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Abstract—With the advent of Cloud Computing, the size of
datacenters is ever increasing and the management of servers
and their power consumption and heat production have become
challenges. The management of the heat produced by servers has
been experimentally less explored than the management of their
power consumption. It can be partly explained by the lack of
a public testbed that provides reliable access to both thermal
and power metrics of server rooms. In this paper we propose
SeDuCe, a testbed that targets research on power and thermal
management of servers, by providing public access to precise
data about the power consumption and the thermal dissipation
of 48 servers integrated in Grid’5000 as the new ecotype cluster.
We present the chosen software and hardware architecture for
the first version of the SeDuCe testbed, highlighting its current
limitation and proposing some improvements that will increase
its relevance.

Keywords–Datacenters; Scientific testbed; Thermal manage-
ment; Power management; Green computing.

I. INTRODUCTION

The advent of web sites with a global audience and the de-
mocratization of Cloud Computing have led to the construction
of datacenters all over the world. Datacenters are facilities that
concentrate from a few servers up to hundreds of thousands of
servers hosted in rooms specially designed to provide energy
and cooling for the servers. These facilities are widely used
for applications such as the hosting of web services or High
Perfomance Computing.

In recent years, the size of datacenters is ever increasing,
which leads to new challenges such as designing fault tolerant
software to manage at large scale the servers and energy
management of server rooms. On the latter challenge, many
research efforts have been conducted [1] [2], most of them
focusing on the implementation of on demand power man-
agement systems, such as Dynamic voltage scaling (DVFS)
[3] [4] and vary-on vary-off (VOVO) [5] [6]. Some work
has been made to extend existing scientific testbeds with
power monitoring of experiments : for example Kwapi [7]
enables researchers to track the power consumption of their
experiments conducted on Grid’5000.

On the other hand, the thermal management of servers
has been less explored, a large part of the existing work
considering only simulations [8]. This can be explained, partly,
by the difficulty of conducting experiments involving thermal
monitoring of servers : to ensure that data recorded experimen-
tally is valid, experimentions must be conducted on a testbed
that contains many temperature sensors, not only positionned
on cooling systems, but also at the front and the back of each
server of racks.

In addition, such a testbed must enable reproducible ex-
perimentations, by providing its users with a full control on
experimental conditions of their experiments and by exposing
its data in a non misleading way, via a well documented API
(Application Programming Interface).

Finally, as power management and temperature manage-
ment of servers are related problems [9], there is a need for a
testbed that enables users to access to both thermal and power
data of servers.

As far as we know, there is no public testbed that enables
researchers to work on both power and thermal aspects of
servers functionning. The objective of the SeDuCe project is
to propose such a testbed : SeDuCe testbed enables its users
to use, in the context of the ecotype cluster integrated in the
Grid’5000 infrastructure [10], 48 servers located in 5 airtight
racks with a dedicated central cooling system (CCS) positioned
inside one of the rack. In parallel of conducting the experiment
by leveraging the tools provided by Grid’5000, users can get
access to thermal and power data of the testbed via a web portal
and a user-friendly API. Stability of experimental conditions is
guaranteed by hosting the testbed in a dedicated room equipped
with a secondary cooling system (SCS) that enables a precise
thermo-regulation of the environment outside the cluster. As
resources of the testbed are made publicly available via the
Grid’5000 infrastructure, all its users will be able to perform
reproducible research on thermal and power management of
servers.

II. TESTBED DESIGN

A. Ecotype : a Grid’5000 cluster dedicated to the study of
power and thermal management of servers

We have built the ecotype cluster, which is composed of
48 servers and has been designed for research related to power
and thermal management in datacenters. The ecotype cluster is
integrated in the Grid’5000 infrastructure and is made available
to any of its users : they can reserve servers of the ecotype
cluster and conduct experiments on them by using the usual
Grid’5000 tools. Meanwhile they can access in real time to
information regarding the temperature of the servers involved
in their experiments, and get the power consumption of any
parts of the testbed (servers, switches, cooling systems, ...).

Each server of the ecotype cluster is a DELL PowerEdge
R630 that contains a pair of Intel Xeon E5-2630L v4 CPUs (10
cores, 20 threads per CPU), 128GB of RAM, and 400GB SSD.
The CPUs have been designed to have a power consumption
that is lower than other CPUs of the XEON 26XX serie, with a
thermal design power (TDP) of 55W. Each server is connected



via two 10GBe links to the Grid’5000 production network, and
via a single 1GBe link to the Grid’5000 management network.
Additionally, each server is certified to work in environments
where temperature can be up to 35°C.

The cluster is composed of 5 Racks (Z1, Z2, Z3, Z4,
Z5) and, as shown on Figure 1, one rack (Z3) is in charge
of cooling the cluster by hosting a dedicated central cooling
system (CCS), while remaining racks are computing racks and
are dedicated to hosting servers.

As depicted by Figure 1, computing racks host 12 servers,
following two layouts of server positions : one layout where
servers are organised in a concentrated way with no vertical
space between servers (Z1 and Z2), and a second layout where
servers are spaced at 1U intervals (Z4 and Z5).

We have deliberately chosen to use these two layouts : they
will enable to study the impact of a layout on the temperature
and the power consumption of servers.

In addition to servers, the cluster contains three network
switches that are in charge of connecting servers to production
and management networks of the Grid’5000 testbed. Three
racks (Z2, Z4, Z5) are hosting each a network switch.

The cluster has also been designed to leverage “Schneider
Electric IN-ROW” racks that create an inside airtight environ-
ment for servers, and guarantee that the environment outside
the cluster has a limited impact on temperatures inside the
racks. The temperature inside the cluster is regulated by central
cooling system (CCS), connected to a dedicated management
network, which implements an SNMP service that enables to
remote control the cooling and to access its operating data.

In addition, the temperature outside the cluster is regulated
by a secondary cooling system (SCS) which is mounted from
the ceiling of the server room : the SCS is in charge of
maintaining a constant temperature in the server room.

Finally, we have installed Airflow management panels
between servers, in order to separate the air of the hot aisle
from the air of the cold aisle.

B. Power Monitoring

Each element composing the cluster (servers, network
switches, fans, condensators, ...) is electrically monitored, and
its power consumption is recorded every second in a database.

Electrical plugs of servers and network switches are con-
nected to power distribution units (PDUs), which in turn share
power consumption of servers and network switches via a
dedicated service network. Each computing racks contains two
PDUs, and each server of a computing rack has two electrical
plugs. As depicted in Figure 2, the electrical plugs of a server
are connected to two different PDUs, which enables servers to
have electrical redundancy. The power consumption of each
plug of a server can be fetched by issuing an SNMP request
to the PDU it is connected.

In a similar way, energy consumption of the CCS can be
fetched by requesting its SNMP service. This SNMP service
is able to provide an overall power consumption of the CCS
and also the power consumption of each internal part such as
the condensator or the fans. The SCS does not implement any
built-in networking access, and thus cannot share its metrics
with any component over a network. To solve this problem, we

Figure 1. Layout of the ecotype cluster (front view)
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Figure 2. Back view of a server rack

instrumented several parts of the SCS by using a Fluksometer 1

: a Fluksometer is a connected device that can monitor several
electrical metrics (power consumption, voltage, amperage, ...)
and expose their values over a network via a web-service.

Finally, we have added an additional system that tracks
overall power consumption of both servers and the CCS. This
additional system is based on the Socomec G50 metering
board 2, an electronic board that can measure in real time
the power consumption of several electrical plugs. We use the
Socomec G50 for checking that the aforementioned source of
power consumption data are sound. These additional metrics
are fetched by using the modbus protocol.

1https://www.flukso.net/about
2https://www.socomec.com/range-communication-interfaces en.html?

product=/diris-g en.html



C. Temperature Monitoring

In order to track the thermal behavior of the ecotype cluster,
each server is monitored by a pair of temperature sensors : one
sensor is positioned at the front of the server (in the cold aisle)
and another sensor is positioned at the back of the server (in
the hot aisle).

As depicted by Figure 2, each temperature sensor is a
member of a bus (based on the 1wire protocol) connected to
a Scanner (implemented by using a wifi arduino) in charge of
gathering data from the temperature sensors of the bus. As the
front and the back of each server is monitored by temperature
sensors, computing racks have in total two Scanners and two
buses : a front bus for monitoring the cold aisle and a back bus
dedicated to the hot aisle. Scanners fetch temperatures from
their sensors at a frequency of one reading per sensor every
second.

For a first version of the SeDuCe testbed, we have chosen
to use the DS18B20 sensor, a temperature sensor produced by
“Maxim Integrated” 3 that costs approximately 3$. According
to the specifications provided by its constructor, this sensor
is able to provide a temperature reading every 750ms with a
precision of 0.5°C between -10 °C and 85 °C.

The key feature of the DS18B20 sensor is that it is able to
work as part of an 1wire bus. In the context of the SeDuCe
infrastructure, 12 DS18B20 sensors are connected together to
form an 1wire bus, and a Scanner, an nodeMCU arduino with
built-in wifi capabilities, fetches periodically their temperature
readings. The current version of the firmware used by Scanners
scans an 1wire bus every seconds, and then pushes temperature
data to a Temperature Registerer service, as illustrated in
Figure 3.

We also developed a contextualisation tool to generate
firmwares for the Scanners. It leverages the PlatformIO frame-
work to program a Scanner that pushes data to a web-service.
Using this contextualisation tool is simple : a developer needs
to define a program template in a language close to C language
and marks some parts of code with special tags to indicate
that these parts need to be contextualized with additional
information, such as initializing a variable with the ID of a
Scanner device or with the address of a remote web-service
(such as the one that will receive temperature records). The
contextualisation tool takes this program and a context as
input parameters, analyses the template program, and com-
pletes parts that requires contextualisation with information
provided in the context, which results in valid C language
source file. Then, the firmware is compiled and automatically
uploaded to Scanners via their serial ports. By leveraging this
contextualisation tool, we can remotely configure Scanners and
update their firmware.

D. Seduce portal

To help users to easily access power and thermal metrics
generated by the SeDuCe testbed, we developed a platform
that exposes publicly two components : a web portal 4 and a
documented API 5 (Application Programming Interface).

3https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
4https://seduce.fr
5https://api.seduce.fr/apidocs
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Figure 3. Architecture of the SeDuCe portal

As illustrated by Figure 3, the web portal and the API fetch
data from a time series database (TSDB) based on InfluxDB 6.
InfluxDB enables to store a large quantity of immutable time
series data in a scalable way. In the background, InfluxDB
creates aggregates of data by grouping periodically data from
a same series. These aggregated sets of data enable the web
portal to promptly load data used for visualization.

Two kind of components are in charge of inserting data
in the database : the Power consumption crawlers and the
Temperature Registerer. Power consumption crawlers are pro-
grams that are in charge of polling data from PDUs, Socomecs,
Fluksometer, the CCS and the SCS. In turn, this data is inserted
in the database. On the other hand, the Temperature Registerer
is a web service that receives temperature data pushed from
nodeMCU arduino devices, and inserts it in the database.

The web portal and the API are both written in Python
and leverage the “Flask” micro web framework. The API
component makes an extensive use of the Swagger framework
7 which automatises the generation of complete REST web
services and their documentations from a single description
file (written in JSON or YAML). This choice has enabled us
to focus on the definition and the implementation of the API,
by reducing the quantity of required boilerplate code.

All the components depicted in Figure 3 are implemented
as micro-services. Our system is able to register 200 metrics
per seconds with minimal hardware requirements (it is cur-
rently hosted on a single computer). In the case we add more
sensors to our testbed, it is likely that the existing components
would be sufficient. In the case that one of the component
would not be able to cope with the additional workload, it
would be easy to setup an high availability approach by using
a load balancer such as the Nginx web-server that can forward
requests to a pool of instances of the component.

III. EVALUATING THE DS18B20 SENSOR

In this section we evaluate the behaviour of the DS18B20
sensor in order to evaluate its fitness to the thermal measure-
ment of the heat dissipated by servers.

A. Experimental Setup
The performance evaluation of the DS18B20 can be made

regarding two criteria : the precision the temperature it reports,
and its response time. The precision of a sensor corresponds to
the difference between the reported temperature and the actual

6https://www.influxdata.com/
7https://swagger.io/



temperature (usually it is estimated by a calibrated reference
thermometer). On the other hand, the response time of a sensor
corresponds to the time taken by the temperature reported by
the sensor to converge to the reference temperature.

The evaluation of these two parameters requires an ex-
perimental environment and the definition of an experimental
protocol.

To ensure that the validation of the DS18B20 sensor
is based on reliable data, we used an Hart Scientific 7103
microbath which contained a silicon oil maintained at a spec-
ified homogeneous temperature. The temperature inside the
microbath was controlled by two thermometers (a PT100 probe
and a Hart Scientific 1502A). We conducted two experiments :
a first experiment to evaluate the precision of the temperatures
reported by DS18B20 sensors, and a second experiment to
evaluate the reaction time of DS18B20 sensors.

B. Sensor precision

Target Sensors

Sensor 1 Sensor 3 Sensor 3 Sensor 4 Sensor 5
10 °C 10.86 ± 0.05 10.24 ± 0.03 10.06 ± 0.06 10.91 ± 0.05 10.13 ± 0.02
20 °C 20.75 ± 0.00 20.00 ± 0.02 19.98 ± 0.05 20.86 ± 0.04 20.00 ± 0.00
30 °C 30.74 ± 0.04 29.93 ± 0.07 29.91 ± 0.06 30.82 ± 0.06 29.97 ± 0.06
40 °C 40.72 ± 0.05 39.81 ± 0.06 39.87 ± 0.05 40.77 ± 0.06 39.92 ± 0.07
50 °C 50.72 ± 0.05 49.75 ± 0.07 49.85 ± 0.06 50.75 ± 0.07 49.89 ± 0.08
60 °C 60.76 ± 0.03 59.76 ± 0.05 59.88 ± 0.03 60.79 ± 0.06 59.93 ± 0.06
70 °C 70.83 ± 0.06 69.79 ± 0.06 69.92 ± 0.06 70.86 ± 0.03 69.99 ± 0.04

TABLE I. Comparison of 5 DS18B20 sensors (mean temperature ± standard
deviation)

To evaluate the precision of DS18B20 sensors, we plunged
5 sensors into a silicon oil configured to be at a precise
target temperature. Once the temperature of the silicon oil is
stabilized, we measured the temperatures reported by the 5
DS18B20 sensors during 20 minutes. The target temperature
was initially set at 10 °C, and incrementally increased by steps
of 10 °C.

Table I summarizes the temperatures reported by DS18B20
sensors at each step of temperature.

First, it is noticeable that for each targeted temperature,
the average temperature reported by a DS18B20 sensor is in
a range of 1°C band around the target temperature. While this
value is higher than the 0.5°C advertised by the manufacturer,
it should be relativised : when the target temperature is set to
20°C the difference between the worst sensor and the reference
temperature is less than 5%, and at 50°C it becomes lower than
2%. These results should also be put in the perspective of the
price range of DS18B20 sensors (approximately 3$ per unit).

Second, it appears that for a given sensor, the difference
between the reported temperature and the reference tempera-
ture is stable for any temperature steps. Thus, by comparing
several temperature records of a DS18B20 sensor with those of
a reference thermometer (such as the one we used to stabilize
the silicon oil), it would be possible to modelise the difference
between the temperature reported by the sensor and the refer-
ence temperature. This would enable the implementation of a
calibration mechanism that will be in charge of correcting the
difference between the reported temperature and the reference
temperature.

C. Sensor reactivity
To evaluate the reaction time of DS18B20 sensors, we

plunged a single DS18B20 sensor from the ambient air at a
temperature of 23°C into a silicon oil at a temperature of 30°C.
We measured the time taken by the temperature reported by the
DS18B20 sensor to converge to the temperature reported by
the reference thermometer. Figure 4 plots these measurements.

The sensors takes about 10 seconds to stabilize at the
temperature reported by the reference thermometer. This delay
can be explained by the fact the DS18B20 sensor uses a “TO-
92” semiconductor package which leverages plastic to protect
its internal components from the external environment. This
plastic shield enables the sensor to be used in a wide range
of environments. However, the drawback is that it creates a
thermal inertia, as the heat has to first penetrate the plastic
shield before reaching the electronic part of the sensor.

This result indicates that DS18B20 are not suitable for
configurations where temperature can suddenly change as the
reactivity of the DS18B20 sensor is low. However, it appears
to be appropriate for cases where the temperature is already
stabilized and will only change smoothly, such as about a few
°C over tens of seconds, such as in the hot aisle of the cluster.

Figure 4. Reactivity of a DS18B20 plunged in a silicon oil at 30°C
temperature

IV. EXPERIMENTATION

To illustrate the potential of the SeDuCe platform, we
conducted an experiment that mixes energetic and thermal
monitoring. The goal of the experiment was to verify that the
data produced by the SeDuCe testbed is reliable, by designing
an experiment that will use both the thermal and the power
data produced by the testbed. These data would be used to
reproduce a scientifically validated observation, such as the
impact of idle servers on the power consumption and the
temperature of a server room.

Such experiment has been conducted in the past [9],
however as far as we know there is no public testbed that would
enable researchers to reproduce this result : by reproducing
this result on the SeDuCe testbed, we think that it would
demonstrate the soundness of our approach and the usefulness
of our testbed.

A. Description of the experiment
To illustrate the scientific relevance of our testbed, we

wanted to reproduce the observations made by third party
publication [9].



In [9], authors have highlighted an interesting fact : in a
datacenter idle servers (i.e. servers that are turned on while not
being used to execute any workload) have a significant impact
on power consumption and heat production. We decided to try
to reproduce this observation.

For this experiment, servers of the ecotype cluster are
divided in three sets of servers:

• Active servers: servers with an even number (ecotype-
2, ecotype-4, ..., ecotype-48) were executing a bench-
mark that generates a CPU intensive workload.

• Idle servers: a defined quantity (0, 6, 12, 18, 24
servers) of servers with an odd number (ecotype-1,
ecotype-3, ..., ecotype-47) was remaining idle.

• Turned-off servers: remaining servers were electrically
turned off.

and during one hour we recorded the power consumption
of the CCS and the average temperature in the hot aisle of the
ecotype cluster. The CPU intensive workload was based on the
“sysbench” tool : the goal was to stress CPUs of each servers,
resulting in an important power consumption and a bigger
dissipation of heat. To guarantee the statistical significance
of the measurements, each experimental configuration was
repeated 5 times, leading to a total number of 25 experiments.

We executed two sets of experiments : one with the SCS
turned-on (Figure 5) and the other while the SCS was turned
off (Figure 6). The objective of turning off the SCS was to
identify the impact of the SCS over the CCS.

B. Results

Figure 5 plots the cumulated power consumption of the
CCS and the average temperature in the hot aisle of the cluster
with the SCS enabled.

First, it is noticeable that as the number of idle nodes
increases, both the energy consumed by the SCS and the
temperature in the hot aisle of the rack increase. This can be
explained by the fact that an idle node consumes some energy
and produces some heat, which increases the workload of the
CCS.

The second element highlighted by Figure 5 is that the
impact of idle nodes is not linear : the red line representing
the CCS consumption follows an exponential pattern and the
blue line representing the average temperature in the hot aisle
follows a sigmoid pattern. The exponential pattern of the power
consumption of the CCS can be explained by the fact that
the heat produced by a given server has an impact on the
temperature of surrounding servers, which causes the creation
of “hot-spots”. These hot-spots are difficult to cool down, and
they increase the needs in terms of cooling. As the temperature
of hot spots is higher that the average temperature in racks,
when a sensors of the CCS detects an hot-spot, it leads the
CCS to work intensively and more frequently to reduce the
hot-spot. On the other hand, the sigmoid pattern of the average
temperature in the hot aisle is explained by the fact that
the CCS has its own monitoring of the temperature inside
racks, and when temperatures at the back of servers reach a
threshold, the CCS works more frequently and intensively to
make the average temperature back under a specific threshold,
thus attenuating the increase of the temperature in the hot aisle.

Figure 6 plots the cumulated power consumption of the
CCS and the average temperature in the hot aisle of the cluster
while the SCS is disabled. This figure highlights that the
power consumption of the CCS is lower when the SCS is
disabled. This can be explained by the fact that the SCS was
configured to maintain a temperature of 19 °C in the outside
room, which corresponds to the maximum temperature target
of the CCS : the outside air, by means of thermal conduction,
contributes to warm the air inside the racks at a temperature
that activates the CCS. As a consequence, it increases the needs
in term of cooling inside the cluster, leading to an higher power
consumption of the CCS.

This experimental campaign has shown that idle servers
have an important impact on the power consumption of cooling
systems and overall racks temperature, thus it confirms the
observation made in this publication [9].

Figure 5. Central cooling consumption and average temperature in the hot
aisle (SCS enabled)

Figure 6. Central cooling consumption and average temperature in the hot
aisle (SCS disabled)

C. Increasing the reactivity of temperature sensors
While being suitable for monitoring temperatures in the hot

aisle of our cluster, we have noticed that DS18B20 sensors
were experiencing difficulties track the sudden temperature
changes that occur in the cold aisle when CCS is active. Figure
7 compares a DS18B20 sensor and with several thermocouple
based sensors, one based on the Graphtec GL 220, and two
thermocouples based on the MAX31850K card, all positioned
in the cold aisle at the front of the “ecotype-42” server,
and recording temperatures during a typical instance of the
CCS workload. We used the GL 220 to define a reference
temperature in the cold aisle. At t=80s, the CCSs just finished
cooling the cold aisle, thus the temperature has reached its



Figure 7. Comparison between DS18B20 and thermocouples

lowest level and is going to increase. The CCS restarts to
cool the cluster at t=180s. It is noticeable that the temperature
measured by the thermocouple based sensor drops significantly
after few seconds, while the DS18B20 sensor measures a
temperature that is falling gradually over a hundred of seconds.
Even worse, we can see at t=430s that the minimal temperature
measured by the DS18B20 sensor does not correspond to
the minimal temperature reported by the thermocouple based
sensors, but rather to the intersection between its decreasing
measured temperature and the increasing temperature mea-
sured by thermocouples. We explain this observation by the
thermal design of the DS18B20 : as stated in Section III-C
it leverages the “TO-92” semiconductor package which leads
to a significant thermal inertia in air environment. On the
other hand, thermocouple based sensors have a better reactivity
: they can reactively track the decrease of temperature. It
is also noticeable that the temperature reported by the two
MAX31850K board are very close to the reference temperature
reported by the GL 220. However, the two MAX31850K we
used were embedded on the ADA1727 board, manufactured
by Adafruit, which has a unit cost of 14.95$. In Section V we
will study an approach that enables to reduce the unit cost of
MAX31850K thermocouples.

V. FUTURE WORK

Figure 8. Prototype of the SeDuCe board

In Section IV-C, the potential of thermocouple based
sensors for reactive temperature measurements has been high-
lighted. For the second version of the SeDuCe testbed, we have
studied the replacement of DS18B20 sensors by thermocouple
sensors based on the MAX31850K which is compatible with
the 1wire protocol. However, the most popular electronic card
featuring the MAX31850K, the ADA1727 board manufactured
by Adafruit, costs 15$, which 5 times more expensive than the
DS18B20, and it only features a single thermocouple channel.

We have designed our own electronic board to reduce the
cost of using many thermocouple based sensors. Figure 8

depicts our SeDuCe board, which features 16 thermocouples
channels, based on 16 MAX31850K chips connected via an
1wire bus. We have added 2 lines of pin female headers for
pluggin a nodeMCU Arduino, and a micro USB port that
supplies the board and the Arduino with electricity.

VI. CONCLUSION

In this article we have presented our initial work on
building the SeDuCe testbed, which targets research related
to power and thermal management in datacenters. We have
described the architecture of the testbed, which is built on
buses of sensors, storage of power and thermal metrics in a
time series oriented database (InfluxDB) and an user friendly
web portal and a documented API. We have also detailed the
components used in this first version of the SeDuCe testbed,
and their limitations such as the lack of reactivity of the
DS18B20 sensor, a low cost temperature sensor that shows
its limits in situation where temperature changes suddendly.
However, this model of sensor remains relevant in a large
number of situations. Future work on this first version of the
SeDuCe testbed will mainly focus on evaluating more reactive
temperature sensors. We are thinking to replace all or a part
of the existing sensors by thermocouple based sensors, whose
main advantages are that they are more reactive and more
precise while remaining affordable.
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