

Long-term records of trace metal elements in core sediments: anthropogenic impacts in the Eure river watershed

Thomas Gardes, Maxime Debret, Yoann Copard, Edouard Patault, Julien Deloffre, Stéphane Marcotte, Anne-Lise Develle, Pierre Sabatier, Eric Chaumillon, Thibault Coulombier, et al.

▶ To cite this version:

Thomas Gardes, Maxime Debret, Yoann Copard, Edouard Patault, Julien Deloffre, et al.. Long-term records of trace metal elements in core sediments: anthropogenic impacts in the Eure river watershed. American Geophysical Union (AGU) Fall Meeting, Dec 2017, Nouvelle-Orléans (LA), United States. hal-01855428

HAL Id: hal-01855428 https://hal.science/hal-01855428v1

Submitted on 7 Aug 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LONG-TERM RECORDS OF TRACE METAL ELEMENTS IN CORE SEDIMENTS: ANTHROPOGENIC IMPACTS IN THE EURE RIVER WATERSHED

THOMAS GARDES^{1,2,*}

MAXIME DEBRET¹, YOANN COPARD¹, EDOUARD PATAULT¹, JULIEN DELOFFRE¹, STÉPHANE MARCOTTE³, ANNE-LISE DEVELLE⁴, PIERRE SABATIER⁴, ERIC CHAUMILLON⁵, THIBAULT COULOMBIER⁵, SIDONIE REVILLON⁶, JEAN NIZOU⁶, YAN LABERDESQUE^{1,2}, FLORENCE PORTET-KOLTALO²

¹Normandie Univ, Rouen, UNIROUEN, UNICAEN, CNRS, M2C, FED-SCALE, Rouen, France. ² Normandie Univ, Rouen, UMR CNRS 6014 COBRA, Evreux, France.

³INSA of Rouen, Normandie Univ, UMR CNRS 6014 COBRA, Saint-Etienne-du-Rouvray, France.

*Corresponding author: thomas.gardes2@univ-rouen.fr

⁴University of Savoie Mont Blanc, UMR CNRS 5204 EDYTEM, Le Bourget du Lac, France. ⁵University of La Rochelle, UMR CNRS 7266 LIENSs, La Rochelle, France. ⁶IFREMER, IUEM, Brest, France.

INTRODUCTION

☐ General context

The Seine River watershed is historically known for important Trace Metal Elements (T.M.E) anthropogenic contaminations, from various human pressures except mining activities. The Eure River watershed was poorly studied in the past, although there is one of main tributary of the Seine River. Recently, it was highlighted that lead contamination recorded in Seine River partially came from the Eure River.

☐ The OSS 276 Project: Observatory of the Seine Sediments in the Eure River and the Seine River

The main aim of the OSS 276 project is to fill the gap of knowledge concerning the Eure River watershed. This part of the study is focused on the potential anthropogenic impacts suffered by the Eure River.

OSS 276

☐ Uniqueness of the OSS 276 Project

The hydro-sedimentary inputs from the Eure River watershed were blocked ~ 300 m upstream of the confluence with the Seine River by a small obstacle called the Dam of Martot. Built during the last century, this dam was removed recently. Observing and understanding the impact of the dam removal on hydro-sedimentary transfers, re-suspension and transfers of contaminated sediments is one of the aim part of this project.

☐ Trace Metal Elements (T.M.E)

In fluvial systems, T.M.E are majority linked to the Suspended Particulate Matter (S.P.M), especially the < 63 µm fraction. Their potential toxicity is well established and for this project it was decided in this project to work with metals (Cadmium : Cd, Chrome: Cr, Copper: Cu, Mercury: Hg, Nickel: Ni, Lead: Pb), and metalloid (Arsenic: As) elements listed 'priority substances' by the European Water Framework Directive.

STUDY AREA: THE EURE RIVER WATERSHED ☐ Study Area: Eure River downstream **□** Eure River: ■ ~ 10 km long upstream Eure-Seine Rivers confluence Main tributary of the Seine Two ponds cored: River downstream o Martot pond: ■ 228.7 km long FRANCE - Filled by Seine until ~ 1940 then Eure River inputs - Cores used in this study: MAR15-01, MAR16-02 and ☐ Eure Watershed: MAR16-03 • 6,017 km² Les Damps pond: ■ ~ 70 % agricultural land - Filled by Eure River inputs - Core used in this study: DAM17-02 Les Damps Pond Eure sediments Eure-Seine Dam of Martot Rivers confluence removed in October 2017 Seine sediments

T.M.E IN SEDIMENTARY CORES: HIGHLIGHT THE INDUSTRIAL PAST OF THE EURE RIVER WATERSHED Zn (mg kg⁻¹ ☐ Principal Component Analysis (PCA): XRF Core Scanner data Sedimentary cores used: o Martot Pond: MAR15-01 Other source(s) of ☐ T.M.E analysis: Les Damps Pond: DAM17-02 contamination for ICP-AES (external Cr, Ni and Zn calibration) Variables factor map (PCA) Variables factor map (PCA) • C.R.M: Trace elements on fresh sediment **Martot Pond** Les Damps Pond CNS301-04-050 2006: site closure 1990-2000: important production 0 0 1974: Opening of a 2nd factory on the Eure Dim 1 (48.96%) Similar behaviour River watershed Dim 1 (51.90%) Used in between Cu and ☐ For Martot and Les Damps Ponds: agricultural 1956: Opening of a cathode-ray tube factory Cd but origin still • Legend: T.M.E came from non-natural sources pesticides on the Eure River watershed unknown Sedimentary inputs o Common origins for Ni, Cu, Zn. LES DAMPS Close to the Seine River geochemical o Pb: one anthropogenic sources. o Anthropogenic inputs background (20 mg kg⁻¹)

CONCLUSION & PROSPECTS

☐ Sedimentary cores from Eure River ponds showed several decades of metallic contamination from multiple anthropogenic origins.

The origins of contamination (Pb, Hg, etc.) are determined, nevertheless there is still other past and recent contaminations sources to identify

☐ After the dam removal, it becomes important to study the potential remobilization of contaminated sediments from ponds and Eure River's channel.

11-15 Dec. 2017

Top: $0.05 \pm 0.04 \text{ mg kg}^{-1} \approx$

watershed

background

River

1991: Batteries with Hg

Saline batteries production

on the Eure River watershed

banned (91/157/ECC)

Seine

geochemical

 $(0.03 \text{ mg kg}^{-1})$