd) having finite first

moment, Var(p) =
∫

|y|2 dp(y)−|
∫
y dp(y)|2 (note that this is a concave function of

p). In this case, as observed in [2], the unique optimal coupling π◦ is the product
one : π◦ = µ⊗ ν.

(4) As proved in [8, Proposition 5.2], the so-called shadow couplings are solutions to
a weak optimal transport problem. Shadow couplings from µ to ν are martingale
transport parametrised by a measure µ̂ with marginals λ and µ. Let (λx)x∈[0,1] be
a disintegration of µ̂ with respect to µ. Then

cµ̂(x, px) = inf

∫

(1 − u)
√

1 + y2 dα(u, y)

where the inf goes among all α with first marginal λx and second marginal px and
such that we have

∫
f(u)(y − x) dα(u, y) = 0 for every bounded f .

(5) Last but not least, let us mention that after the completion of this work, we learned
that a recent remarkable economics paper on optimal mechanisms for the multiple-
good monopoly problem shows interesting similarities with our context. In [17],
Daskalakis, Deckelbaum and Tzamos study the maximization problem among con-
vex coordinate-wise nondecreasing 1-Lipschitz potential functions defined on some
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d-dimensional rectangle. In their Theorem 2, they prove the strong duality be-
tween this problem and “strong” dual problem (for us a primal problem). This
problem is a transport problem with ℓ1-norm as cost function and the possibility
to replace µ and ν by µ′ and ν ′ with µ �c,sto µ

′ and ν ′ �c,sto ν.

6. Proofs

This section contains the proofs of Proposition 1.1 and Theorem 1.2 and of the technical
Lemma 2.1.

6.1. Proof of the existence and uniqueness of the projection. In what follows, we
will equip P2(Rd) with the topology generated by the metric W2. We recall (see e.g. [72,
Theorem 7.12]) that if (ηk)k≥1 is a sequence of elements of P2(Rd) and η ∈ P2(Rd), then
W2(ηk, η) → 0 if and only if

∫
f dηk →

∫
f dη for any continuous function f satisfying

|f |(x) ≤ a+ b|x|2, x ∈ R
d, for some a, b ≥ 0.

Proof of Proposition 1.1. Let us show that the set Bν is compact in P2(Rd) for the topol-
ogy induced by W2.

First, let us show that Bν is closed. Namely, Bν can be written as follows

Bν =

{

η ∈ P2(Rd) :

∫

f dη ≤

∫

f dν,∀f : Rd → R convex and Lipschitz

}

.

(The fact that one can restrict to convex and Lipschitz functions in the definition of the
convex order is classical ; one can see this by noting that if f is convex then fn : x 7→
infy∈Rd{f(y)+n|x−y|}, x ∈ R

d, is a sequence of n-Lipschitz convex functions converging to
f monotonically.) Since functionals η 7→

∫
f dη with f convex and Lipschitz are continuous

for the W2 topology, it follows that Bν is closed.
Now let us show that Bν is precompact. According to a variant of Prokhorov theorem

(see e.g. [33, Theorem 9.10]), this is equivalent to show that

sup
η∈Bν

∫

|x|21|x|>R dη(x) → 0

as R goes to ∞. Note that

|x|21|x|>R ≤ max(0; 2|x| −R)2, ∀x ∈ R
d.

The function on the right hand side being convex, one thus gets

sup
η∈Bν

∫

|x|21|x|>R dη(x) ≤

∫

max(0; 2|x| −R)2 dν(x) := ε(R).

The monotone convergence theorem then implies that ε(R) → 0 as R → +∞, which shows
that Bν is precompact.

It follows from what precedes that Bν is compact. The map η 7→ W2(η, µ) therefore
reaches its minimum on Bν .

Now let us prove that the minimizer is unique. This will follow from the strict convexity
of W 2

2 (µ, · ) along generalized geodesics with base point µ and from the convexity of the set
Bν along those generalized geodesics. More precisely, suppose that η0, η1 are in Bν and let
(X,Y0, Y1) be a random vector such that X ∼ µ, Y0 ∼ η0, Y1 ∼ η1 and so that Law(X,Yi) ∈
C(µ, ηi) and W 2

2 (µ, ηi) = E[|X − Yi|
2], i = 0, 1. Then define ηt = Law((1 − t)Y0 + tY1) for

all t ∈ [0, 1]. First note that ηt ∈ Bν for all t ∈ [0, 1]. Indeed, if f is a convex function on
R

d, it holds
∫

f dηt = E[f((1 − t)Y0 + tY1)] ≤ (1 − t)E[f(Y0)] + tE[f(Y1)] ≤

∫

f dν.

Moreover, according to Lemma 9.2.1 of [3], it holds

W 2
2 (µ, ηt) ≤ (1 − t)W 2

2 (µ, η0) + tW 2
2 (µ, η1) − t(1 − t)W 2

2 (η0, η1), ∀t ∈ [0, 1]
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So if W 2
2 (µ, η0) = W 2

2 (µ, η1) = infη∈Bν W
2
2 (µ, η), then necessarily η0 = η1, which shows

uniqueness.
Finally, let us show that T 2(ν|µ) = W 2

2 (µ̄, µ). First, let (X,Y ) be a coupling of µ and
ν and set X ′ = E[Y |X]. Since (X ′, Y ) is a martingale, it follows that Law(X ′) ∈ Bν .
Therefore E[|X − X ′|2] ≥ W 2

2 (µ, µ̄) and so optimizing gives T2(ν|µ) ≥ W 2
2 (µ, µ̄). On the

other hand, let π ∈ C(µ, η) be a coupling between µ and some η ∈ Bν . Since η �c ν,
one can construct a Markov chain (X,X ′, Y ) such that (X,X ′) ∼ π and (X ′, Y ) is a
martingale. Then it holds,

E[|X −X ′|2] = E[|X − E[Y |X,X ′]|2]

= E

[

E[[|X − E[Y |X,X ′]|2|X]
]

≥ E[|X − E[Y |X]|2] ≥ T 2(ν|µ),

where the inequality comes from Jensen inequality for conditional expectation. Optimizing
over X ′ and η gives that T2(ν|µ) ≤ W 2

2 (µ̄, µ) and completes the proof. �

Remark 6.1. Note that it is easy to conclude using similar arguments that there always
exists a deterministic map T transporting µ on µ̄ such that W 2

2 (µ, µ̄) =
∫

|x−T (x)|2 dµ(x).
Indeed, suppose that (X, X̄) is an optimal coupling for W 2

2 (µ̄, µ) and consider X ′ =
E[X̄|X]. Then, the conditional Jensen inequality gives

(9) E[|X −X ′|2] = E[|X − E[X̄ |X]|2] ≤ E[|X − X̄ |2] = W 2
2 (µ̄, µ).

Let η′ := Law(X ′). Then η′ �c µ̄ and µ̄ �c ν so η′ ∈ Bν. Therefore, E[|X − X ′|2] ≥
infη∈Bν W

2
2 (η, µ) = W 2

2 (µ̄, µ) and there is equality in (9). So X ′ = E[X̄ |X] ∼ µ̄ and
(X,X ′) is an optimal coupling. Finally, by definition of conditional expectation, there
exists a measurable T : Rd → R

d such that E[X̄ |X] = T (X) almost surely, which proves
the claim.

6.2. Proof of the main result. Our proof of Theorem 1.2 follows closely the scheme
developed by Gangbo [25] in his alternative proof of Brenier Theorem: first we show the
dual attainment, and then we obtain the existence of the transport map ∇ϕ by doing a
first variation around the minimizer f◦.

As explained in Remark 1.2, we will treat the case of probability measures with compact
supports and the general case separately. Only Items (a) and (b) of Theorem 1.2 are
concerned. The proof of Item (c) being identical in the compact and the general case it is
proved only once on page 24.

6.2.1. The compact case. In this section, we assume that µ and ν have compact supports.
In the following theorem we restate Theorem 1.2 (a) and (b) in this special case. In
comparison with Theorem 1.2 (a), note that in the compact case f◦ is always finite valued
and bounded from below.

Theorem 6.1. Let µ and ν be probability measures with compact support on R
d.

(a) There exists some convex function f◦ : Rd → R bounded from below such that

(10) T2(ν|µ) =

∫

Q2f
◦ dµ−

∫

f◦ dν,

where, for any function g : Rd → R,

Q2g(x) = inf
y∈Rd

{g(y) + |y − x|2}, x ∈ R
d.

If the supports of µ and ν are contained in the closed ball of radius R > 0 centered
at 0 then f◦ is 4R-Lipschitz.
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(b) Let h and ϕ be the convex functions defined by

h(x) =
f◦(x) + |x|2

2
, x ∈ R

d and ϕ(y) = h∗(y), y ∈ R
d.

The function ϕ is C1-smooth on R
d and the map ∇ϕ is 1-Lipschitz on R

d. The
projection µ̄ of µ on Bν is such that

µ̄ = ∇ϕ#µ.

Proof of Item (a) of Theorem 6.1. We will assume that µ and ν are supported in a closed
ball B of radius R > 0 centered at 0. Let α be the convex function on [0,∞) defined by

α(t) = t2 if t ∈ [0, 2R] and α(t) = 4Rt− 4R2 if t ≥ 2R.

and let θ(u) = α(|u|), for all u ∈ R
d. Since µ and ν are supported in B and we have the

duality statement Theorem 1.1 it is easily seen that

T 2(ν|µ) = T θ(ν|µ) = sup
g∈G

{∫

Qθg dµ −

∫

g dν

}

,(11)

where the supremum runs over the set G of convex functions g bounded from below.
Step 1 - Preparation. Let Pθ be the operator acting on functions defined as follows

Pθg(y) = sup
x∈Rd

{g(x) − θ(y − x)}, y ∈ R
d.

First, let us show that we can refine the duality formula (11) by modifying the class of
functions G as follows:

T 2(ν|µ) = sup
f∈F

{∫

Qθf dµ−

∫

f dν

}

,

where F is the subset of G of functions f which are convex, bounded from below, and
satisfy both f(0) = 0 and f = Pθ(Qθf). Indeed, let g be an element of G. Then, by
definition of Qθ, it holds

Qθg(x) − θ(y − x) ≤ g(y), ∀x, y ∈ R
d

and so g ≥ Pθ(Qθ(g)). Since Qθg is convex (as an infimum convolution of convex func-
tions), the function f defined by

f(y) = Pθ(Qθg)(y) = sup
u∈Rd

{Qθg(y − u) − θ(u)}, y ∈ R
d

is also convex as a supremum of convex functions and bounded from below because Pθ and
Qθ preserve this property. Moreover, it is easily seen that Qθf = Qθg and so Pθ(Qθf) = f .
Therefore,

∫

Qθg dµ−

∫

g dν ≤

∫

Qθf dµ−

∫

f dν =

∫

Qθ(f − f(0)) dµ −

∫

(f − f(0)) dν,

which shows that the duality formula can be restricted to functions f ∈ F .

Step 2 - Dual attainment. Now, let us show that there is some convex function f◦ satisfying
(10). First of all, if f ∈ F , then f is 4R-Lipschitz. This comes from the fact that

f(y) = sup
x∈Rd

{Qθf(x) − θ(y − x)}, ∀y ∈ R
d

which (the function y 7→ θ(y − x) being 4R-Lipschitz on R
d for every x ∈ R

d) shows that
f is a supremum of 4R-Lipschitz functions and is thus 4R-Lipschitz itself. Since f(0) = 0,
this implies in particular that |f | ≤ 20R2 on B′ = 5B (the ball of radius 5R centered at
0). Also, since f is 4R-Lipschitz, it holds

f(y) + |y − x|2 ≥ f(x) − 4R|y − x| + |y − x|2 ∀x, y ∈ R
d.



20 NATHAEL GOZLAN AND NICOLAS JUILLET

Therefore, f(y)+ |y−x|2 ≥ f(x) whenever |y−x| ≥ 4R. Since Q2f(x) ≤ f(x), this implies
that

Q2f(x) = inf
|y−x|≤4R

{f(y) + |y − x|2}, ∀x ∈ R
d.

Now, let fn ∈ F be some minimizing sequence. The functions fn are 4R-Lipschitz and
uniformly bounded on the ball B′. Therefore, it follows from Ascoli’s theorem that fn

admits a sub-sequence (still denoted fn in what follows) converging uniformly to some f◦

on B′. This function f◦ is convex on B′ as a pointwise limit of convex functions. It is
easily seen that Q2fn → Q2f

◦ (uniformly) on B. Since Q2fn ≥ Qθfn pointwise, it holds

T2(ν|µ) ≥

∫

Q2fn dµ−

∫

fn dν ≥

∫

Qθfn dµ−

∫

fn dν.

Since the right hand side goes to T2(ν|µ) and µ, ν are supported in B, letting n → ∞ yields
to (10). For the moment the convex function f◦ is defined only on B′ but it can be easily
extended outside B′ as follows: the function f̃(x) = infy∈B′{f◦(y) + 4R|x − y|}, x ∈ R

d,
is convex as an infimum convolution of two convex functions, and since f◦ is 4R-Lipschitz
it is easily seen that f̃ = f◦ on B′. We can thus assume that f◦ is a finite valued convex
and bounded from below function defined on the whole R

d. This completes the proof. �

In order to prove Item (b) of Theorem 6.1, we will need a technical lemma adapted
from [25, Lemma 2.4].

Lemma 6.1. Let f : Rd → R∪ {+∞} be a lower semi-continuous convex function and let

h(x) = f(x)+|x|2

2 , x ∈ R
d.

(a) The function h∗ is C1 smooth and it holds

(12) Q2f(x) = f(∇h∗(x)) + |∇h∗(x) − x|2, ∀x ∈ R
d.

(b) For all continuous function u : Rd → R such that u + f is convex and such that
u(x) ≥ −a|x| − b, x ∈ R

d, for some a, b ≥ 0 it holds

(13) lim
t→0+

Q2(f + tu)(x) −Q2(f)(x)

t
= u(∇h∗)(x), ∀x ∈ R

d.

Furthermore, there exist some α, β ≥ 0 such that

Q2(f + tu)(x) −Q2(f)(x)

t
≥ −α|x| − β, ∀x ∈ R

d, ∀t ∈]0, 1].

These conclusions also hold for uk = − min(f, k), k ∈ N in place of u (even though
uk is not necessarily continuous).

Let us admit the lemma until page 21 where the proof is postponed and first prove Item
(b) of Theorem 6.1.

Proof of Item (b) of Theorem 6.1. According to Item (a) of Lemma 6.1, the function ϕ =
h∗ is of class C1. The fact that ∇ϕ is 1-Lipschitz follows from Lemma 2.1. Set µ̃ = ∇ϕ#µ

and let us show that µ̃ = µ̄. First let us prove that µ̃ �c ν. Let u : Rd → R be some
arbitrary convex function. By optimality of f◦ it holds, for all t > 0,

∫

Q2(f◦ + tu) dµ −

∫

(f◦ + tu) dν ≤

∫

Q2(f◦) dµ −

∫

f◦ dν

Therefore, for all t > 0,
∫
Q2(f◦ + tu) −Q2(f◦)

t
dµ ≤

∫

u dν.
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Since u is bounded from below by some affine function it satisfies the assumption of Item
(b) of Lemma 6.1 and one concludes using Fatou’s Lemma that

∫

u(∇ϕ) dµ ≤

∫

u dν

for all convex function u : Rd → R. This shows µ̃ �c ν. In particular, one gets
∫
f◦ dµ̃ ≤

∫
f◦ dν. Actually, for this special function, equality holds. Indeed, the function u = −f◦

is Lipschitz according to Item (a) of Theorem 6.1 and such that f◦ + tu is convex for all
0 ≤ t ≤ 1. So it satisfies the assumptions of Item (b) of Lemma 6.1. Reasoning as above
gives us

∫
f◦ dµ̃ ≥

∫
f◦ dν, which shows equality. Therefore,

T 2(ν|µ) =

∫

Q2f
◦ dµ−

∫

f◦ dν

=

∫

f◦(∇ϕ(x)) + |∇ϕ(x) − x|2 dµ(x) −

∫

f◦(y) dν(y)

=

∫

|∇ϕ(x) − x|2 dµ(x)

≥ W 2
2 (µ̃, µ).

Finally, if η �c ν, then

T 2(ν|µ) = sup
g convex

{∫

Q2g dµ−

∫

g dν

}

≤ sup
g convex

{∫

Q2g dµ−

∫

g dη

}

≤ W 2
2 (µ, η),

where the last inequality follows easily from the inequality Q2g(x) − g(y) ≤ |y − x|2,
x, y ∈ R

d. In particular taking η = µ̃ shows that

T 2(ν|µ) = W 2
2 (µ̃, µ) = inf

η�cν
W 2

2 (η, µ)

and completes the proof. �

Now let us prove Lemma 6.1.

Proof of Lemma 6.1. Let u : Rd → R be a function such that u + f is convex and lower
semi-continuous and u(x) ≥ −a|x|−b, x ∈ R

d, for some a, b ≥ 0. Note that for the moment
u is not necessarily continuous.
(a) For all t ∈ [0, 1], let ht be the lower semi-continuous function defined by

ht(x) =
1

2

(

(1 − t)f(x) + t(u(x) + f(x)) + |x|2
)

, x ∈ R
d,

with thus h0 = h. Applying Lemma 2.1 to g = ht gives that h∗
t is of class C1 on R

d and
∇h∗

t is 1-Lipschitz. Moreover,

Q2(f + tu)(x) = inf
y∈Rd

{f(y) + tu(y) + |x− y|2}

= |x|2 − 2 sup
y∈Rd

{x · y − ht(y)} = |x|2 − 2h∗
t (x)

and one sees that y is optimal if and only if x · y = ht(y) +h∗
t (x), that is to say if and only

if y ∈ ∂h∗
t (x) = {∇h∗

t (x)} (see e.g [36, Corollary E 1.4.4]). So it holds, for all t ∈ [0, 1]

(14) Q2(f + tu)(x) = f(∇h∗
t (x)) + tu(∇h∗

t (x)) + |x− ∇h∗
t (x)|2, ∀x ∈ R

d,

which gives in particular (12) for t = 0.
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(b) Observe that, according to (12), it holds

Q2(f + tu)(x) = inf
y∈Rd

{(f + tu)(y) + |x− y|2}

≤ (f + tu)(∇h∗(x)) + |x− ∇h∗(x)|2

= Q2f(x) + tu(∇h∗(x))

and so

(15)
Q2(f + tu)(x) −Q2f(x)

t
≤ u(∇h∗(x)), ∀x ∈ R

d,∀t ∈ (0, 1].

Similarly, using (14), one easily gets

(16)
Q2(f + tu)(x) −Q2f(x)

t
≥ u(∇h∗

t (x)), ∀x ∈ R
d,∀t ∈ (0, 1].

Let us show that for any fixed x ∈ R
d, ∇h∗

t (x) → ∇h∗(x) as t → 0+. The function f being
convex it is bounded from below by some affine function. Using the lower bound on u, it
is easily seen that there exist some constants c, c′ ≥ 0, such that

f(y) + tu(y) ≥ −c|y| − c′, ∀y ∈ R
d.

Therefore, since Q2(f + tu)(x) ≤ f(x) + tu(x) ≤ |f |(x) + |u|(x), Identity (14) gives that

|f |(x) + |u|(x) ≥ −c|∇h∗
t |(x) − c′ + |x− ∇h∗

t (x)|2.

Therefore, supt∈[0,1] |∇h∗
t |(x) < +∞. It follows that if tn ∈ (0, 1] is some sequence con-

verging to 0, the sequence ∇h∗
tn

(x) admits a subsequence (still denoted ∇h∗
tn

(x) for sim-
plicity) converging to some ℓ(x). According to (15) and (16) and the lower bound on u,
Q2(f + tnu)(x) → Q2f(x). On the other hand,

(17) Q2(f + tnu)(x) = f(∇h∗
tn

(x)) + |x− ∇h∗
tn

(x)|2 + tnu(∇h∗
tn

(x))

and so taking the lim inf, it is easily seen (using the lower bound on u) that

lim inf
n→+∞

Q2(f + tnu)(x) ≥ lim inf
n→+∞

f(∇h∗
tn

(x)) + |x− ℓ(x)|2 ≥ f(ℓ(x)) + |x− ℓ(x)|2.

So we get Q2f(x) ≥ f(ℓ(x)) + |x− ℓ(x)|2 and thus Q2f(x) = f(ℓ(x)) + |x − ℓ(x)|2 which
implies according to the proof of Item (a) that ℓ(x) = ∇h∗(x). It follows that ∇h∗(x) is the
unique limit point of the family (∇h∗

t (x))t∈(0,1] when t → 0+, and so ∇h∗
t (x) → ∇h∗(x)

as t → 0+. To prove (13), let us discuss the different cases.

• If u is continuous, then taking the limit in (15) and (16) gives (13).
• If u = − min(f ; k) for some k ∈ N, then u + f = max(0; f − k) is clearly convex

and lower semi-continuous and u ≥ −k. Also, since f is lower bounded by some
affine function, the function u is bounded from above by a function of the form
x 7→ e|x| + e′, for some e, e′ ≥ 0. Therefore, if tn → 0, then tnu(∇h∗

tn
(x)) → 0 and

so, taking the limit in (17), one easily gets that sees that f(∇h∗
tn

(x)) → f(∇h∗(x))
and so, by definition of u, u(∇h∗

tn
(x)) → u(∇h∗(x)) as n → +∞. Taking the limit

in (15) and (16) gives (13) as above.

Finally, in both cases, since x 7→ ∇h∗
t (x) is 1-Lipschitz, (16) gives that

Q2(f + tu)(x) −Q2f(x)

t
≥ u(∇h∗

t (x)) ≥ −a|∇h∗
t (x)| − b ≥ −a|x| − a|∇h∗

t (0)| − b

and since supt∈[0,1] |∇h∗
t |(0) < +∞ this completes the proof. �
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6.2.2. Proof of Theorem 1.2 in the general case. We follow the same path as before and
first show the existence of a dual optimizer. As explained in Remark 1.2, another proof
has been proposed in [5]. It relies on the fact that Theorem 1.2 on measures with finite
second moments can be built by starting from Theorem 6.1 on compact measures.

Proof of Item (a) of Theorem 1.2. First let us justify that
∫
Q2f dµ is finite for any lower

semi-continuous convex function f : R
d → R ∪ {+∞} such that f is integrable with

respect to ν. Indeed, selecting some yo such that f(yo) is finite one first get that Q2f(x) ≤
f(yo) + |yo − x|2, x ∈ R. On the other hand, the function Q2f is convex on R

d as an
infimum convolution of two convex functions, therefore it is bounded from below by some
affine function. Since µ ∈ P2(Rd), this shows that Q2f is integrable with respect to µ.

Without loss of generality we assume that
∫
x dν(x) = 0. According to [33, Theorem

2.11 (3)],

T 2(ν|µ) = sup
f

{∫

Q2f dµ−

∫

f dν

}

,

where the infimum runs over the set of convex functions which are Lipschitz and bounded
from below. Without loss of generality one can also impose that f(0) = 0. Let (fn)n∈N be
a maximizing sequence and let gn = Q2fn. Note that, since fn is convex, gn is also convex
as an infimum convolution of two convex functions.

Let us show that for all x ∈ R
d, the sequence gn(x) is bounded. First of all, observe

that, for all n, it holds (choosing y = 0)

(18) gn(x) = Q2fn(x) = inf
y∈Rd

{fn(y) + |y − x|2} ≤ |x|2, ∀x ∈ R
d,

which shows that for all x ∈ R
d, the sequence gn(x) is bounded from above. On the

other hand, since |x|2 − gn(x) = supy∈Rd{2x · y − (fn(y) + |y|2)}, it follows that the

function |x|2 − gn(x) is convex as a supremum of convex functions. Therefore, denoting
by bµ =

∫
x dµ, Jensen inequality yields

∫

|x|2 − gn(x) dµ(x) ≥ |bµ|2 − gn(bµ)

and so

gn (bµ) ≥ |bµ|2 −

∫

|x|2 dµ(x) +

∫

gn(x) dµ(x).

Now, observe that
∫
gn dµ ≥

∫
gn dµ−

∫
fn dν, since according to Jensen inequality it holds

∫

fn dν ≥ fn

(∫

x dν

)

= fn(0) = 0.

Since the sequence
∫
gn dµ−

∫
fn dν converges to T 2(ν|µ) it is bounded from below. This

implies that the sequence gn(bµ) is also bounded from below. Now let x be an arbitrary
point in Rd and write bµ = 1

2x+ 1
2(2bµ − x), then the convexity of gn and (18) yield

gn(bµ) ≤
1

2
gn(x) +

1

2
gn(2bµ − x) ≤

1

2
gn(x) +

1

2
|2bµ − x|2

and so the sequence gn(x) is bounded from below.
The sequence of convex functions gn thus satisfies the following boundedness properties:

−∞ < inf
n∈N

gn(x) and sup
n∈N

gn(x) < +∞, ∀x ∈ R
d.

According to [60, Theorem 10.9 (p.90)], it is possible to extract a subsequence from gn

(that we will still denote by gn) which converges pointwise to a convex function g : Rd → R

(the convergence is also uniform on every compact set, but this will not be needed in the
sequel).
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According to (18), gn(x) ≤ |x|2 and
∫

|x|2 dµ < +∞, so on the one hand Fatou’s lemma
yields

lim sup
n→+∞

∫

gn dµ ≤

∫

lim sup
n→+∞

gn dµ =

∫

g dµ < +∞.

On the other hand,

(19) fn(x) ≥ gn(y) − |y − x|2, ∀x, y ∈ R
d.

Since for a fixed yo, the sequence gn(yo) is bounded from below and
∫

|yo−x|2 dν(x) < +∞,
Fatou’s lemma provides

lim inf
n→+∞

∫

fn dν ≥

∫

lim inf
n→+∞

fn dν.

Moreover, taking the lim inf in (19) and then optimizing over y ∈ R
d gives

lim inf
n→+∞

fn(x) ≥ P2g(x) = sup
y∈Rd

{g(y) − |y − x|2}, ∀x ∈ R
d.

Finally,

T 2(ν|µ) = lim sup
n→+∞

(∫

gn dµ−

∫

fn dµ

)

≤ lim sup
n→+∞

∫

gn dµ− lim inf
n→+∞

∫

fn dµ

≤

∫

g dµ−

∫

P2g dν.

Let f◦ be the function x 7→ P2g(x) = supu∈Rd{g(x+u) − |u|2} ∈ R∪ {+∞}, x ∈ R
d. This

function is convex and lower semi-continuous as a supremum of convex and continuous
functions. Since g(x) ≤ f◦(y) + |y − x|2 for all y ∈ R

d, optimizing over y ∈ R
d yields

g ≤ Q2f
◦. Therefore,

∫

Q2f
◦ dµ −

∫

f◦ dν ≥ T 2(ν|µ),

which completes the proof. �

Proof of Item (b) of Theorem 1.2. The beginning of the proof of Item (b) of Theorem 6.1
can be repeated exactly as before and yields to the conclusion that µ̄ := ∇ϕ#µ �c ν. This
shows in particular that

∫
f◦ dµ̄ ≤

∫
f◦ dν. To show that this is actually an equality, it

is no longer possible to take u = −f◦, since the function f◦ is not necessarily Lipschitz.
Instead, let us take uk = − min(f◦; k). The function uk is such that f◦ + tuk is convex
for all t ∈ [0, 1], so it is admissible to perform first variation in the optimization problem.
Applying Lemma 6.1 and reasoning as in the proof of Theorem 6.1, one sees that

∫
f◦ dµ̄ ≥

∫
min(f◦, k) dµ̄ ≥

∫
min(f◦, k) dν. Letting k go to +∞ gives the desired equality. The

rest of the proof remains unchanged. �

Proof of Item (c) of Theorem 1.2. Since the probability µ̄ given by Proposition 1.1 is dom-
inated by ν for the convex order, Strassen Theorem implies that there exists a trans-
port kernel q such that

∫
y dqx(y) = x for µ̄ almost every x and ν( · ) =

∫
qx( · ) dµ̄(x).

Let (X, X̄, Y ) be a time inhomogeneous Markov chain with initial distribution µ and
Law(X̄ |X) = δ∇ϕ(X) and Law(Y |X̄) = qX̄ almost surely, where ∇ϕ is the transport map
given in Theorem 1.2. Then it holds

E[|E[Y |X] −X|2] = E

[∣
∣
∣
∣E

[∫

y dqX̄(y)|X

]

−X

∣
∣
∣
∣

2
]

= E

[∣
∣
∣
∣

∫

y dq∇ϕ(X)(y) −X

∣
∣
∣
∣

2
]

= E

[

|∇ϕ(X) −X|2
]

= W 2
2 (µ̄, µ) = T 2(ν|µ),

where the last two equalities come respectively from (5) and Proposition 1.1. This shows
the optimality of (X,Y ).
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Now let dπ(x, y) = dµ(x)dpx(y) be the law of the coupling (X,Y ) constructed above
(with therefore dpx(y) = dq∇ϕ(x)(y)) let dπ′(x, y) = dµ(x)dp′

x(y) be another weak optimal
transport plan, then
∫ ∣
∣
∣
∣

∫

y d

(
px + p′

x

2

)

(y) − x

∣
∣
∣
∣

2

dµ(x) ≤

∫
|
∫
y dpx(y) − x|2 + |

∫
y dp′

x(y) − x|2

2
dµ(x) = T 2(ν|µ).

By optimality and strict convexity of | · |2 we deduce that
∫
y dpx =

∫
y dp′

x for µ-almost
every x. In other words, E[Y ′|X ′ = u] = E[Y |X = u] = ∇ϕ(u) for µ almost every u ∈ R

d.
So if (X ′, Y ′) is a weak optimal coupling, one has E[Y ′|X ′] = ∇ϕ(X ′) almost surely. In
particular E[Y ′|X ′] ∼ µ̄. The fact that (E[Y ′|X ′], Y ′) is a martingale is always true. �

6.3. Proof of the technical Lemma 2.1. For the sake of completeness, we recall the
proof of this classical duality result for strongly convex functions.

Proof of Lemma 2.1. Let us show that (a) implies (b). First let us show that g∗ is finite
valued. If xo is some point where g(xo) < +∞, then it holds g∗(y) = supx∈Rd{x·y−g(x)} ≥
xo · y − g(xo). This shows that g∗ does not take the value −∞. On the other hand, the

function f(x) = g(x) − |x|2

2 , x ∈ R
d, is convex by assumption. So there exists some

a ∈ R
d and b ∈ R such that f(x) ≥ a · x + b for all x ∈ R

d. It follows from this that

g(x) = f(x) + |x|2

2 ≥ a · x+ b+ |x|2

2 , x ∈ R
d, which easily implies that g∗(y) < +∞ for all

y ∈ R
d. Since g = f + | · |2

2 with f convex, it follows from e.g. [36, Theorem E.2.3.1] that
the convex conjugate of g is given by

g∗(y) = inf
x∈Rd

{

f∗(x) +
|y − x|2

2

}

=
|y|2

2
− sup

x∈Rd

{

x · y −

(

f∗(x) +
|x|2

2

)}

The function defined by the supremum being clearly convex, it follows that y 7→ |y|2

2 −g∗(y)

is convex on R
d, which shows (b). Conversely, let us show that (b) ⇒ (a). Let k(y) =

|y|2

2 − g∗(y), y ∈ R
d, which is convex by assumption. By Fenchel-Legendre duality (see e.g

[36, Corollary E 1.3.6]), it holds

g(x) = sup
y∈Rd

{x · y − g∗(y)} = sup
y∈Rd

{

x · y −
|y|2

2
+ k(y)

}

, ∀x ∈ R
d

and so

g(x) −
|x|2

2
= sup

y∈Rd

{

k(y) −
|x− y|2

2

}

= sup
u∈Rd

{

k(x− u) −
|u|2

2

}

∀x ∈ R
d.

The function x 7→ g(x) − |x|2

2 is therefore convex as a supremum of convex functions.
Now let us show that (a) implies (c). We have already seen above that g∗ is finite valued

over Rd. Since g = f+ | · |2

2 with f convex, the function g is also strictly convex. Therefore,

according to e.g [36, Theorem E 4.1.1], it follows that g∗ is of class C1 on R
d.

It remains to prove that ∇g∗ is 1-Lipschitz. Since the function x 7→ g(x)− |x|2

2 is convex,
its subgradient is a monotone operator, which means that

(b− a) · (y − x) ≥ |y − x|2, ∀x, y ∈ R
d, ∀b ∈ ∂g(y), ∀a ∈ ∂g(x).

Since u ∈ ∂g(v) is equivalent to v ∈ ∂g∗(u) = {∇g∗(u)} (see e.g. [36, Corollary E 1.4.4]
and [36, Corollary D 2.1.4]), the statement above is equivalent to

(∇g∗(b) − ∇g∗(a)) · (b− a) ≥ |∇g∗(b) − ∇g∗(a)|2, ∀a, b ∈ R
d,

which immediately implies that ∇g∗ is 1-Lipschitz. Finally, let us show that (c) implies
(b). Since ∇g∗ is 1-Lipschitz, it holds

(∇g∗(y) − ∇g∗(x)) · (y − x) ≤ |y − x|2, ∀x, y ∈ R
d,



26 NATHAEL GOZLAN AND NICOLAS JUILLET

which easily implies that x 7→ |x|2

2 − g∗(x) is convex. This completes the proof. �
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[23] D. Feyel and A. S. Üstünel. Monge-Kantorovitch measure transportation and Monge-Ampère equation
on Wiener space. Probab. Theory Related Fields, 128(3):347–385, 2004. 2

[24] A. Figalli and L. Rifford. Mass transportation on sub-Riemannian manifolds. Geom. Funct. Anal.,
20(1):124–159, 2010. 2

[25] W. Gangbo. An elementary proof of the polar factorization of vector-valued functions. Arch. Rational
Mech. Anal., 128(4):381–399, 1994. 18, 20

[26] W. Gangbo and R. J. McCann. The geometry of optimal transportation. Acta Math., 177(2):113–161,
1996. 2, 8

[27] N. Ghoussoub, Y.-H. Kim, and T. Lim. Structure of optimal martingale transport plans in general
dimensions. ArXiv e-prints, page arXiv:1508.01806, Aug. 2015. 6



ON A MIXTURE OF BRENIER AND STRASSEN THEOREMS 27

[28] N. Gigli. On the inverse implication of Brenier-McCann theorems and the structure of (P2(M), W2).
Methods Appl. Anal., 18(2):127–158, 2011. 2, 4

[29] N. Gigli, T. Rajala, and K.-T. Sturm. Optimal maps and exponentiation on finite-dimensional spaces
with Ricci curvature bounded from below. J. Geom. Anal., 26(4):2914–2929, 2016. 2
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Probab. Stat., 52(4):1823–1843, 2016. 6

[46] H. G. Kellerer. Markov-Komposition und eine Anwendung auf Martingale. Math. Ann., 198:99–122,
1972. 2

[47] H. G. Kellerer. Integraldarstellung von Dilationen. In Transactions of the Sixth Prague Conference on
Information Theory, Statistical Decision Functions, Random Processes (Tech. Univ., Prague, 1971;
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