

Long-term accumulation of metals and persistent pollutants (PAHs, PCBs, organochlorine pesticides) from Eure river watershed (France) in sediments: possible consequences of a dam removal

THOMAS GARDES^{1,2,*}, YAN LABERDESQUE^{1,2}, EDOUARD PATAULT², MAXIME DEBRET², YOANN COPARD², JULIEN DELOFFRE², STÉPHANE MARCOTTE³, ANNE-LISE DEVELLE⁴, PIERRE SABATIER⁴, ERIC CHAUMILLON⁵, FLORENCE PORTET-KOLTALO¹

¹University of Rouen-Normandy, UMR CNRS 6014 COBRA, 55 rue Saint Germain, 27000 Evreux, France.
 ²University of Rouen-Normandy, UMR CNRS 6143 M2C, 3 place Emile Blondel, 76821 Mont-Saint-Aignan Cedex, France.
 ³INSA of Rouen, Normandy University, UMR CNRS 6014, avenue de l'Université, 76801 Saint-Etienne-du-Rouvray Cedex, France.
 ⁴University of Savoie Mont Blanc, UMR CNRS 5204 EDYTEM, 5 boulevard de la mer Caspienne, 73370 Le Bourget du Lac Cedex, France.
 ⁵University of La Rochelle, UMR CNRS 7266 LIENSs, 2 rue Olympe de Gouges, 17000 La Rochelle, France.

*thomas.gardes2@univ-rouen.fr

Table of contents

1. SCIENTIFIC CONTEXT : OSS 276 PROJECT

2. MATERIALS AND METHODS

2.1. The Eure Watershed

2.2. Core Sampling

2.3. Core Dating by XRF Core Scanner data comparison

3. LONG-TERM ACCUMULATION OF ORGANIC AND METALLIC POLLUTANTS

 $3.1. \sum_{16} PAHs$

3.2. ∑₇PCBs

3.3. Trace-Metal Elements : Pb

4. CONCLUSIONS AND PROSPECTS

- Context of the European Water Framework Directive (2000/60/CE)
 - Allow free Suspended Particulates Matter transfers in rivers
 - French authorities decided to remove dam of Martot
 - Consequences for sediments blocked upstream the dam ?

> Observatory of the Seine Sediments in the Eure River (Eure county: 27) and the Seine River (Seine-Maritime county: 76)

- Aim: Study dam removal impacts (dam located on the Eure River (Normandy, France))
 - Qualities and quantities of sedimentary transfers

> Accumulation of polluted sediments in Eure Watershed since the last century

- Fate of organic (PAHs, PCBs, organochlorine Pesticides) and metallic pollutants after dam removal
- Assessing the bio-accessibility

THE EURE WATERSHED

CORE SAMPLING

CORE DATING

Eure River:

- 228.7 km long
- One of the main tributaries of the Seine River downstream
- Two main tributaries:
 - Iton (131.8 km long)
 - Avre (80.4 km long)

Eure Watershed:

- 6,017 km²
 - Land use: Agricultural land: 71.2 % Forest: 22.3 % Artificial lands: 6 % Water and humid surfaces: 0.5 %

CORE DATING

• THE EURE WATERSHED

HONFLEUR HONFLEUR HONFLEUR ALENCON CHARTRES

٠

-

Eure River downstream (~ 10 km long)

The Eure River and the Seine River are « side by side » until the confluence

CORE SAMPLING

• THE EURE WATERSHED

- CORE SAMPLING
 CORE DATING
- Eure River downstream (~ 10 km long)
- The Eure River and the Seine River are « side by side » until the confluence
- Dam of Martot: 300 m upstream the Eure River/Seine River confluence

• THE EURE WATERSHED

Dam of Martot

CORE SAMPLING CORE DATING

- Eure River downstream (~ 10 km long)
- The Eure River and the Seine River are « side by side » until the confluence
- Dam of Martot: 300 m upstream the Eure River/Seine River confluence
- Two ponds: Martot pond & Les Damps pond

• Martot pond:

- Formerly connected to the Seine River
- Since 1942: connected to the Eure River
- Filled by Seine then Eure sediments inputs

- THE EURE WATERSHED
- MARTOT POND

- Core sampling in 2015:
- MAR15-01; MAR15-02; MAR15-03; MAR15-04
- Core sampling in 2016:
- EUR16-01; EURE16-02; EUR16-03
- **MAR16-02**; MAR16-03
- Core sampling in 2017:
- EUR17-01; EUR17-02; EUR17-03; EUR17-04
- MAR17-01; MAR17-02

CORE SAMPLING

CORE DATING

CORE SAMPLING

CONCLUSIONS AND PROSPECTS

- THE EURE WATERSHED
- DAM17-01 DAM17-02

- CORE DATING
 - LES DAMPS POND
- (10 km upstream Martot pond)
- Core sampling in 2017:
- DAM17-01; **DAM17-02**

THE EURE WATERSHED

CORE SAMPLING CORE DATING

- **Dating of DAM17-02 core** (sampling in Les Damps pond):
- Dating of MAR15-01 by absolute dating using ⁷Be, ¹³⁷Cs, ²¹⁰Pb (in 2015)
- Dating of DAM17-02 by correlation with MAR15-01: correlation with XRF Core Scanner data
 - Correlation with Pb/Ti = f(z) and Mn/Ti = f(z)
 - ➢ Find several references points

THE EURE WATERSHED

CORE SAMPLING

CORE DATING

2020 y = -0.8088x + 20172010 R² = 0,9995 y = -0,9203x + 20172000 R² = 0.9996 y = -1,032x + 2017 $R^2 = 0.9997$ 1990 Kears 1980 1970 1960 "Middle Age" 1950 Age + Age -1940 10 30 40 50 60 20 70 0

Depth - cm

- **Dating of DAM17-02 core** (sampling in Les Damps pond):
- Dating of MAR15-01 by absolute dating using ⁷Be, ¹³⁷Cs, ²¹⁰Pb (in 2015)
- Dating of DAM17-02 by correlation with MAR15-01: correlation with XRF Core Scanner data
 - \succ Correlation with Pb/Ti = f(z) and Mn/Ti = f(z)
 - \succ Find several references points
- Plotting DAM17-02 Age Model
 - > Obtaining a sedimentation rate for Les Damps pond
- □ Sedimentation rate : 0.92 cm an⁻¹
- ➤ Comparable to the sedimentation rate of Martot pond: 1.08 cm an⁻¹

CONCLUSIONS AND PROSPECTS

• \sum_{16} PAHs

• $\sum_{7} PCBs$

• TRACE-METAL ELEMENTS: example of Pb

MARTOT POND: MAR16-02

• LES DAMPS POND: DAM17-02

• \sum_{16} PAHs

• $\sum_{7} PCBs$

• TRACE-METAL ELEMENTS: example of Pb

• MARTOT POND: MAR16-02

LES DAMPS POND: DAM17-02

• \sum_{16} PAHs

• $\sum_{7} PCBs$

• TRACE-METAL ELEMENTS: example of Pb

٠

• MARTOT POND: MAR16-02

CONCLUSIONS AND PROSPECTS

• \sum_{16} PAHs

• $\sum_{7} PCBs$

• TRACE-METAL ELEMENTS: example of Pb

• MARTOT POND: MAR16-02

• LES DAMPS POND: DAM17-02

18-22 June 2017 - Thomas Gardes

16th ICCE 2017 - Oslo, Norway

• \sum_{16} PAHs

• $\sum_{7} PCBs$

• TRACE-METAL ELEMENTS: example of Pb

• MARTOT POND: MAR16-02

• LES DAMPS POND: DAM17-02

CONCLUSIONS AND PROSPECTS

• \sum_{16} PAHs

MARTOT POND: MAR16-02

• $\sum_{7} PCBs$

- TRACE-METAL ELEMENTS: example of Pb
 - LES DAMPS POND: DAM17-02

SCIENTIFIC CONTEXT | METER

LES DAMPS POND: DAM17-02

• \sum_{16} PAHs

• $\sum_{7} PCBs$

• TRACE-METAL ELEMENTS: example of Pb

٠

• MARTOT POND: MAR16-02

SCIENTIFIC CONTEXT | ME

 \sum_{16} PAHs

• $\sum_{7} PCBs$

• TRACE-METAL ELEMENTS: example of Pb

• MARTOT POND: MAR16-02

• LES DAMPS POND: DAM17-02

CONCLUSIONS AND PROSPECTS

 \sum_{16} PAHs

 $\sum_{7} PCBs$

TRACE-METAL ELEMENTS: example of Pb

MARTOT POND: MAR16-02

LES DAMPS POND: DAM17-02 ٠

CONCLUSIONS AND PROSPECTS

• \sum_{16} PAHs

• TRACE-METAL ELEMENTS: example of Pb

- \sum_{16} PAHs •
- $\sum_{7} PCBs$

TRACE-METAL ELEMENTS: example of Pb

• MARTOT POND: MAR15-01

18-22 June 2017 - Thomas Gardes

16th ICCE 2017 - Oslo, Norway

SCIENTIFIC CONTEXT | METERIALS

- \sum_{16} PAHs \sum_{16}
- $\sum_{7} PCBs$

TRACE-METAL ELEMENTS: example of Pb

• MARTOT POND: MAR15-01

• LES DAMPS POND: DAM17-02

SCIENTIFIC CONTEXT | METERIALS AND METHODS

- \sum_{16} PAHs •
- $\sum_{7} PCBs$

TRACE-METAL ELEMENTS: example of Pb

• MARTOT POND: MAR15-01

• LES DAMPS POND: DAM17-02

18-22 June 2017 - Thomas Gardes

 \sum_{16} PAHs

 $\sum_{7} PCBs$

- MAR15-01: First increase:
 - Changes in sediments inputs
 - Opening of a cathode-ray tubes factory in the Eure watershed in 1956: not visible
 - 2nd increase on MAR15-01 튐 ₆₀ and 1st increase on DAM17-02: 1974
 - > Opening of a 2nd factory in 1974 100

LES DAMPS POND: DAM17-02

• \sum_{16} PAHs

• $\sum_{7} PCBs$

٠

- According to the age model:
 - MAR15-01: First increase: 1942
 - Changes in sediments inputs

- Opening of a cathode-ray tubes factory in the Eure watershed in 1956: not visible

- 2nd increase on MAR15-01 and 1st increase on DAM17-02: 1974
- Opening of a 2nd factory in 1974

1990: peak of activities

 \sum_{16} PAHs

- MARTOT POND: MAR15-01

 \sum_{7} PCBs

- **TRACE-METAL ELEMENTS: exemple of Pb**
- According to the age model:
 - MAR15-01: First increase: 1942
 - **Changes in sediments inputs** \geq
 - Opening of a cathode-ray tubes factory in the Eure watershed in 1956: not visible
 - increase on MAR15-01 and 1st 2^{nd} increase on DAM17-02: 1974
 - ➤ Opening of a 2nd factory in 1974
 - > 1990: peak of activities
 - Decrease to the top of the core:
 - > Emerging of flat-screen television
 - > Purchasing of the factory
 - \square Pb/Ti at the top > Pb/Ti at the bottom of MAR15-01:

140

 \triangleright Other sources ?

LES DAMPS POND: DAM17-02 •

- Eure River Watershed:
- Historical pollution linked to anthropogenic impacts
- Accumulation of pollutants throughout the last century
- Potential re-suspension and re-mobilisation after dam removal

- Eure River Watershed:
- Historical pollution linked to anthropogenic impacts
- Accumulation of pollutants throughout the last century
- Potential re-suspension and re-mobilisation after dam removal
- Impact of the dam removal ?
 - Hydro-sedimentary transfers
 - Pollutants transfers

THANK YOU FOR YOUR ATTENTION

18-22 June 2017 - Thomas Gardes

16th ICCE 2017 - Oslo, Norway