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Recent experiments with film-coupled nanoparticles suggest that the impact of spatial dispersion is
enhanced in plasmonic structures where high wavevector guided modes are excited. More advanced
descriptions of the optical response of metals than Drude’s are thus probably necessary in plasmonics.
We show that even in classical prism coupler experiments, the plasmonic enhancement of spatial
dispersion can be leveraged to make such experiments two orders of magnitude more sensitive. The
realistic multilayered structures involved rely on layers that are thick enough to rule our any other
phenomenon as the spill-out. Optical evanescent excitation of plasmonic waveguides using prism
couplers thus constitutes an ideal platform to study spatial dispersion.

Spatial dispersion, i.e. the dependency of the permit-
tivity on the wavevector, arises in metals because of the
repulsive interaction between the free electrons inside the
jellium. This phenomenon puts a limit to the validity of
Drude’s model1, which has proven extremely accurate in
plasmonics for more than a century now. This success
can be related to the fact that Drude’s model is the zero-
th order term of all the more advanced descriptions of
the free electron gas2–6. The first-order correction to the
model, however, is intrinsically nonlocal: because of the
repulsion between free electrons, the metal can still be
described using an effective polarization, but the polar-
ization in a given point depends on the electric field in
the surroundings - at a typical distance close to the free
mean path of the electrons.

The idea that spatial dispersion could have an impact
on the optical response of metals and on surface plasmons
dates back to the 1960s. Very advanced models3,7, in-
cluding the hydrodynamic model2,4, have been proposed
at the time to tackle the problem. However, it became
clear in the 1980s that no optical experiment with no-
ble metals could show an impact of spatial dispersion
large enough to threaten the predominance of Drude’s
model in plasmonics with an optical excitation. While
spatial dispersion and more advanced models for surface
plasmons8–10 continued to be thoroughly studied in sur-
face science especially using EELS11–13, the consensus
seemed to be that Drude’s model is largely sufficient in
plasmonics5,14.

For many in this community, the experiments showing
Drude’s model failure with large enough nanoparticles
excited optically15,16 thus came as a surprise. These ex-
periments renewed the interest paid to the hydrodynamic
model17, which proved accurate enough, and to the en-
hancement of spatial dispersion brought by small gaps
between metals instead of relying on tiny particles18,19.
However, the sub-nanometer gaps required to observe the
impact of spatial dispersion raised some skepticism20,
all the more so that in that case the effects studied in
surface science, like the spill-out, are likely to intervene
strongly21–23. A lot of work has subsequently been de-
voted to (i) study theoretically in which situations spa-
tial dispersion is likely to have an impact24–27 (ii) develop
numerical tools based on the hydrodynamical model28–30

to accurately predict these effects in complex geometries
and finally (iii) to better understand the fundamental
reasons why the hydrodynamic model, while it presents
well documented deficiencies31, seems accurate enough
for noble metals in plasmonics32,33.

Here we propose to use the classical prism-coupler
configuration10,34 to excite high wavevector plasmonic
modes, in order to enhance the effects of spatial disper-
sion alone. We predict, relying on the hydrodynamic
model and accurate material parameters, that the im-
pact of spatial dispersion will be two orders of magni-
tude larger than what can be reached with simple sur-
face plasmons. The plasmonic resonances excited can
be linked to the excitation of Gap-Plasmons26,35 (GP),
Long-Range Surface Plasmons (LRSP) and Short-Range
Surface Plasmons19,36–38(SRSP) supported by multilay-
ered structures with dimensions that are large enough to
exclude other phenomenon like the spill-out23. Were such
experiments to be conducted, they should allow to mea-
sure accurately crucial parameters of the hydrodynamic
model.

Fig. 1 shows the prism-coupler structures for which the
coupling condition can be written as a relation between
the effective index neff = kx/k0 of a guided mode (char-
acterized by a wavevector kx at a frequency ω = k0c) to
the prism index np and angle of incidence at the prism
bottom interface θi

neff = npsin(θi) (1)

showing it is a way to measure the wavevector directly.
Any change in kx induced by spatial dispersion leads to a
discrepancy between the coupling angle predicted using
Drude’s model and taking nonlocality into account. We
underline however, as will be clear in the following, that
the change in the coupling angle is not the only change
brought by nonlocality.

In the hydrodynamic model5,17,26,32,33, the link the
electric field E in the metal to the induced electronic
current J is written as

−β2∇(∇.J) + J̈ + γJ̇ = ε0ω
2
pĖ (2)

ωp being the plasma frequency, ε0 the vacuum permit-
tivity and β the non-local parameter which describe the
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FIG. 1. Schematic representation of the prism couplers:
(a) resembles the Otto configuration, i.e a prism on top of
a metallic slab which ensures coupling to the gap-plasmon.
while(b) resembles the Kretschmann-Raether configuration,
i.e a prism on top of a dielectric layer through which the
guided modes of an IMI structure are coupled.

interactions between free electrons in metal. A special
attention must be paid to (i) the material parameters
– since our version of the hydrodynamic model makes
an explicit distinction between the response of free elec-
trons, considered as nonlocal, and the response of core
electrons, considered as purely local – and (ii) the nec-
essary additional boundary condition – here we impose
that no electron is allowed to leave the metal. For the ma-
terial parameters, we rely on a Brendel-Bormann model
that has been proven to be particularly accurate39. Fi-
nally, regarding parameters, several theoretical expres-
sions exist for the nonlocal parameter β. We use a value
of β = 1.35 × 106 m.s−1 coming from the best available
experimental data16. We use this value to assess whether
nonlocality can have an impact on the optical response,
but we stress that the setups we proposes actually con-
stitute a way to measure this crucial parameter.

The reflectance of the structures is computed using
Moosh, an open code40 that is able to take spatial dis-
persion into account in the framework of the hydrody-
namic model through the use of a specifically designed
scattering matrix algorithm29. The situations described
below result from a choice of the geometrical parameters
which maximizes the impact of spatial dispersion – but
the phenomenon is always easy to spot.

We first study the optical excitation of a Gap-Plasmon
resonance in a gap formed by an insulator layer sand-
wiched between two metallic slabs (see Fig. 1 (a), MIM
structure). For the GP propagating in a dielectric layer
with a permittivity εd between two metals with a per-
mittivity εm = 1 + χf + χb where χf and χb are the
susceptibilities linked to the free and bound electrons re-
spectively, the dispersion relation for a mode at frequency
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FIG. 2. (a) : Reflectivity in the local approximation (solid
black line) and with the hydrodynamic model (dashed red
line) for the MIM structure with air. The dashed black line
corresponds to the coupler without the second metallic inter-
face. The vertical dotted line shows where the undisturbed
surface plasmon is expected. For large gaps only the surface
plasmon on the lower interface is excited. For the thinner
gap the symmetric and antisymmetric modes can clearly be
seen. The angle of excitation for the symmetric mode is higher
than for the SP signaling the gap-plasmon regime. (b) Same
situation with a dielectric loaded gap and a lower frequency.
The impact of nonlocality begins to be noticeable because the
resonance is at larger incidence angle.

ω and with a wavevector kx can be written19,26

κd
εd

tanh
κdh

2
+
κm
εm

= Ω (3)

where κi =
√
k2x − εik20 with i = d,m, k0 = ω/c and

Ω =
k2x
κl

(
1
εm
− 1

1+χb

)
with κ2l = k2x +

ω2
p

β2

(
1
χf

+ 1
χb

)
.

The parameter Ω vanishes when there is no spatial dis-
persion, but increases with kx, which leads to expect a
larger impact for higher wavevector. The wavevector in-
creases when h decreases, so that decreasing h leads to a
higher discrepancy between Drude’s model and the hy-
drodynamic model.

The effective index of the GP is controlled by the thick-
ness of the dielectric hgap supporting it35. As hgap de-
creases, the wavevector of the GP increases and even di-
verges when hgap → 0. For an ultra-thin hgap, the GP
wavevector is large enough to make the GP sensitive to
nonlocality and thus to deviate from Drude’s model pre-
diction regarding the coupling angle26. Defining the cou-
pling angle as the angle for which reflectivity reaches its
lowest value, we define ∆θi as the difference between the
local and nonlocal coupling angle - the nonlocal angle be-
ing always the smallest. In order to reach a meaningful
difference we have to push the GP wavevector as high as
possible by using the smallest dielectric thickness. We are
however limited by the prism refractive index which de-
termines the maximum reachable effective index. That is
the reason why we consider TiO2

41 prisms: they present
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FIG. 3. Reflectivity of the structure shown on Fig. 1(a) as a
function of the incident angle θi for two value of hgap. The
wavelength of the incident light is λ = 600 nm. The prism is
made of T iO2 with a permittivity εp = 6.78, the metal is Au
with a permittivity εm = −8.44 + 1.41i and the dielectric is
air. The upper metallic layer thickness is hc = 18 nm. The
resonance corresponds to the excitation of a gap-plasmon.

the highest possible refractive index in the visible range
and are commercially available.

We use Au as metal and air as dielectric (a setup for
which the gap can thus be changed progressively). Fig. 2
shows how, when the gap is decreased, the two interfaces
become coupled, and the entrance in the gap-plasmon
regime when the effective index of the symmetric mode,
and thus the angle of excitation, increase clearly com-
pared to the surface plasmons. We stress that, when the
interfaces are decoupled, the discrepancy between the lo-
cal and the nonlocal descriptions is below 0.01◦, a result
coherent with previous studies of the phenomenon10.

Fig 3 the reflectivity of our structure as a function of
the incident angle for a wavelength λ of 600 nm. With
hgap = 13.75 nm ( see left part of Fig 3), non-locality
causes a shift of the coupling angle of more than 1◦,
which is a two orders of magnitude increase compared
to the surface plasmon. Here, the position of the reflec-
tivity minimum is close to the coupling angle that can be
determined from the dispersion relation – a regime that
we thus call the plain coupling regime and for which the
effective index of the mode is lower than the prism index.

For a slightly thinner gap (hgap = 11.50 nm), the GP
wavevector is beyond the maximum incident wavevector
reachable but near enough to still impact the reflectivity.
The reflectivity still presents a minimum, but its posi-
tion cannot be predicted using the effective index of the
mode any more. The presence of the guided mode, even
if it can be only imperfectly coupled is still responsible
for the minimum. We attribute the difference between
Drude’s model prediction and the predictions of the hy-
drodynamic model to the fact that the effective index of
the gap-plasmon is always lower when spatial dispersion
is taken into account. The resonance being further off

with a local description, the minimum is higher. While
the presence of a closer resonance in the nonlocal case
makes the minimum lower. This situation, that we call
the near coupling regime, gives rise to a discrepancy ∆R
for the minimum of the reflectivity, shown Fig 3. Such a
difference appears at grazing incidence, but it may even-
tually be easier to measure than the angular shift in the
plain coupling regime.

For both regimes, the only condition we have to satisfy
to study non-locality is to reach a high enough wavevec-
tor for the gap-plasmon. We have done this so far by
using an extremely thin gap filled with air, but we now
show it is possible to reach similar sensitivity to non-
locality relying on much larger thicknesses provided the
refractive index of the dielectric is significantly higher
than 1.
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FIG. 4. Reflectivity of the structure shown on Fig. 1(a) as a
function of the incident angle θi for two values of hgap. The
wavelength of the incident light is λ = 750 nm. The prism is
made of T iO2 with a permittivity εp = 6.41, the metal is Au
with a permittivity εm = −18.50 + 1.50i and the dielectric
is LASF9 with a permittivity εd = 3.37 + 1.10e−07i. The
thickness of the upper metallic layer is hc = 18 nm.

For a fixed wavelength, using such materials actually
leads plasmonic guided modes to present higher wavevec-
tors than using air as dielectric for the same gap width.
Very similar results to the above ones are obtained for
much large thicknesses of more than 60 nm. We have
studied the case of a dielectric waveguide filled with
LASF9 at a wavelength of λ = 750 nm. Exactly as previ-
ously, the impact of spatial dispersion is observed in the
plain coupling regime, producing a shift of the coupling
angle (see Fig.4(a)), and in the near coupling regime (see
Fig. 4(b)), producing a very large discrepancy in the
reflectivity of 0.17. This setup presents several advan-
tages as (i) it is probably easier to control the gap over
macroscopic distances horizontally if it is filled with a
dielectric (ii) using a dielectric allows to reach higher ef-
fective index for quite large wavelengths (iii) such a large
thickness allows to completely neglect other phenomena
like the spill-out, which intervene when extremely small
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FIG. 5. Reflectivity of the structure shown on Fig. 1(b) as
a function of the incident angle θi for hm = 44 nm. The
wavelength of the incident light is λ = 700. Prism is T iO2

with permittivity εp = 6.50 metal is Au with permittivity
εm = −15.04+1.31i and dielectric is LASF9 with permittivity
εd = 3.28+1.15×10−07i (a permittivity very close to the one
of other high index dielectrics like Al2O3). The thickness of
the layer under the prism is hc = 65 nm. The two dips are
due to the excitation of LRSP (left) in the plain regime and
SRSP (right) in the near coupling regime.

gaps are involved.
Finally, we show that it is possible to excite the guided

modes supported by the complementary structure: a
metallic slab19,38 buried in a dielectric, a structure we
will call IMI shown on Fig. 1(b). We underline that
the modes of a single metallic slab have been envisaged a
long time ago in the framework of EELS42. Compared to
the MIM structure, the IMI is able to support not only
one but two guided modes, the LRSP and the SRSP.
These two modes have two distinct wavevectors which
behave differently when the thickness of the metallic slab
supporting them varies. The dispersion relation for the
symmetric SRSP mode can be written

κm
εm

tanh
κmh

2
+
κd
εd

= Ω (4)

and for the antisymmetric LRSP

κm
εm

coth
κmh

2
+
κd
εd

= Ω. (5)

As a consequence, while the SRSP tends to behave as
the GP, i.e to present a diverging wavevector when hm
tends to zero, the LRSP has a lower wavevector which

stays much more stable when hm decreases. The reflec-
tivity of our IMI structure excited through the prism thus
presents two dips for two different angles corresponding
respectively to the LRSP and SRSP modes. Here too the
parameter Ω appears in the dispersion relation. Since it
is larger when the wavevector kx is larger, the impact
of spatial dispersion on the can be expected to be much
lower for the LRSP than for the SRSP19,38. Fig 5 shows
that while spatial dispersion has a small impact on the
LRSP, there is a clear shift of 0.72◦ for the higher effec-
tive index SRSP when nonlocality in taken into account.
We underline that for such a setup the LRSP can thus be
used to retrieve the material and geometrical parameters
while the SRSP allows for a measurement of β.

In conclusion, we have shown how feasible multilay-
ered structures could be used to enhance the impact of
spatial dispersion in metals, through the excitation of
three of the most emblematic guided mode in plasmonics:
the gap-plasmon, and the short- and long-range surface
plasmons. Physically, this enhancement by two orders
of magnitude can be directly linked to the high wavevec-
tors these plasmonic guided modes present. It is obtained
here for dielectric gaps whose typical thicknesses, ranging
from 10 nm to 70 nm are one to two orders of magnitude
larger than in previous experiments15,16. This allows to
rule out any role of more complex phenomena like the
spill-out of the electron gas outside of the metal21–23,33

because of the finite extraction work.
The geometrical parameters for which so strong non-

local effects can be found suggest spatial dispersion has
probably to be taken into account in plasmonics for much
larger structures than previously thought. We underline
that the present setups do not involve a large number of
chemically synthesized nanoparticles15,16,18,43 and, fur-
thermore, that the working wavelengths are in the red
part of the optical spectrum – which shows that these
effects manifest themselves even far below the plasma
frequency of metals.

We hope our work will pave the way for well controlled
optical experiments allowing to assess whether or not
the hydrodynamic model is an accurate replacement for
Drude’s in plasmonics. Given the increasing number of
devices relying on gap-plasmon excitation in dielectric-
filled gaps44–47 such an evolution may be a necessity soon.
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