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S-1. Intermediate lemmas used in the proof of main results

In the sequel we freely use that sn ≤ nυ as assumed in the main results of the
paper. We assume that the function g satisfies the assumptions from (38) up to
and including (42) (recall that this is in particular the case if g arises from a
convolution g = γ?φ for γ satisfying (16)–(18), which is the case in the Bayesian
setting with a slab density γ).

We start by two basic lemmas on w0 = w0(n,M), w1 = w1(n,M, θ0, ν),
w2 = w2(n,M, θ0, ν), quantities introduced in (60), (67), (68), respectively.

Lemma S-1. Let w0 as in (60) with M > 1 arbitrary. Let m̃ be defined by
(56). Then, for an integer N0(g) > 0, and constants c1 = 1/m̃(1), c2 = c2(g),
we have for all n ≥ N0(g),

n

M
m̃ (Mc1/n) ≤ 1

w0
≤ n

M
m̃
(√

Mc2/n
)
.

In particular, for any M ∈ [1, log n], for C1, C2 depending only on g,

C1

√
log n

n
≤ w0 ≤

log n

n
eC2

√
logn.

Proof. Lemma S-24 gives m̃(w) & wc for any c > 0. Setting c = 1 and using
the equation defining w0, that is nw0m̃(w0) = M , leads to w0 ≤ (CM/n)1/2.
Reinserting this estimate into m̃ in the equation defining w0 (by using that m̃
is increasing by Lemma S-22) gives the first upper bound of the lemma. Next,
one notes that m̃(w) ≤ m̃(1), which leads to w0 ≥M/(nm̃(1)). Reinserting this
estimate into m̃ in the equation defining w0 gives the first lower bound of the
lemma.

To prove the second display of the lemma, one notes that the fact that log g
is Lipschitz and g(u) . (1 + u2)−1 by (41) imply for w small enough,

ζ(w)κ−1e−Λζ(w) . m̃(w) . ζ(w)κ−3.

Using the first display of the lemma together with Lemma S-15 on ζ and 1 ≤
M ≤ log n leads to the result.

Lemma S-2. For M > 0 and ν ∈ (0, 1), there exist an integer N0 = N0(ν, υ, g) >
0 and r = r(ν, υ, g) ∈ (0, 1) such that for all n ≥ N0 and θ0 ∈ `0[sn], if a solution
w1 = w1(n,M, θ0, ν) of (67) exists, then

w0 ≤ w1 ≤ n−r.

Proof. The lower bound follows from the definition of w0 and w1. For the upper
bound, one uses the definition of w1 and the global bound |m1(µ,w)| ≤ 1/(w∧c1)
(which follows from Lemma S-21) to get,

σ0

w1 ∧ c1
≥ (1− ν)(n− σ0)m̃(w1).

As m̃ is increasing and m̃(w) & wc for arbitrary c ∈ (0, 1) (see Lemma S-24),
one gets (w1 ∧ c1)1+c ≤ Cσ0/n ≤ Csn/n. Using sn ≤ nυ gives the result.
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Lemma S-3 (Bernstein w0). There exist an integer N0 = N0(g, υ) > 0 and
C0 = C0(g) > 0 such that the following holds for all n ≥ N0 and θ0 ∈ `0[sn].
Let M ∈ [1, log n] and w0 as in (60). Let ν ∈ (0, 1) and assume (62) (which
is implied by the fact that (61) has no solution). Then the MMLE estimate ŵ
satisfies

Pθ0(ŵ > w0) ≤ e−C0ν
2nw0m̃(w0) = e−C0ν

2M . (S-1)

Proof of Lemma S-3. One first notes the almost sure equality of events {ŵ >
w0} = {S(w0) > 0}. This follows since S is (strictly) decreasing and continuous
on [0, 1] (except in the case that g(Xi) = φ(Xi) for all i which happens with
probability 0). Then, with P = Pθ0 , E = Eθ0 as shorthand,

P (ŵ > w0) = P (S(w0) > 0) = P (S(w0)− ES(w0) > −ES(w0))

≤ P (S(w0)− ES(w0) > ν(n− σ0)m̃(w0)),

as ES(w0) =
∑
i∈S0

m1(θ0,i, w0)−(n−σ0)m̃(w0) < −ν(n−σ0)m̃(w0) using (62).

Now, the score function equals S(w0) =
∑n
i=1 β(Xi, w0), a sum of independent

variables. One applies Bernstein’s inequality (see Lemma S-35 and notation
therein) to the variablesWi = β(Xi, w0)−Eβ(Xi, w0). Note that |Wi| ≤ 2/w0 =:
M as |β| ≤ (w0 ∧ c1)−1 = w−1

0 by Lemma S-21 for n large enough (indeed, w0

goes to 0 with n by Lemma S-1). Also,

V :=

n∑
i=1

Var(Wi) ≤
n∑
i=1

m2(θ0,i, w0).

One splits the last sum in two. Consider ζ0 = β−1(w−1
0 ) the pseudo-threshold

associated to w0. Using Corollary S-29 (recall as noted above that w0 goes to 0
with n), with M0 the constant therein, combined with (62), one gets∑
i: |θ0,i|>M0

m2(θ0,i, w0) ≤ C2

w0

∑
i: |θ0,i|>M0

m1(θ0,i, w0)

≤ C2

w0
(1− ν)(n− σ0)m̃(w0)− C2

w0

∑
i: |θ0,i|≤M0

m1(θ0,i, w0)

≤ 2C2

w0
(1− ν)nm̃(w0),

because µ ∈ R+ → m1(µ,w0) is nondecreasing (see Lemma S-22) and bounded
from below by −m̃(w0).

For small non-zero signals, one uses Lemma S-27 to get, with ζ0 := ζ(w0),∑
i: 0<|θ0,i|≤M0

m2(θ0,i, w0) ≤ C
∑

i: 0<|θ0,i|≤M0

Φ(ζ0 − |θ0,i|)
w2

0

≤ Cσ0
Φ(ζ0 −M0)

w2
0

,

and one uses Φ(ζ0 −M0) ≤ Cφ(ζ0 −M0)/ζ0 ≤ C ′eM0ζ0φ(ζ0)/ζ0. With Lemma
S-24, one gets plutot φ(ζ)/ζ � wg(ζ)/ζ � wm̃(w)/ζκ for small w, so that∑

i: |θ0,i|≤M0

m2(θ0,i, w0) .
sne

M0ζ0

nζκ0

nm̃(w0)

w0
.
nm̃(w0)

ζκ0w0
,
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where we use that sne
M0ζ0/n ≤ C, as follows from sn = O(nυ) and ζ2

0 . log n
(combining Lemmas S-1 on w0 and Lemma S-15). With A = (n − σ0)νm̃(w0),
one gets, for n ≥ N0,

V + 1
3MA

A2
.

ν−2

nw0m̃(w0)
+

ν−2

nw0m̃(w0)ζκ0
.

ν−2

nw0m̃(w0)
,

An application of Bernstein’s inequality (see Lemma S-35) now gives (S-1).

Lemma S-4 (Bernstein w1, w2). There exist an integer N0 = N0(g, υ) > 0 and
C1 = C1(g) > 0 such that the following holds for all n ≥ N0 and θ0 ∈ `0[sn]: for
ν ∈ (0, 1), suppose that a solution w1 of (67) exists, and let w2 be the solution
of (68). Then the MMLE estimate ŵ satisfies

Pθ0(ŵ /∈ [w2, w1]) ≤ e−C1ν
2nw1m̃(w1) + e−C1ν

2nw2m̃(w2). (S-2)

Proof. One bounds successively each of the probabilities P (ŵ > w1) and P (ŵ <
w2). The first bound is obtained in exactly the same way as in the proof of
Lemma S-3, with w0 replacing w1. We note the two minor differences: ES(w1) =∑
i∈S0

m1(θ0,i, w1)−(n−σ0)m̃(w1) now equals−ν(n−σ0)m̃(w1) by the definition
(67) of w1. Then bounds on m2 can be carried out in the same way – now
evaluated at w = w1 – as in the proof of Lemma S-3. We note that w1 goes to
zero with n by Lemma S-2. This means that we can use the bounds of Lemma
S-27 and Corollary S-29 as in the proof of Lemma S-3. Further, if ζ1 := ζ(w1),
we have ζ1 ≤ ζ0, so one also has sne

M0ζ1/n ≤ C using the corresponding bound
for ζ0. This shows the desired result for w1.

For w2, one proceeds similarly. If w2 = 0 the result is immediate. Otherwise
we have {ŵ < w2} = {S(w2) < 0}. Again, one applies Bernstein’s inequality to
the score function S(w) =

∑n
i=1 β(Xi, w) and set Wi = β(Xi, w2)−m1(θ0,i, w2).

As Wi are centered independent variables with |Wi| ≤ M and
∑n
i=1 Var(Wi) ≤∑n

i=1E[β(Xi, w2)2] =: V2, for any B > 0,

P

[
n∑
i=1

Wi < −B

]
≤ exp{−1

2
B2/(V2 +

1

3
MB)}.

One can take M = c3/w, using Lemma S-21. Set B =
∑n
i=1m1(θ0,i, w1). By

definition of w2 in (68), we have

B = −(n− σ0)m̃(w2) +
∑
i∈S0

m1(θ0,i, w2) = ν(n− σ0)m̃(w2).

The term V2 is bounded in a similar way as in the proof of Lemma S-3, using
the bounds of Lemma S-27 and Corollary S-29. As for w1 above, one notes that,
if ζ2 = ζ(w2), one has sne

M0ζ2/n ≤ C as, using Lemma S-5, we have w1 . w2,
so that w2 & 1/n and ζ2 .

√
log n. One obtains V2 . (nw2m̃(w2))−1 which

leads to
V2 + 1

3MB

B2
.

ν−2

nw2m̃(w2)
,

and the desired bound on w2 is obtained.
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Lemma S-5. Let ν ∈ (0, 1). There exist some integer N = N(ν, υ, g) > 0 and
C = C(ν, υ, g) > 1 such that, for all n ≥ N and θ0 ∈ `0[sn], if (67) has a
solution w1, the solution w2 of (68) verifies

w1/C ≤ w2 ≤ w1. (S-3)

Proof. The behaviour of w1, w2 for a given specific true signal θ0 is determined
through properties of the function

Hθ0(w) =
∑
i∈S0

m1(θ0,i, w)/m̃(w).

This function is decreasing, as w → m1(θ0,i, w), 1 ≤ i ≤ n, and w → m̃(w)−1

both are, by Lemma S-22. It suffices to show that for an appropriately large
constant z ≥ 1 (possibly depending on υ, g, ν), for n large enough,

Hθ0

(w1

z

)
≥ 1 + ν

1− ν
Hθ0(w1), (S-4)

Indeed, by definition of w1, w2, one has Hθ0(w2) = (1+ν)(n−σ0) = (1+ν)(1−
ν)−1Hθ0(w1). So, if (S-4) holds, Hθ0(w2) ≤ Hθ0(w1/z) which in turn yields
w2 ≥ w1/z by monotonicity.

Now, (S-4) is obtained in two steps. First, one shows that appropriately small
signals do not contribute too much to the sum defining Hθ0 , so that one can
replace the sum in (S-4) by a sum H◦θ0 , to be defined now, on large signals only.
For w ∈ (0, 1) and K > 1, set C0(w,K) = {1 ≤ i ≤ n : |θ0,i| ≥ ζ(w)/K} and

H◦θ0(w,K) =
∑

i∈C0(w,K)

m1(θ0,i, w)/m̃(w).

Set K2 = 4/(1− υ). By Lemmas S-1 and S-2, both w1 and w1/z belong to the
interval [1/n, 1/ log n], provided z . (log n)1/4 (which will be the case below).
Let us now use, with K1 = K2/2 and D > 0, both Lemmas S-31 and S-32, and
z = z(ν, υ, g) a constant to be chosen below,

Hθ0

(w1

z

)
= H◦θ0

(w1

z
,K2

)
+Hθ0

(w1

z

)
−H◦θ0

(w1

z
,K2

)
≥ Cz1/(2K2)H◦θ0(w1,K2/1.1)− C ′n1−D

≥ Cz(1−υ)/8H◦θ0(w1,K1)− C ′n1−D,

where in the last inequality one uses that K → H◦θ0(w,K) is nondecreasing by
definition. Using Lemma S-31 again now shows that, for D > 0,

|Hθ0(w1)−H◦θ0(w1,K1)| ≤ C ′n1−D.

One deduces that, for C the constant in the one but last display,

Hθ0

(w1

z

)
≥ Cz(1−υ)/8Hθ0(w1) + o(n).

Since Hθ0(w1) � n by definition of w1, the latter is bounded from below
by (C/2)z(1−υ)/8Hθ0(w1) for n large enough. Taking z = {max((2/C), 1)(1 +
ν)/(1− ν)}8/(1−υ) shows (S-4) and the proof is complete.
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S-2. Auxiliary proofs

S-2.1. Proof of Proposition 1

For any multiple testing procedure ϕ,

BFDR(ϕ;w, γ) =

∫
Rn

FDR(θ, ϕ)dΠw,γ(θ) = EX,θ

[∑n
i=1 1{θi = 0}ϕi
1 ∨

∑n
i=1 ϕi

]
.

For ϕ`, using the chain rule E[·] = E[E[· |X]], one gets

BFDR(ϕ`;w, γ) = EX

[∑n
i=1 `i(X)ϕ`i

1 ∨
∑n
i=1 ϕ

`
i

]
= EX

[∑n
i=1 `i(X)1{`i(X)≤α}

1 ∨
∑n
i=1 1{`i(X)≤α}

]
≤ α P (∃i : `i(X) ≤ α).

For ϕq, conditioning this time on the variables ϕq1(X), . . . , ϕqn(X) and using
that for the prior Πw,g the conditional distribution of θi |X only depends on
Xi for all i, so that E[1{θi = 0} |ϕq1, . . . , ϕqn]ϕqi = P (θi = 0 |ϕqi = 1)ϕqi a.s., one
obtains

BFDR(ϕq;w, γ) = EX

[∑n
i=1 P (θi = 0 | ϕqi = 1)ϕqi

1 ∨
∑n
i=1 ϕ

q
i

]
= EX

[∑n
i=1 P (θi = 0 | qi(X) ≤ α)1{qi(X)≤α}

1 ∨
∑n
i=1 1{qi(X)≤α}

]
.

Now observe that from (43), qi(X) ≤ α if and only if |Xi| ≥ Ψ(α), for some
function Ψ such that q(Ψ(α);w, g) = α (namely, Ψ is the inverse of u ∈ (0,∞)→
q(u;w, g)). Now, the result follows from

P (θi = 0 | qi(X) ≤ α) = P (θi = 0 | |Xi| ≥ Ψ(α)) = q(Ψ(α);w, g) = α.

Finally, the relation between (24) and (25) comes from Lemma S-10.

S-2.2. Proof of Proposition 2

For (i), we use Lemma S-33:

Pθ0=0(`i(X) ≤ t) = 2Φ (ξ(r(w, t))) ≤ 2
φ (ξ(r(w, t)))

ξ(r(w, t))
,

which provides (53) because φ (ξ(r(w, t))) = r(w, t)g (ξ(r(w, t))) by definition of
ξ(·). Next, if ξ(r(w, t)) ≥ 1, we also have the lower bound:

Pθ0=0(`i(X) ≤ t) ≥ φ (ξ(r(w, t)))

ξ(r(w, t))
,

which provides (54). Finally, (ii) follows from the definition of χ.
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S-2.3. Proof of Theorem 3

We prove the result first for EBayesq. Recall that the exact number of nonzero
coefficients σ0 of θ0 is sn by definition of L0[sn]. Set b = (a + 1)/2 > 1 and let
A be the event, for Kn < sn to be specified below,

A =
{

#{i ∈ S0, |Xi| > b{2 log(n/sn)}1/2} ≥ sn −Kn

}
.

If Ac denotes the complement of A,

Ac =
{

#{i ∈ S0, |Xi| > b{2 log(n/sn)}1/2} < sn −Kn

}
=
{

#{i ∈ S0, |Xi| ≤ b{2 log(n/sn)}1/2} > Kn

}
⊂
{

#{i ∈ S0, |εi| > (a− b){2 log(n/sn)}1/2} > Kn

}
=: C,

where we have used Xi = θ0,i + εi to get |εi| ≥ |θ0,i| − |Xi| by the triangle
inequality. Let c =

√
2(a − b) > 0. By looking at the indicator variables Zi =

1|εi|≥xn with xn = c{log(n/sn)}1/2, one can translate the event C in the last
display into an event for a binomial trial, leading to

sup
θ0∈L0[sn]

Pθ0 [Ac] ≤ P
[
Bin(sn, 2Φ(xn)) > Kn

]
.

Let pn = 2Φ(xn), then using the expression of xn above,

pn ≤ 2φ(xn)/xn ≤ C(sn/n)c
2/2/(c

√
log(n/sn)),

which goes to 0 with n as sn/n→ 0.
Let Kn = max(2snpn, sn/ log sn). By Bernstein’s inequality, see Lemma S-35,

as Kn ≥ 2snpn and
∑
i∈S0

Var(Zi) ≤ snpn,

P

[∑
i∈S0

Zi > Kn

]
≤ P

[∑
i∈S0

(Zi − pn) > Kn/2

]
≤ exp

{
− 1

8

K2
n

Kn/6 + snpn

}
,

which is less, using snpn ≤ Kn/2 again, than exp(−CKn), which goes to 0 with
n, since Kn ≥ sn/ log sn →∞. So, we have obtained Pθ0 [Ac] = o(1).

Now one can follow the proof of Theorems 1 and 2 and consider the funda-
mental equation (61), for some fixed θ0 ∈ L0[sn], and n large enough. The lower
bound on w is given here by w0 in (60), for some M = Mn that we choose as
Mn = min(c0sn, log n), so that Mn →∞ and c0 a small enough constant to be
chosen below.

Consider both sides of the equation (61) at the point w = sn/n. On the one
hand, by definition of L0[sn], we have |θ0,i| ≥ a{2 log(n/sn)}1/2 for i ∈ S0.
Lemma S-15 implies ζ(sn/n) ∼ {2 log(n/sn)}1/2, so one can apply Lemma S-30
(recall µ→ m1(µ,w) is even for all w) for a small ε > 0 to get, for large enough
n, ∑

i∈S0

m1(θ0,i, sn/n) ≥ (1− ε) sn
(sn/n)

= (1− ε)n.
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On the other hand, the right hand side of (61) equals (1−ν)(n−sn)m̃(sn/n) =
o(n), since m̃(w) goes to 0 as w → 0. Recall that

∑
i∈S0

m1(θ0,i, 1) is bounded
from above by a constant times sn (as m1(θ0,i, 1) is bounded, see Section 7.3.1)
and that (1−ν)nm̃(1) is of the order n. Combining the previous inequalities, the
intermediate values theorem shows that (61) has a solution, at least on [sn/n, 1),
for n large enough.

To show that w1 exists, it is enough to check that the solution also belongs to
[w0, 1). We distinguish two cases. If w0 ≤ sn/n then this is obvious by definition.
In case w0 > sn/n, let us evaluate both sides of (61) this time at w = w0. First,
using the second display of Lemma S-1 (compatible with the present choice on
Mn = min(c0sn, log n)) combined with Lemma S-15 on ζ, one gets, for arbitrary
ε > 0 and using w0 > sn/n, that

ζ(w0) ≤ (1 + ε)
√

2 log(1/w0) ≤ (1 + ε)
√

2 log(n/sn),

for large enough n. Deduce that one can apply Lemma S-30 as (1 + ρ)ζ(w0) ≤
|θ0,i| for small enough ρ. In particular∑

i∈S0

m1(θ0,i, w0) ≥ (1− ε) sn
w0
.

On the other hand, the right hand side of (61) is (1 − ν)(n − sn)m̃(w0) =
(1 − ν){(n − sn)/n}Mn/w0 by definition of w0. As Mn ≤ c0sn, this quantity
is thus smaller than the last display, provided c0 is small enough. By the same
reasoning as above, this shows that the solution to (61) indeed belongs to [w0, 1),
so w1 exists.

Now that we have the existence of w1, the fact that w = sn/n cannot be
a solution of (61) (for n large enough) and the monotonicity of both sides of
(61) show that w1 ≥ sn/n, for n large enough. Using the same argument with
equation (68) leads to w2 ≥ sn/n, for n large enough.

As (61) has a solution, we can use the properties of the proof of Section 7 in
this case (referred to as Case 2 in that proof). In particular, (72) provides for
some constant C > 0,

sup
θ0∈L0[sn]

Pθ0(ŵ /∈ [w2, w1]) ≤ 2e−CMn .

Let us introduce the event Ω0 = A∩{ŵ ∈ [w2, w1]}. By the previous bounds,
we have P [Ωc0] = o(1). Note that, on the event Ω0,

χ(r(ŵ, t)) ≤ ζ(ŵ) ≤ ζ(w2)

using Lemma S-16 and the monotonicity of ζ(·). We have seen that here w2 ≥
sn/n, so ζ(w2) ≤ ζ(sn/n) and combining with the equivalent of ζ(w) as w → 0
from Lemma S-15, one finally gets χ(r(ŵ, t)) ≤ c(2 log(n/sn))1/2 for any c > 1
for n large enough, so in particular for c = b as defined above. One deduces that
on Ω0, the q-value procedure ϕq-val rejects the null hypotheses corresponding
to the (at least sn − Kn) indexes i in S0 such that |Xi| > b{2 log(n/sn)}1/2,
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because b{2 log(n/sn)}1/2 ≥ χ(r(ŵ, t)) by using the previous bounds and the
definition of the event A.

Combining the above facts, we obtain

sup
θ0∈L0[sn]

FDR(θ0, ϕ
q-val(t; ŵ, g))

= sup
θ0∈L0[sn]

Eθ0

[∑n
i=1 1{θ0,i = 0}ϕq-val(t; ŵ, g)

1 ∨
∑n
i=1 ϕ

q-val(t; ŵ, g)

]
≤ sup
θ0∈L0[sn]

Eθ0

[∑n
i=1 1{θ0,i = 0}ϕq-val(t; ŵ, g)

1 ∨
∑n
i=1 ϕ

q-val(t; ŵ, g)
1{Ω0}

]
+ o(1).

Therefore, since ϕq-val(t; ŵ, g) makes at least sn−Kn correct rejections, that is,
#{i ∈ S0 : ϕq-vali (t; ŵ, g) = 1} ≥ sn −Kn, we derive

sup
θ0∈L0[sn]

FDR(θ0, ϕ
q-val)

≤ sup
θ0∈L0[sn]

Eθ0

[ ∑n
i=1 1{θ0,i = 0}ϕq-vali (t;w1)∑n

i=1 1{θ0,i = 0}ϕq-vali (t;w1) + sn −Kn

]
+ o(1)

≤
supθ0∈L0[sn]Eθ0 [

∑n
i=1 1{θ0,i = 0}ϕq-vali (t;w1)]

supθ0∈L0[sn]Eθ0 [
∑n
i=1 1{θ0,i = 0}ϕq-vali (t;w1)] + sn −Kn

+ o(1), (S-5)

by concavity and monotonicity of the function x ∈ [0,+∞)→ x/(x+ 1).
Now combine (55), Lemma S-17 and Lemma S-24 to get for any ε ∈ (0, 1),

for any θ0 ∈ L0[sn],

Eθ0

[
n∑
i=1

1{θ0,i = 0}ϕq-vali (t;w1)

]
= (n− sn)r(w1, t) 2G (χ(r(w1, t)))

≤ (1 + ε)t(1− t)−1w1(n− sn) 2G (ζ(w1))

≤ (1 + ε)2t(1− t)−1(n− sn)w1m̃(w1).

Next, since w1 is a solution of (61), the latter is bounded above by

(1 + ε)2(1− ν)−1t(1− t)−1
∑
i∈S0

w1m1(θ0,i, w1) ≤ (1 + ε)2(1− ν)−1t(1− t)−1sn,

by using thatm1(·, w) is always upper-bounded by 1/w for small w, see Lemma S-
22 (recall that w1 goes to 0 with n by Lemma S-2). Putting this back into (S-5)
gives for n large enough,

sup
θ0∈L0[sn]

FDR(θ0, ϕ
q-val) ≤ (1 + ε)2(1− ν)−1t(1− t)−1sn

(1 + ε)2(1− ν)−1t(1− t)−1sn + sn −Kn
+ o(1).

As Kn = o(sn) as shown above, taking the limsup as n → ∞ and then letting

ε, ν go to 0, we get, observing that t(1−t)−1

t(1−t)−1+1 = t,

lim
n

sup
θ0∈L0[sn]

FDR(θ0, ϕ
q-val) ≤ t.

imsart-generic ver. 2014/10/16 file: CR2018supp_arXiv.tex date: August 14, 2018



/Supplement to “Spike and slab Emp. Bayes multiple testing” 10

Let us now turn to prove

lim
n

inf
θ0∈L0[sn]

FDR(θ0, ϕ
q-val) ≥ t, (S-6)

which will lead to the conclusion. Fix some δ ∈ (0, 1) and for any θ0 ∈ L0[sn]
consider w1 and w2 the associated solution of (61) and (68), respectively. The
fact that both exist has been seen above. Let Ω1 = {ŵ ∈ [w2, w1]}, then

inf
θ0∈L0[sn]

FDR(θ0, ϕ
q-val)

≥ inf
θ0∈L0[sn]

Eθ0

[
Vq

Vq + sn
1{Ω1}

]
≥ inf
θ0∈L0[sn]

Eθ0

[
Eθ0Vq(1− δ)

Eθ0Vq(1− δ) + sn
1{Ω1}1{|Vq − Eθ0Vq| ≤ δEθ0Vq}

]
,

where we have denoted Vq =
∑n
i=1 1{θ0,i = 0}ϕq-vali (t;w2), which is a Bino-

mial variable. Similarly to the upper bound, combine (55), Lemma S-16 and
Lemma S-24 to get for any ε ∈ (0, 1) and θ0 ∈ L0[sn],

Eθ0Vq = (n− sn)r(w2, t) 2G (χ(r(w2, t)))

≥ t(1− t)−1w2(1− w2)−1(n− sn) 2G (ζ(w2))

≥ (1− ε)t(1− t)−1w2(n− sn) 2G (ζ(w2))

≥ (1− ε)2t(1− t)−1(n− sn)w2m̃(w2).

Now using that w2 is a solution of (68) and Lemma S-30, we obtain

Eθ0Vq ≥ (1− ε)2(1 + ν)−1t(1− t)−1
∑
i∈S0

w2 m1(θ0,i, w2)

≥ (1− ε)3(1 + ν)−1t(1− t)−1sn.

Next, observe that by Chebychev’s inequality, the supremum over θ0 ∈ L0[sn]
of the following probability

Pθ0(|Vq − Eθ0Vq| > δEθ0Vq) ≤
Varθ0(Vq)

δ2(Eθ0Vq)
2
≤ 1

δ2Eθ0Vq

goes to 0, because sn tends to infinity. Combining the above facts leads to

inf
θ∈L0[sn]

FDR(θ, ϕq-val) ≥ (1− ε)3(1− δ)(1 + ν)−1t(1− t)−1

(1− ε)3(1− δ)(1 + ν)−1t(1− t)−1 + 1
+ o(1),

and the result is proved by taking the liminf in n and then δ, ε, ν tending to
zero.

Finally, to prove the result for EBayesq.0 , one notes that by the previous
arguments ŵ belows to [w1, w2] with probability tending to 1, and w2 ≥ sn/n
which is larger than 2ωn by assumption. Deduce that the event {ŵ > ωn} has
probability going to 1 so the procedures EBayesq and EBayesq.0 coincide with
probability going to 1, which proves that EBayesq.0 also satisfies the desired
property.
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S-3. Basic properties of `–, q– and p–values

Let us assume that g satisfies (38) throughout this section. Recall that this
assumption holds in particular whenever g is of the form g = φ ? γ as in the
Bayesian setting.

Lemma S-6. The q-value functional (14) has the explicit expression

q(x;w, g) =
(1− w)Φ(|x|)

(1− w)Φ(|x|) + w G(|x|)
, x ∈ R, w ∈ [0, 1].

Proof. The latter comes from the fact that, for s ≥ 0 and by symmetry of γ and
φ,

P (|Xi| ≥ s | θi = 0) = P (|ε1| ≥ s) = 2Φ(s),

P (|Xi| ≥ s | θi 6= 0) =

∫
P (|ε1 + u| ≥ s)γ(u)du =

∫
(Φ(s− u) + Φ(s+ u))γ(u)du

= 2

∫
Φ(s− u)γ(u)du = 2

∫ ∫
1{s−x≤u}γ(u)duφ(x)dx

= 2

∫ ∫
1{s≤v}γ(v − x)dvφ(x)dx = 2

∫
1{s≤v}g(v)dv.

Lemma S-7. For any fixed x ∈ R, the `-value functional `(x;w, g) (12) and
the q-value functional q(x;w, g) (14) are both nonincreasing in w.

Proof. This is immediate from their explicit expression.

Lemma S-8. Under (40), logG is Lipschitz on R+

Proof. We have (logG)′ = −g/G. Now using (40), we have (g/G)(x) � x1−κ

(x→∞). This provides that (logG)′ is a bounded function.

Lemma S-9. Assumption (42) implies (43).

Proof. Let us consider the function

Ψ : u ∈ (0, 1/2)→ G(Φ
−1

(u)) =

∫ ∞
Φ

−1
(u)

g(x)dx.

This defines a continuous function on [0, 1/2) by setting Ψ(0) = 0. For all

u ∈ (0, 1/2), we have Ψ′(u) = g
φ (Φ

−1
(u)), which means by (42) that Ψ′ is

decreasing on (0, 1/2) and therefore Ψ is strictly concave on (0, 1/2). This implies
that u ∈ (0, 1/2) → Ψ(u)/u is decreasing and thus that x ∈ R+ → G(x)/Φ(x)
is increasing by letting u = Φ(x), x > 0. Moreover, since ∞ = limu→0+ Ψ′(u) =
limu→0+ Ψ(u)/u = limx→∞G(x)/Φ(x) and G(0)/Φ(0) = 1, (43) is proved.

Lemma S-10. Assume that g comes from (39)–(42). For w ∈ [0, 1], the func-
tions x → `(x;w, g) and x → q(x;w, g) are symmetric and decreasing on
R+. For all x ∈ R, w ∈ [0, 1], we have q(x;w, g) ≤ `(x;w, g). In particular,
qi(X) ≤ `i(X) almost surely.
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Proof. The first claim comes from the explicit expressions of `(x;w, g) and
q(x;w, g) together with (42) and (43), respectively. Now, denoting P the prob-
ability operator in the Bayesian setting, a simple relation is that for all x ∈ R,

q(x;w, g) = P (θi = 0 | |Xi| ≥ |x|)
= E(1{θi = 0} | |Xi| ≥ |x|)
= E[P (θi = 0 |Xi) | |Xi| ≥ |x|]
= E[`i(X) | |Xi| ≥ |x|]
≤ `(x;w, g),

by using the monotonicity of x→ `(x;w, g).

Figure S-1 shows how the choice of the prior influences the quantities g and
G. The Laplace calculations are done thanks to Remark S-11. Strikingly, while
the quantities g stays of the same order (which guided the choice a = 1/2), the
difference for G is more substantial.

0 2 4 6 8 10
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0

0.
1
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2

0.
3
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6

quasi−Cauchy
Laplace

g
Gbar

0 2 4 6 8 10

0
1

2
3

4

gCauch/gLap
GbarCauch/GbarLap

Fig S-1. Plots of the functions g and G for the quasi-Cauchy and Laplace (a = 1/2) priors
respectively (left) and ratio (right).

Figure S-2 below shows how the parameters w and g interplay in the quanti-
ties q(x;w, g) and `(x;w, g): for large values of |x| (which play a central role in
the multiple testing phase), the quantity `(x;w, g) decreases as the prior puts
its mass away from 0, that is, making the tail distribution heavier or increasing
w.

Remark S-11 (Explicit expressions for Laplace prior). The Laplace prior of
parameter a > 0 is given by

γ(x) = γa(x) = (a/2) e−a|x|, x ∈ R. (S-7)
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Fig S-2. Plot of the functions x→ `(x, g, w) and x→ q(x, g, w) for different values of w and
g (see text, top) and ratio (bottom).

Straightforward calculations show, for γ as in (S-7),

g(x) = (a/2)ea
2/2
(
e−axΦ(a− x) + eaxΦ(a+ x)

)
;

g(x)/φ(x) = (a/2)

(
Φ(a− x)

φ(a− x)
+

Φ(a+ x)

φ(a+ x)

)
;

G(x) = (1/2) ea
2/2
(
e−axΦ(a− x)− eaxΦ(a+ x)

)
+ Φ(x).

S-4. Threshold properties

We henceforth assume that g satisfies (38)–(42). In this section, all the non-
universal constants appearing in the results depend on g.
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S-4.1. Link between ξ, χ and ζ

Recall the definitions (47)-(49)-(50) of the thresholds ξ, ζ, χ. We start by a simple
connection between ζ and ξ. Namely,

φ(ζ)

g(ζ)
=

1

β(ζ) + 1
= 1/(1/w + 1) = w/(1 + w),

so
ζ(w) = (φ/g)−1(w/(1 + w)) = ξ(w/(1 + w)), (S-8)

which implies in particular that ζ(w) ≥ ξ(w). The next lemma relates these
quantities to χ(w).

Lemma S-12. For any w ∈ (0, 1), we have χ(w) ≤ ξ(w) ≤ ζ(w).

Proof. From the proof of Lemma S-9, by concavity G(Φ
−1

(u))/u ≥ g
φ (Φ

−1
(u))

holds for any u ∈ (0, 1/2). Any x > 0 can be written Φ
−1

(u) for u ∈ (0, 1/2),
so for such x we have (Φ/G)(x) ≤ (φ/g)(x). As Φ/G is decreasing by (43), so is
its reciprocal, which implies x ≥ (Φ/G)−1((φ/g)(x)). The inequality follows by
setting x = (φ/g)−1(w) = ξ(w).

S-4.2. Bounds for ξ, χ and ζ

Lemma S-13. Consider ξ as in (47). Then for C = (2π)1/2‖g‖∞ we have for
u ∈ (0, 1] small enough,

ξ(u) ≥
(
−2 log u− 2 log g

(√
−2 log(Cu)

)
− log(2π)

)1/2

; (S-9)

ξ(u) ≤
(
−2 log u− 2 log g

(√
−4 log u

)
− log(2π)

)1/2

. (S-10)

We also have the following sharper bound: for u ∈ (0, 1] small enough,

ξ(u) ≤
(
−2 log u− 2 log g

((
−2 log u+ 5Λ(− log u)1/2

)1/2
)
− log(2π)

)1/2

.

(S-11)

In particular, ξ(u) ∼ (−2 log u)
1/2

when u tends to zero.

Proof. Now fix u ∈ (0, 1]. Since φ(ξ(u)) = g(ξ(u))u, we have φ(ξ(u)) ≤ ‖g‖∞u
which implies ξ(u) ≥

√
−2 log(Cu), so g(ξ(u)) ≤ g

(√
−2 log(Cu)

)
for u small

enough. This in turn implies φ(ξ(u)) ≤ ug
(√
−2 log(Cu)

)
and thus (S-9). Con-

versely, using (39), g(|x|) ≥ g(0)e−Λ|x| for all x ∈ R and thus φ(|x|)/g(|x|) ≤
(g(0)

√
2π)−1e−x

2/2eΛ|x| ≤ e−x
2/4 for |x| larger than a constant, which in turn

provides |x| ≤
√
−4 log(φ(|x|)/g(|x|)) and thus φ(|x|)/g(|x|) ≤ (g(0)

√
2π)−1e−x

2/2eΛ
√
−4 log(φ(|x|)/g(|x|)).
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On the one hand, this gives that if u is small enough, φ(ξ(u)) ≥ g(0)ue−Λ
√
−4 log u,

so

ξ(u) ≤
(
−2 log u+ 4Λ(− log u)1/2 − 2 log g(0)− log(2π)

)1/2

≤
(
−2 log u+ 5Λ(− log u)1/2

)1/2

. (S-12)

As g decreases on a vicinity of ∞, we have g(ξ(u)) ≥ g
(√
−4 log u

)
for u small

enough. Hence,

φ(ξ(u)) ≥ (φ(ξ(u))/g(ξ(u))) g
(√
−4 log u

)
= u g

(√
−4 log u

)
,

which leads to (S-10). To get (S-11) we use the same reasoning as above with
the bound (S-12) instead of

√
−4 log u.

Lemma S-14. Consider χ as in (50). Then we have for all u ∈ (0, 1],

χ(u) ≥ Φ
−1
(
u G

(
Φ
−1

(u)
))

; (S-13)

χ(u) ≤ Φ
−1
(
u G

((
−2 log u+ 4Λ(− log u)1/2 + C

)1/2
))

for u small enough,

(S-14)

and C = −2 log g(0) − log(2π). We also have the following sharper bound: for
some constant C ′ > 0, for u ∈ (0, 1] small enough,

χ(u) ≥
(
−2 log

(
uG
(

Φ
−1

(u)
))
− log log(1/u)− C ′

)1/2

. (S-15)

Proof. Let u ∈ (0, 1]. Since Φ(χ(u)) = G(χ(u))u, we have Φ(χ(u)) ≤ u and

thus χ(u) ≥ Φ
−1

(u), which in turn implies Φ(χ(u)) ≤ G(Φ
−1

(u))u and (S-13).
Conversely, as χ ≤ ξ by Lemma S-12, using the bound on ξ(u) just above (S-12)
in the proof of Lemma S-13,

χ(u) ≤ ξ(u) ≤
(
−2 log u+ 4Λ(− log u)1/2 − 2 log g(0)− log(2π)

)1/2

,

so the relation χ(u) = Φ
−1

(G(χ(u))u) leads to (S-14). Let us now prove (S-15).
First observe, by using (45), that G(χ(u)) & e−Λχ(u). Next using the upper
bound (S-12) on ξ ≥ χ leads to uG(χ(u)) ≥ u2 for u small enough. Now, by the
second part of Lemma S-33, for u small enough,

χ(u) = Φ
−1

(G(χ(u))u)

≥
{

2 log(1/{uG(χ(u))})− log log(1/{uG(χ(u))})− C
}1/2

≥
{

2 log(1/{uG(χ(u))})− log log(1/u2)− C
}1/2

,

for some constant C > 0, which gives the result.
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Lemma S-15. Consider ζ as in (49). Then for a constant C > 0, we have for
w small enough,

ζ(w) ≥
(
−2 logw − 2 log g

(√
−2 log(Cw)

)
− log(2π)

)1/2

; (S-16)

ζ(w) ≤
(
−2 logw − 2 log g

(√
−5 logw

)
+ C

)1/2

. (S-17)

We also have the following sharper bound: for w ∈ (0, 1] small enough,

ζ(w) ≤
(
−2 logw − 2 log g

((
−2 logw + 6Λ(− logw)1/2

)1/2
)

+ C

)1/2

.

(S-18)

In particular, ζ(w) ∼ (−2 logw)
1/2

as w tends to zero.

Proof. The result follows from Lemma S-13, combined with the relations ζ(w) ≥
ξ(w) and ζ(w) = ξ(w/(1 + w)) established above.

S-4.3. Relations between ξ(r(w, t)), χ(r(w, t)) and ζ(w)

Let us recall the definition r(w, t) = wt/{(1− w)(1− t)}, see (46).

Lemma S-16. For any t ∈ (0, 1), for ω0 = ω0(t) small enough, for all w ≤ ω0,
we have χ(r(w, t)) ≤ ζ(w).

Proof. Denote by T (u) =
(
−2 log u+ 4Λ(− log u)1/2 + C

)1/2
the term appear-

ing in (S-14). By (S-14) and Lemma S-33, for u small enough,

χ(u) ≤ Φ
−1 (

u G (T (u))
)

≤
{(

2 log(1/u)− 2 logG (T (u))− log log(1/u)
)}1/2

.

Now using that G(y) ≥ Dg(y) for y large enough (see (40)), we have for u small
enough,

χ(u)2 ≤ 2 log(1/u)− 2 logD − 2 log g (T (u))− log log(1/u).

Hence, for w small enough, denoting R = (1−t)(1−w)/t and recalling r(w, t) =
w/R via (46), and using (S-16) together with assumption (39),

χ(r(w, t))2 − ζ(w)2

≤ 2 log(1/r(w, t))− 2 logD − 2 log g (T (r(w, t)))− log log(1/r(w, t))

+ 2 logw + 2 log g
(
{−2 log(Cw)}1/2

)
+ log(2π)

≤ 2 logR+ 2Λ
∣∣∣{−2 log(Cw)}1/2 − T (r(w, t))

∣∣∣− log log(1/r(w, t)) + C ′,
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for some constant C ′ > 0. Now using |
√
a−
√
b| = |a− b|/(

√
a+
√
b) one gets,

for w small enough,∣∣∣{−2 log(Cw)}1/2 − T (r(w, t))
∣∣∣

≤

∣∣∣2 log(r(w, t)/(Cw))− 4Λ (− log r(w, t))
1/2 − C

∣∣∣
{2 log(1/(Cw))}1/2

≤ C ′1

(
| log((1− t)/t)|

(log 1/w)
1/2

+ 1

)

As a result, for w small enough and smaller than a threshold ω0(t) (depending
on t in a way such that log(1/w) ≥ log2((1 − t)/t) as well as log log(1/w) ≥
2 logR+C ′′ for a large enough constant C ′′ > 0) we have χ(r(w, t))2−ζ(w)2 ≤ 0
and the result holds.

Lemma S-17. There exists some constant C = C(g) > 0 such that for all
t ∈ (0, 1) there exists ω0(t) such that for all w ≤ ω0(t),

|ζ(w)− ξ(r(w, t))| ≤
2
∣∣ log

(
t

1−t
)∣∣+ C

ζ(w) + ξ(r(w, t))
. (S-19)

Furthermore, for all ε > 0 and t ∈ (0, 1), there exists ω0(t, ε) such that for
w ≤ ω0(t, ε),

g(ξ(r(w, t)))

g(ζ(w))
≤ 1 + ε; (S-20)

G(χ(r(w, t)))

G(ζ(w))
≤ 1 + ε. (S-21)

Proof. Let us set

S1(w) =
(
−2 logw + 6Λ(− logw)1/2

)1/2

and S2(w) =
√
−2 log(Cw) the terms appearing in the bounds (S-18) and (S-9),

respectively. Using these bounds, one obtains

ζ(w)2 − ξ(r(w, t))2

≤ 2 log(r(w, t)/w) + 2 log g(S2(r(w, t)))− 2 log g(S1(w)) +D

≤ 2
∣∣ log

(
t/(1− t)

)∣∣+D′,

for w smaller than a threshold depending on t, by using that log g is Lipschitz
and proceeding as in the proof of Lemma S-16 to bound the difference |S1(w)−
S2(r(w, t))| by a universal constant. Conversely, by using (S-11) and (S-16), we
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have, with S3(w) as S1(w) except that 6Λ is replaced by 5Λ and S4(w) as S2(w)
with C as in (S-16),

ξ(r(w, t))2 − ζ(w)2

≤ − 2 log(r(w, t)/w)− 2 log g (S3(w)) + 2 log g (S4(w)) +D′′

≤ 2
∣∣ log

(
t/(1− t)

)∣∣+D′′′,

as above, which leads to (S-19) by using a2 − b2 = (a− b)(a+ b). Next, (S-20)
is a direct consequence of (S-19) by using that log g is Lipschitz. Finally, let us
prove (S-21). By Lemma S-16 and the bounds (S-18) and (S-15), we have for
w ≤ w0(t) and S1(w) as above,

0 ≤ ζ(w)2 − χ(r(w, t))2

≤ − 2 logw − 2 log g (S1(w)) + C

+ 2 log
{
r(w, t)G ◦ Φ

−1
(r(w, t))

}
+ log log{1/r(w, t)}+ C ′

≤ |2 log(t/(1− t))|+D + log log{1/r(w, t)}+ 2 log
{G ◦ Φ

−1
(r(w, t))

g (S1(w))

}
.

Next, we have

log
{G ◦ Φ

−1
(r(w, t))

g (S1(w))

}
= log

{G ◦ Φ
−1

(r(w, t))

G (S1(w))

}
+ log

{G (S1(w))

g (S1(w))

}
.

The first term is bounded by a constant, by an argument similar to the proof
of Lemma S-16, as logG is Lipschitz. For the second term, by (40),

log
{G (S1(w))

g (S1(w))

}
≤ logS1(w).

This gives, upon dividing by ζ(w)+χ(r(w, t) the obtained inequality on ζ(w)2−
χ(r(w, t)2, that |ζ(w)−χ(r(w, t)| is arbitrary small when w is small, which leads
to (S-21) by using again that logG is Lipschitz.

Lemma S-18. There exists a constant C = C(g) > 0 such that for all t ∈
(0, 0.9) there exists ω0(t) such that for w ≤ ω0(t) and µ ∈ R,

Φ(ξ(r(w, t))− µ) ≥ C t Φ(ζ(w)− µ). (S-22)

Proof. By Lemma S-17, for small w, |ζ(w) − ξ(r(w, t))| ≤ 1/4. Hence, we can
apply Lemma S-34, which gives

Φ(ξ(r(w, t))− µ)

Φ(ζ(w)− µ)
≥ 1

4
e−|ξ(r(w,t)

2)−ζ(w)2|/2

≥ Ce−
∣∣ log

(
t

1−t

)∣∣
,

by using again (S-19). This shows the desired result.
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S-4.4. Variations of certain useful functions

For any w ∈ (0, 1) and µ 6= 0, let us denote

Tµ(w) = 1 +
|ζ(w)− |µ||
|µ|

. (S-23)

Lemma S-19. First, for all ε ∈ (0, 1), for any z ≥ 1, there exists ω0 =
ω0(z, ε) ∈ (0, 1), such that for all w ≤ ω0,{

1− ε ≤ g(ζ(w/z))/g(ζ(w)) ≤ 1
1− ε ≤ G(ζ(w/z))/G(ζ(w)) ≤ 1.

(S-24)

Second, for any K ≥ 1, one can find d1 = d1(K) and d2 = d2(K) > 0 such that
for all z ≥ 1, for w ≤ ω0 = ω0(z, 1/2) as before and |µ| > ζ(w)/K,

d1 ≤ Tµ(w/z)/Tµ(w) ≤ d2. (S-25)

Proof. Since log g and logG are Lipschitz and by monotonicity, it is sufficient
to bound ζ(w/z)− ζ(w) from above. For this, we combine (S-16) and (S-18) to
obtain, with S1, S4 as in the proof of Lemma S-17,

ζ(w/z)2 − ζ(w)2

≤ 2 logw + 2 log g (S4(w)) + log(2π)− 2 log(w/z)− 2 log g (S1(w/z)) + C

≤ 2 log z +D + 2Λ |S4(w)− S1(w/z)| ,

by using that log g is Λ-Lipschitz by (39). Since the last bound is bounded by
some constant for w ≤ w0(z), we obtain (S-24).

To prove (S-25), one notes that since |µ| > ζ(w)/K, we have 1 ≤ Tµ(w/z) ≤
2 + Kζ(w/z)/ζ(w) which itself is less than 2 + K + K(ζ(w/z) − ζ(w))/ζ(w).
Using the previous bound on ζ(w/z) − ζ(w) and the fact that ζ(w) goes to ∞
as w goes to 0 the last bound is no more than a constant C = C(K) whenever
w ≤ ω(z, 1/2). On the other hand, 1 ≤ Tµ(w) ≤ 2 + K for |µ| > ζ(w)/K. The
desired inequality follows.

Let us denote, for w ∈ (0, 1) and µ ∈ R,

Gµ(w) =
Φ(ζ(w)− |µ|)

w
. (S-26)

Lemma S-20. Consider Gµ defined by (S-26). For all K0 > 1 and any z ≥ 1,
there exists ω0 = ω0(K0, z) such that for all w ≤ ω0, any µ ∈ R with |µ| ≥
ζ(w)/K0, we have

Gµ(w/z) ≥ z1/(2K0)Gµ(w). (S-27)

Proof. Let us focus on µ ≥ 0 without loss of generality. Let us rewrite the
desired inequality as, with Γ(u) = logGµ(e−u),

Γ
(

log
z

w

)
− Γ

(
log

1

w

)
≥ 1

2K0

(
log

z

w
− log

1

w

)
.
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To prove this, it is enough to check that Γ′(u) ≥ 1/(2K0) for u ∈ [log 1
w , log z

w ],
for appropriately small w. To do so, one computes the derivative of Γ explicitly
using the chain rule. First one notes that

ζ ′(w) = − 1

w2β′(ζ(w))
,

and from this one deduces that

Γ′(u) = 1− eu

β′(ζ(e−u))

φ

Φ
(ζ(e−u)− µ).

One further computes

β′(x) = (β(x) + 1)xQ(x), for Q(x) = 1 +
(log g)′(x)

x
,

which gives β′(ζ(e−u)) = ζ(e−u)Q(ζ(e−u))(β(ζ(e−u)) + 1). Using the identity
β(ζ(e−u)) = eu leads to

Γ′(u) = 1− eu

1 + eu
1

Q(ζ(e−u))

1

ζ(e−u)

φ

Φ
(ζ(e−u)− µ).

Now, by using (39) one sees that the map u → eu(1 + eu)−1Q(ζ(e−u))−1 has
limit 1 as u goes to infinity. So, for u large enough, eu(1 + eu)−1Q(ζ(e−u))−1 ≤
1 + ε for some ε > 0 to be chosen later on. Now using Lemma S-33, whenever
µ ≤ ζ(e−u)− 1,

1

ζ(e−u)

φ

Φ
(ζ(e−u)− µ) ≤ 1

ζ(e−u)

1 + (ζ(e−u)− µ)2

ζ(e−u)− µ

=
ζ(e−u)− µ
ζ(e−u)

+
1

ζ(e−u)(ζ(e−u)− µ)
.

By definition of u, we have e−u ∈ [w/z,w], so ζ(e−u) ≤ ζ(w/z). Deduce that,
using that by assumption µ ≥ ζ(w)/K0,

ζ(e−u)− µ
ζ(e−u)

≤ 1− 1

K0

ζ(w)

ζ(w/z)
.

The behaviour of the difference ζ(w/z)−ζ(w) was studied in the proof of Lemma
S-19 where it is seen that this quantity is smaller a certain universal constant if
w is small enough. By writing

ζ(w/z)/ζ(w) =

(
1 +

ζ(w/z)− ζ(w)

ζ(w)

)−1

,

one gets that this ratio is at least 1− 1/8 for w small enough, using ζ(w)→∞
as w → 0. This shows that for w ≤ ω(z) small enough,

1

ζ(e−u)

φ

Φ
(ζ(e−u)− µ) ≤ 1− (1/K0)(1− 1/8) +

1

ζ(e−u)
,
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where we have used ζ(e−u)− µ ≥ 1. On the other hand, if µ ≥ ζ(e−u)− 1,

1

ζ(e−u)

φ

Φ
(ζ(e−u)− µ) ≤ φ(0)

Φ(1)ζ(e−u)
,

which can be made arbitrarily small for w small enough. As a result, in both
cases, for w ≤ ω(K0, z) small enough, for all µ ≥ ζ(w)/K0,

1−Γ′(u) ≤ (1 + ε)(1− 7/8K0 + 1/(4K0)) ≤ (1 + ε)(1− 5/(8K0)) = 1− 1/(2K0)

by choosing ε−1 = 8K0 − 5. This proves the desired inequality.

S-5. Moment properties

The main results in this section concern the moments of the score function,
m̃(w) = −E0β(X,w) = −

∫∞
−∞ β(t, w)φ(t)dt and m1(τ, w) = Eτ [β(X,w)],

m2(τ, w) = Eτ [β(X,w)2]. Remember that g is assumed to enjoy (38)–(42). Also,
since these functions only depends on g, all the constants appearing in the re-
sults of this section only depend on g (except in Section S-5.6 where the sparsity
comes in). In this section, we freely use ζ = ζ(w) as a shorthand notation.

S-5.1. Basic lemmas on moments

The following two lemmas are (mostly) small parts of Lemmas 7–9 in [1]. We
include the proofs for completeness.

Lemma S-21. For c1 = (−β(0))−1 − 1 > 0, for any x ∈ R and w ∈ (0, 1],

|β(x,w)| ≤ 1

w ∧ c1
. (S-28)

Proof. It suffices to distinguish the cases β(x) < 0 and β(x) ≥ 0 and to bound
|β(x,w)| by |β(0)|/(1 + β(0)) and 1/w, respectively.

Lemma S-22. The function w ∈ (0, 1] → m̃(w) is continuous, nonnegative,
increasing and m̃(0) = 0. The map w ∈ (0, 1] → m1(µ,w) is continuous and
decreasing. In addition, m1(µ, 0) > 0 if µ 6= 0 and µ ∈ R+ → m1(µ,w) is
nondecreasing for any w ∈ [0, 1]. Also, there exists a constant ω = ω(g) such
that, for any w ≤ ω and any µ ∈ R,

m1(µ,w) ≤ 1

w
, m2(µ,w) ≤ 1

w
.

Proof. Since w → β(u,w) is decreasing (for any u with β(u) 6= 0), so are
w → −m̃(w) and w → m1(µ,w) for any real µ. The continuity of m̃ follows by
continuity of β(u,w) and domination of β(u,w)φ(u) by g(u) + φ(u) (up to a
constant). In addition, since, as g is a density,

∫
β(u)φ(u)du = 0, and we have

m̃(w) = −
∫

β(u)

1 + wβ(u)
φ(u)du =

∫
wβ(u)2

1 + wβ(u)
φ(u)du. (S-29)
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From this one deduces that m̃ is nonnegative. For m1, the continuity follows by
local domination using Lemma S-21. Next, if µ 6= 0, say µ > 0, we have

m1(µ, 0) =

∫ ∞
−∞

β(u+ µ)φ(u)du =

∫ ∞
−∞

(β(u+ µ)− β(u))φ(u)du.

Moreover, by (42), u → β(u + µ) − β(u) is a positive function. Since it is also
continuous, the integral is positive, which means that m1(µ, 0) > 0. To see that
µ ∈ R+ → m1(µ,w) is nondecreasing, we compute its derivative

∂m1(µ,w)

∂µ
=

∫ ∞
0

∂{β(x)/(1 + wβ(x))}
∂x

(φ(x− µ)− φ(x+ µ))dx ≥ 0.

Finally, the bounds on m1,m2 follow from Lemma S-21, with ω = c1.

The following is a reformulation of Corollary 1 in [1] (see (58) therein). We
provide a proof below for completeness.

Lemma S-23. Consider Λ as in (39). Then for all z ≥ 4Λ and all µ ≥ 0,∫ z

0

(
g(u)

φ(u)

)2

φ(u− µ)du ≤ 8

z

(
g(z)

φ(z)

)2

φ(z − µ). (S-30)

Proof. We have for all u ∈ [0, z],(
g(u)

φ(u)

)2

φ(u− µ) =

(
g(z)

φ(z)

)2

φ(z − µ) exp

{
−
∫ z

u

[
log
{
g2/φ2(·)φ(· − µ)

}]′
(v)dv

}
.

Now, by (39), for all v ∈ [0, z] and µ ≥ 0,

(2 log g − 2 log φ+ log φ(· − µ))
′
(v) ≥ −2Λ + 2v − (v − µ) ≥ v − 2Λ.

Therefore, inserting the latter in the above display, we obtain(
g(u)

φ(u)

)2

φ(u− µ) ≤
(
g(z)

φ(z)

)2

φ(z − µ)e−(z−2Λ)2/2e(u−2Λ)2/2.

One concludes because letting s = z − 2Λ ≥ z/2 and noting that

e−s
2/2

∫ z

0

e(u−2Λ)2/2du ≤ e−s
2/2

∫ s

−s
et

2/2dt = 2

∫ s

0

e−(s−t)(s+t)/2dt

≤ 2

∫ s

0

e−(s−t)s/2 ≤
∫ ∞

0

e−xs/2dx = 4/s ≤ 8/z.
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S-5.2. Behaviour of m̃

The next lemma refines Lemma 7 in [1].

Lemma S-24. For m̃(w) defined by (56), we have, for ζ = ζ(w) and asymp-
totically as w → 0,

m̃(w)

2G(ζ)
∼ 1. (S-31)

In particular, for κ as in (40), as w → 0, m̃(w) � ζκ−1g(ζ) and m̃(w) & wc for
arbitrary c ∈ (0, 1).

Proof. Using (S-29), symmetry of β and βφ = g − φ on [ζ,∞),

m̃(w) = 2

∫ ζ

0

wβ(u)2

1 + wβ(u)
φ(u)du−

∫ ∞
ζ

2wβ(u)

1 + wβ(u)
φ(u)du+

∫ ∞
ζ

2wβ(u)

1 + wβ(u)
g(u)du.

(S-32)

For the first term of (S-32), since for u ∈ [0, ζ], 1 + wβ(u) ≥ 1 + β(0),

2

∫ ζ

0

wβ(u)2

1 + wβ(u)
φ(u)du ≤ 2w(1 + β(0))−1

∫ ζ

0

β(u)2φ(u)du

≤ C

ζ
wβ(ζ)(g/φ)(ζ) =

Cg(ζ)

ζ
,

for C = 20/(1 + β(0)), by Lemma S-23 (µ = 0), where we use that β(ζ) ≤
(g/φ)(ζ) ≤ (5/4)β(ζ) which holds for ζ large enough, or equivalently for w ≤ ω1

with ω1 = ω1(g) a universal constant. The second term of (S-32) is negative
whenever ζ > β−1(0) and of smaller order than the third term. For the third
term we use that for u ≥ ζ, wβ(u) ≥ 1 and thus 1 ≤ 2wβ(u)/(1 + wβ(u)) ≤ 2,
hence

G(ζ) ≤
∫ ∞
ζ

2wβ(u)

1 + wβ(u)
g(u)du ≤ 2G(ζ).

Now, by assumption G(ζ) � g(ζ)ζκ−1, see (40). Hence, when w is small, the
dominating term in (S-32) is the third one, which gives

m̃(w) ∼
∫ ∞
ζ

2wβ(u)

1 + wβ(u)
g(u)du (S-33)

Now, let us prove ∫ ∞
ζ

wβ(u)

1 + wβ(u)
g(u)du ∼ G(ζ) (S-34)

from which (S-31) follows. To prove (S-34), let us write∫ ∞
ζ

wβ(u)

1 + wβ(u)
g(u)du = G(ζ)−

∫ ∞
ζ

g(u)

1 + wβ(u)
du.
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Hence, we obtain∣∣∣∣G(ζ)−
∫ ∞
ζ

wβ(u)

1 + wβ(u)
g(u)du

∣∣∣∣ ≤ ∫ ∞
ζ

g(u)

1 + wβ(u)
du

≤ w−1

∫ ∞
ζ

φ(u)du =
Φ(ζ)

w
,

because 1+wβ(u) = 1−w+wg(u)/φ(u) ≥ wg(u)/φ(u). Now using that Φ(ζ) ∼
φ(ζ)/ζ ∼ wg(ζ)/ζ and sinceG(ζ) � g(ζ)ζκ−1 (see (40)), the difference in the last
display is a o(G(ζ)) and (S-31) is proved. Then, m̃(w) � ζκ−1g(ζ) follows from
(40) and this in turn implies by (44) and Lemma S-15, m̃(w) & e−Λζ(w) & wc

for any c > 0.

S-5.3. Upper bound on m1

The next lemma refines the bounds on m1 of Lemma 9 in [1]. The refinement
is important in that we obtain a precise upper-bound for any µ larger than a
constant. Moreover, the bound is sharp in this regime of µ’s, as we shall see
below.

Lemma S-25. There exist constants C > 0 and ω0 ∈ (0, 1) such that for any
w ≤ ω0, for any µ such that µ ≥ µ0 := 2Λ, with Tµ(w) as in (S-23),

m1(µ,w) ≤ CΦ(ζ − |µ|)
w

Tµ(w).

In particular, m1(µ,w) ≤ Cζ2Φ(ζ − µ)/w holds for any µ ≥ µ0 and w ≤ ω0.
For any w ≤ ω0, one also has

m1(µ,w) ≤ C

|µ|
e−µ

2/2+|µ|ζ , for any ζ−1 ≤ |µ| ≤ µ0,

|m1(µ,w)| ≤ C(1 + ζµ2), for any |µ| ≤ ζ−1.

Since Tµ(w) = 1+|ζ−|µ||/|µ| can be written 1+(ζ−|µ|)+/|µ|+(|µ|−ζ)+/|µ| ≤
2 + (ζ/|µ| − 1)+, we deduce the following corollary.

Corollary S-26. There exists ω0 ∈ (0, 1) such that for any K > 1, there exist
constants C(K) > 0 such that for any w ≤ ω0, for any µ such that µ ≥ ζ/K,
we have

m1(µ,w) ≤ C(K)
Φ(ζ − |µ|)

w
.

We now prove Lemma S-25.

Proof. As µ→ m1(µ,w) is even by symmetry of β and φ, it suffices to consider
the case µ ≥ 0. For µ > ζ − 1, the result directly follows from the global bound
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|m1(µ,w)| ≤ Cw−1, a consequence of Lemma S-21. By definition

m1(µ,w) =

∫ ∞
−∞

β(x)

1 + wβ(x)
φ(x− µ)dx

=

∫ ζ

−ζ

β(x)

1 + wβ(x)
φ(x− µ)dx +

∫
|x|>ζ

β(x)

1 + wβ(x)
φ(x− µ)dx

= (I) + (II).

We first deal with the term (II), for which β(x) ≥ β(ζ) ≥ 0 (for small enough
universal ω0), so (II) ≥ 0, and using 1 + wβ(x) ≥ wβ(x) one obtains

(II) ≤ 1

w

∫
|x|>ζ

φ(x− µ)dx ≤ 2

w
Φ(ζ − µ).

Now one rewrites (I) as

(I) =

∫ ζ

−ζ
β(x)φ(x− µ)dx− w

∫ ζ

−ζ

β(x)2

1 + wβ(x)
φ(x− µ)dx

≤
∫ ζ

−ζ
β(x)φ(x− µ)dx.

Let us split∫ ζ

−ζ
β(x)φ(x− µ)dx =

∫
|x|≤1/µ

β(x)φ(x− µ)dx+

∫
1/µ≤|x|≤ζ

β(x)φ(x− µ)dx

= (a) + (b).

First, the integral (a) can be written, by definition of β,∫
|x|≤1/µ

β(x)φ(x− µ)dx =

∫ 1/µ

−1/µ

(g − φ)(x)eµx−
µ2

2 dx

Using |g − φ| ≤ ‖g − φ‖∞ ≤ C, one gets (a) . e−µ
2/2/µ. For the integral (b),

with β(x) ≤ (g/φ)(x) (note that β(x) is possibly negative here),

(b) ≤
∫ −1/µ

−ζ
g(x)eµx−

µ2

2 dx+

∫ ζ

1/µ

g(x)eµx−
µ2

2 dx

≤
∫ ζ

1/µ

g(x)e−µx−
µ2

2 dx+

∫ ζ

1/µ

g(x)eµx−
µ2

2 dx

≤ 2e−
µ2

2

∫ µζ

1

g(t/µ)etdt/µ.

From this one deduces the global bound, for µ > 1/ζ,

m1(µ,w) ≤ 2

w
Φ(ζ − µ) +

C

µ
‖g‖∞e−µ

2/2+µζ

.
g(ζ)

φ(ζ)
φ(ζ − µ) +

1

µ
e−µ

2/2+µζ . (‖g‖∞ + µ−1)e−µ
2/2+µζ ,
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which leads to the second inequality of the lemma. Now turning to the first
inequality, an integration by parts gives, with 0 ≤ −g′/g ≤ Λ from (39),∫ µζ

1

g(t/µ)etdt = [g(t/µ)et]µζ1 −
∫ µζ

1

1

µ
g′(t/µ)etdt

≤ g(ζ)eµζ +
Λ

µ

∫ µζ

1

g(t/µ)etdt.

One obtains

(b) ≤ 2
(

1− Λ

µ

)−1

g(ζ)eµζ
e−

µ2

2

µ
.

Noting that g(ζ)eµζ ≥ g(0)e(µ−Λ)ζ using (39) again, and that this quantity is
bounded away from 0 for µ ≥ µ0 = 2Λ, one concludes that for such µ’s the
upper-bound for (b) dominates the one for (a), so that

(a) + (b) ≤ Cg(ζ)
eµζ−

µ2

2

µ
.

Now one can note, using µ0 ≤ µ ≤ ζ − 1 and (g/φ)(ζ) � w−1,

g(ζ)
eµζ−

µ2

2

µ
= g(ζ)

φ(ζ − µ)

φ(ζ)

1

µ

≤ CΦ(ζ − µ)

w

|ζ − µ|
µ

.

This gives the result in the case µ0 ≤ µ ≤ ζ−1, which concludes the proof of the
first inequality. The last part of the lemma follows by noting that Tµ(w) ≤ Cζ2.

For |µ| ≤ 1/ζ, we can invoke Lemma 9, eq. (89) from [1], that is

m1(µ,w) ≤ −m̃(w) + Cζµ2

which is at most C + Cζµ2.

S-5.4. Upper bound on m2

Lemma S-27. There exist constants C > 0 and ω0 ∈ (0, 1) such that for any
w ≤ ω0, for any µ ∈ R,

m2(µ,w) ≤ CΦ(ζ − |µ|)
w2

.

Proof. Since m2(µ,w) = E[β(Z + µ,w)2] =
∫∞
−∞ β(u,w)2φ(u − µ)du by defini-

tion, we first bound

β(u,w)2 =

(
β(u)

1 + wβ(u)

)2

≤ Cβ(u)21|u|≤ζ + w−21|u|>ζ .
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Indeed, for β(u) ≥ 0 this follows from bounding the denominator from below
by 1 or wβ(u) respectively, and for β(u) < 0 (in which case |u| < ζ, as soon as
w0 < β−1(0)) one uses the fact that 1 + wβ(u) ≥ 1 + wβmin ≥ c0 > 0. Deduce
that

m2(µ,w) ≤ C
∫ ζ

−ζ
β(z)2φ(z − µ)dz +

∫
|z|>ζ

w−2φ(z − µ)dz

≤ (A) + (B).

By definition of (B),

(B) = w−2(Φ(ζ − µ) + Φ(ζ + µ)) ≤ 2w−2Φ(ζ − |µ|).

To bound (A), we note

(A) = C

(∫ ζ

0

β(z)2φ(z + µ)dz +

∫ ζ

0

β(z)2φ(z − µ)dz

)
≤ 2C

∫ ζ

0

β(z)2φ(z−|µ|)dz.

As the last bound is symmetric in µ, it is enough to obtain the desired bound for
µ ≥ 0, which we thus assume for the remaining of the proof. For large enough
C, it holds ( gφ − 1)2 ≤ C( gφ )2 (e.g. expanding the square and using that g/φ is

bounded away from 0) which with Lemma S-23 leads to∫ ζ

0

β(z)2φ(z − µ)dz ≤ C
∫ ζ

0

(g/φ)(z)2φ(z − µ)dz ≤ C 8

ζ

( g
φ

)2
(ζ)φ(ζ − µ).

Also, (g/φ)(ζ) = β(ζ) + 1 = w−1 + 1 ≤ 2w−1. To conclude one writes

φ(ζ − µ)

ζ
=

φ(ζ − µ)

ζ − µ+ µ
.

If ζ − µ ≥ 1, one can use Lemma S-33 to obtain that the previous quantity is
less than 2Φ(ζ−µ) (bound the denominator from below by ζ−µ). If ζ−µ ≤ 1,
there exist C1, C2 > 0 with

sup
µ:µ≥ζ−1

φ(ζ − µ)

ζ
≤ C1 ≤ C2Φ(1) ≤ C2Φ(ζ − µ).

The lemma follows by combining the previous bounds.

S-5.5. Lower bound on m1

Lemma S-28. There exist constants M0, C1 > 0 and ω0 ∈ (0, 1) such that for
any w ≤ ω0, and any µ ≥M0, with Tµ(w) defined by (S-23),

m1(µ,w) ≥ C1
Φ(ζ − µ)

w
Tµ(w).
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Proof. By definition, using ζ = ζ(w) as shorthand,

m1(µ,w) =

∫ ζ

−ζ

β(x)

1 + wβ(x)
φ(x− µ)dx +

∫
|x|>ζ

β(x)

1 + wβ(x)
φ(x− µ)dx

= (I) + (II).

To bound (II) from below, one notes that 1 + wβ(x) ≤ 2wβ(x) for |x| ≥ ζ, so

(II) ≥ 1

2w

∫
|x|>ζ

φ(x− µ)dx =
1

2w
(Φ(ζ − µ) + Φ(ζ + µ)) ≥ 1

2w
Φ(ζ − µ).

To bound (I) from below, let us introduce d = max(d1, d2), where d1 verifies
β(d1) = 1 and d2 is such that for x ≥ d2, the map x→ g(x) is decreasing (such
d2 exists by (38)). We isolate first the possibly negative part of the integral
defining (I) and write∫

|x|≤d

β(x)

1 + wβ(x)
φ(x− µ)dx ≥ −

∫
|x|≤d

|β(x)|
1 + wβ(0)

φ(x− µ)dx

≥ −
∫
|x|≤d

|β(x)|
1 + wβ(0)

dx√
2π

=: −D1.

Let I1 be the part of the integral (I) corresponding to x in Γ := {x : d ≤ |x| ≤ ζ}.
If ζ > d,

I1 ≥
∫

Γ

β(x)φ(x− µ)dx− w
∫

Γ

β(x)2

1 + wβ(x)
φ(x− µ)dx

≥ 1

2

∫
Γ

β(x)φ(x− µ)dx

≥ 1

4

∫
Γ

g(x)
φ(x− µ)

φ(x)
dx,

where we have used that wβ(·)/(1+wβ(·)) ≤ 1/2 on Γ and that g/φ−1 ≥ g/(2φ)
on Γ by definition of this set. An integration by parts now shows that∫ ζ

d

g(x)eµxdx =
1

µ

∫ µζ

µd

g(t/µ)etdt

= µ−1[g(t/µ)et]µζµd − µ
−2

∫ µζ

µd

g′(t/µ)etdt

≥ µ−1
[
g(ζ)eµζ − g(d)eµd

]
,

as g′(u) < 0 for u > d ≥ d2. We now claim that g(ζ)eµζ ≥ 2g(d)eµd for any
µ ≥ 2Λ and ζ ≥ d+ log(2)/Λ. Indeed, for such µ, ζ,

eµ(ζ−d) ≥ e2Λ(ζ−d) ≥ 2eΛ(ζ−d),
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while, using that −Λ ≤ (log g)′ < 0 on (d,∞) by (39) and the definition of d,
one obtains

2
g(d)

g(ζ)
= 2e−{log g(ζ)−log g(d)} ≤ 2eΛ(ζ−d) ≤ eµ(ζ−d).

Putting the two previous bounds together leads to, for such µ, ζ,

I1 ≥
1

8µ
g(ζ)eµζ−µ

2/2.

Let us now distinguish two cases. Suppose first that M0 ≤ µ ≤ ζ − 1 for
M0 := 2Λ. The map µ→ µζ−µ2/2 is increasing on this interval, so its minimum
is attained for µ = M0. Combining this with g(ζ) ≥ Ce−Λζ and using the rough
bound µ−1 ≥ ζ−1 leads to, uniformly for µ ∈ [M0, ζ − 1],

I1 ≥
e−Λζ+M0ζ−M2

0 /2

8ζ
&
eΛζ

ζ
.

Since eΛu/u → ∞ as u → ∞ and ζ = ζ(w) → ∞ as w → 0, we have I1 ≥ 2D1

for any µ ≥ [M0, ζ − 1] and any w ≥ ω0 for ω0 small enough. One deduces that
for such w and µ,

I1 −D1 ≥
g(ζ)

16

eζµ−µ
2/2

µ
&

1

µ

φ(ζ − µ)

φ(ζ)
g(ζ).

Noting that φ(ζ)/g(ζ) ∼ w and combining with the bound on (II) above, one
deduces, for w ≤ ω0 and µ ∈ [M0, ζ − 1],

m1(µ,w) ≥ Φ(ζ − µ)

2w
+ C

φ(ζ − µ)

µw
.

Using that µ ≤ ζ − 1, one deduces that

φ(ζ − µ)

µw
≥ ζ − µ

µ

Φ(ζ − µ)

w
.

This gives the desired inequality if µ ∈ [M0, ζ − 1]. The second case is now
µ > ζ − 1. In this case, we simply use I1 ≥ 0 to get

m1(µ,w) ≥ −D1 + (II) ≥ −D1 +
1

2w
Φ(ζ − µ).

As Φ(ζ − µ)/(2w) ≥ Φ(1)/(2w) for small enough w, the last display is bounded
from below by Φ(ζ − µ)/(4w). Noting that the bound

m1(µ,w) ≥ CΦ(ζ − µ)

w

[
1 +
|ζ − µ|
µ

]
holds in the two cases, for C a small enough constant, leads to the result,
recalling the definition of Tw(µ) in (S-23).
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Combining Lemmas S-27 and S-28 (and using Tµ(w) ≥ 1) one obtains the
following bound.

Corollary S-29. There exist constants M0, C2 > 0 and ω0 ∈ (0, 1) such that
for any w ≤ ω0, and any µ ≥M0,

m2(µ,w) ≤ C2
m1(µ,w)

w
.

Here is another lower bound for m1 when the signal is large

Lemma S-30. For any ε ∈ (0, 1) and ρ > 0, there exist ω0 = ω0(ε, ρ) ∈ (0, 1)
such that for any w ≤ ω0, and any µ ≥ (1 + ρ) ζ(w),

m1(µ,w) ≥ (1− ε)/w.

Proof. Let a = 1 + (ρ/2) and let us write, for w small enough,

wm1(µ,w) =

∫ aζ

−aζ

wβ(x)

1 + wβ(x)
φ(x− µ)dx+

∫
|x|>aζ

wβ(x)

1 + wβ(x)
φ(x− µ)dx

≥
∫
x>aζ

wβ(x)

1 + wβ(x)
φ(x− µ)dx−

∫ aζ

−aζ
φ(x− µ)dx

≥ wβ(aζ)

1 + wβ(aζ)
Φ(aζ − µ)− (1− Φ(aζ − µ)).

Since for µ ≥ (1+ρ)ζ, we have that Φ(aζ−µ) ≥ Φ(−(ρ/2)ζ) tends to 1 when w
tends to zero, we only have to prove that wβ(aζ) = β(aζ)/β(ζ) tends to infinity.
The latter comes from

β(aζ)/β(ζ) & e−aΛζ φ(ζ)

φ(aζ)
= e(a2−1)ζ2−aΛζ ,

by using the definition of β and (44).

S-5.6. Results for m1 and m̃ ratio

In the next lemmas, we study the behaviour of the functionals, for given θ0 ∈ Rn,

Hθ0(w) =

∑
i∈S0

m1(θ0,i, w)

m̃(w)
, w ∈ (0, 1), (S-35)

H◦θ0(w,K) =

∑
i∈C0(θ0,w,K)m1(θ0,i, w)

m̃(w)
, w ∈ (0, 1), K ≥ 1, (S-36)

where we denoted S0 = {1 ≤ i ≤ n : θ0,i 6= 0} and

C0(θ0, w,K) = {1 ≤ i ≤ n : |θ0,i| ≥ ζ(w)/K} ⊂ S0.

The set C0(θ0, w,K) is sometimes denoted by C0(w,K) or C0 for short.
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Lemma S-31. Consider a sparsity sn ≤ nυ for υ ∈ (0, 1). Consider Hθ0 and
H◦θ0 as in (S-35) and (S-36), respectively. There exist constants C = C(υ, g) > 0
and D = D(υ, g) ∈ (0, 1) such that

sup
θ0∈`0[sn]

sup
w∈[ 1

n ,
1

logn ], K∈[ 2
1−υ ,

4
1−υ ]

∣∣Hθ0(w)−H◦θ0(w,K)
∣∣ ≤ Cn1−D, (S-37)

for any n larger than an integer N = N(υ, g).

Proof. For θ0 ∈ `0[sn] and w ∈ [n−1, 1/ log n], denote

C1 = S0 \ C0 = {1 ≤ i ≤ n : 0 < |θ0,i| < ζ(w)/K}.

By using the upper bounds on m1 obtained in Lemma S-25 (and µ0 defined
therein), with ζ = ζ(w), and for now taking K ≥ 2 arbitrary,∑

i∈C1

m1(θ0,i, w) =
{ ∑

0<|θ0,i|≤ζ−1

+
∑

ζ−1<|θ0,i|≤µ0

+
∑

µ0<|θ0,i|<ζ/K

}
m1(θ0,i, w)

. sn
{

(1 + ζ−1) + ζeµ0ζ + ζw−1Φ (ζ − ζ/K)
}
,

where to bound the third sum we use Φ (ζ − |θ0,i|) ≤ Φ (ζ − ζ/K) and Tµ(w) .
ζ(w). Now, by Lemma S-33,

Φ

(
ζ − ζ

K

)
≤ K

K − 1
ζ−1 exp

(
−ζ

2

2

(K − 1)2

K2

)
.

1

ζ
w(1−1/K)2

for n large enough, where we used ζ(w)2 ≥ −2 logw via (S-16) in the last step.
Now using that for w ≥ n−1, we have ζ ≤ 2

√
log n for large n by Lemma S-15,

so that eµ0ζ is negligible compared to any positive power of n. One deduces
that, for n large enough, using w ≥ n−1 and sn . nυ by assumption, and any
K ≥ 2, ∑

i∈C1

m1(θ0,i, w) ≤ Csn
{

1 + eCζ + w−2/K+1/K2
}

≤ CnυeCζ + Cn nυ−1+2/K−1/K2

.

Now if υ − 1 + 2/K ≤ 0, which holds for K as in the statement, one gets

sup
θ0∈`0[sn]

sup
w∈[n−1,1/ logn]

∑
i∈C1 m1(θ0,i, w)

m̃(w)
≤ C

m̃(n−1)
{nυe2C

√
logn + n1−1/K2

}.

For K as in the statement, we further have 1 −K−2 ≤ 1 − (1 − υ)2/16. Since
m̃(n−1) decreases to 0 slower than any power of n (see Lemma S-24, combined
with (44) and the bound (S-17) on ζ), the last display can be bounded by
Cn1−D, for D small enough, which shows (S-37).

Lemma S-32. Consider H◦θ0 as in (S-36) for some choice of K > 1. Then
there exists a constant C = C(K, g) > 0 such that, for all z ≥ 1, there exists
ω0 = ω0(z,K, g) ∈ (0, 1) such that for all w ∈ (0, ω0) and for all θ0 ∈ Rn, we
have

H◦θ0(w/z,K) ≥ Cz1/(2K)H◦θ0(w,K/1.1). (S-38)
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Proof. According to Lemma S-25 and Lemma S-28, there exists constants C1, C2 >
0 and ω0 ∈ (0, 1) such that for w ∈ (0, ω0) and any θ0,

C1

∑
i∈C0(w,K)

Gθ0,i(w)
Tθ0,i(w)

m̃(w)
≤ H◦θ0(w,K) ≤ C2

∑
i∈C0(w,K)

Gθ0,i(w)
Tθ0,i(w)

m̃(w)
,

where Tµ, Gµ are defined by (S-23), (S-26) respectively. Now, by Lemmas S-
19 and S-20, for all z ≥ 1, there exists ω0(z,K) ∈ (0, 1) such that for w ≤
ω0(z,K) and any µ ≥ ζ(w)/K,

Gµ(w/z) ≥ z1/(2K)Gµ(w)

d1 Tµ(w) ≤ Tµ(w/z) ≤ d2 Tµ(w),

for some constants d1 = d1(K), d2 = d2(K). Combining Lemma S-24 on m̃ with
Lemma S-19 on G, one can find D1, D2 > 0 with, for w ≤ ω(z),

D1 m̃(w) ≤ m̃(w/z) ≤ D2 m̃(w).

Hence, by combining these results one gets, for w ≤ ω0(z,K) (and then w/z ≤
ω0(z,K) also holds),

H◦θ0(w/z,K) ≥ C1

∑
i∈C0(w/z,K)

Gθ0,i(w/z)
Tθ0,i(w/z)

m̃(w/z)

≥ (C1d1/D2)z1/(2K)
∑

i∈C0(w/z,K)

Gθ0,i(w)
Tθ0,i(w)

m̃(w)
.

Now we claim that C0(w,K/1.1) ⊂ C0(w/z,K) for w small enough depending
on z. Indeed, ζ(w/z)/ζ(w) ≤ 1+(ζ(w/z)−ζ(w))/ζ(w) ≤ 1.1 for w small enough
depending on z, as in the proof of Lemma S-19. So,

C0(w/z,K) = {1 ≤ i ≤ n : |θ0,i| ≥ ζ(w/z)/K}
⊃ {1 ≤ i ≤ n : |θ0,i| ≥ 1.1ζ(w)/K} = C0(w,K/1.1).

One deduces that H◦θ0(w/z,K) ≥ Cz1/(2K)H◦θ0(w,K/1.1) for w ≤ ω0(z,K) as
announced.

S-6. Auxiliary lemmas

Lemma S-33. For any x > 0,

x2

1 + x2

φ(x)

x
≤ Φ(x) ≤ φ(x)

x
.

In particular, for any x ≥ 1, Φ(x) ≥ 1
2
φ(x)
x and Φ(x) ∼ φ(x)

x when x → ∞.
Furthermore, for any y ∈ (0, 1/2),{

(2 log(1/y)− log log(1/y)− log(16π))+

}1/2 ≤ Φ
−1

(y) ≤ {2 log(1/y)}1/2 .
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and also for y small enough,

Φ
−1

(y) ≤ {2 log(1/y)− log log(1/y)}1/2 .

In particular, Φ
−1

(y) ∼ {2 log(1/y)}1/2 when y → 0.

Proof. The first display of the lemma are classical bounds on Φ. The second
display follows using the first one and similar inequalities as those used to derive
bounds on ξ, ζ, χ. Let us prove the last relation: for all y ∈ (0, 1/2),

y
{

(2 log(1/y)− log log(1/y)− log(16π))+

}1/2 ≤ yΦ
−1

(y) ≤ φ(Φ
−1

(y))

Hence,

Φ
−1

(y) ≤
{
−2 log

(
y
{

(2 log(1/y)− log log(1/y)− log(16π))+

}1/2
)}1/2

≤
{
−2 log y − log

(
(2 log(1/y)− log log(1/y)− log(16π))+

)}1/2

which provides the result.

Lemma S-34. For any x, y ∈ R, with |x− y| ≤ 1/4, we have

Φ(x) ≥ Φ(y)
1

4
e−(x2−y2)+/2. (S-39)

Proof. Let us assume x > y (otherwise the result is trivial). If y ≤ 0, we have
Φ(x) ≥ Φ(1/4) ≥ 1/4 ≥ 1/4Φ(y) so the inequality is true. Assume now y > 0.
By Lemma S-33,

Φ(x)

Φ(y)
≥ Φ(y + 1/4)

Φ(y)
1{y ≤ 1}+

xy

1 + x2
e−(x2−y2)/21{y ≥ 1}

≥ Φ(5/4)

Φ(1)
1{y ≤ 1}+

x2

2(1 + x2)
e−(x2−y2)/21{y ≥ 1}

because y ∈ (0,∞) → Φ(y+1/4)

Φ(y)
is decreasing and y ≥ x/2 when y ≥ 1. This

concludes the proof.

Lemma S-35. [Bernstein’s inequality] Let Wi, 1 ≤ i ≤ n centered independent
variables with |Wi| ≤ M and

∑n
i=1 Var(Wi) ≤ V , then for any A > 0,

P

[
n∑
i=1

Wi > A

]
≤ exp

{
−1

2
A2/(V +MA/3)

}
.

Lemma S-36. There exists a constant C > 1 such that, for any M ≥ 1,

eM

M2
− 1 ≤

∫ M

1

ev

v2
dv ≤ C eM

M2
.
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Proof. For M ≤ 3 the result is immediate for C chosen large enough beforehand.
For M > 3, one writes∫ M

3

ev

v2
dv =

[
ev

v2

]M
3

+ 2

∫ M

3

ev

v3
dv ≤ eM

M2
+

2

3

∫ M

3

ev

v2
dv,

so that
∫M

3
ev

v2 dv ≤ 3eM/M2, from which the upper bound follows. The lower
bound follows from integrating by parts between 1 and M and noting that the
second term is nonnegative.

Lemma S-37. For m ≥ 1, p1, . . . , pm ∈ (0, 1), consider U =
∑m
i=1Bi, where

Bi ∼ B(pi), 1 ≤ i ≤ m, are independent. For any nonnegative variable T
independent of U , we have

E

(
T

T + U
1{T > 0}

)
≤ e−EU +

12 ET

EU
. (S-40)

Proof. Let us prove the two following inequalities: for all u > 0,

P (U = 0) ≤ e−
∑m
i=1 pi .

E

(
u
∑m
i=1 pi

u
∑m
i=1 pi + U ∨ 1

)
≤ 12u.

For the first inequality, using log(1− x) ≤ −x for all x ∈ (0, 1),

P (U = 0) =

n∏
i=1

(1− pi) = e
∑n
i=1 log(1−pi) ≤ e−

∑m
i=1 pi = e−EU .

For the second assertion, we have

E

(
u
∑m
i=1 pi

u
∑m
i=1 pi + U ∨ 1

)
≤ E

(∑m
i=1 pi
U ∨ 1

)
u.

Now applying Bernstein’s inequality, we have

P

(
U ≤

m∑
i=1

pi/2

)
= P

(
U −

m∑
i=1

pi ≤ −
m∑
i=1

pi/2

)

≤ exp

{
−1

2

m∑
i=1

pi(1/2)2/(1 + 1/6)

}
≤ e−0.1

∑m
i=1 pi .

As a result, one obtains, using xe−x ≤ 1 for x ≥ 0,

E

(∑m
i=1 pi
U ∨ 1

)
≤ E

(∑m
i=1 pi
U ∨ 1

1{U >

m∑
i=1

pi/2}

)
+ E

(∑m
i=1 pi
U ∨ 1

1{U ≤
m∑
i=1

pi/2}

)

≤ 2 + 10

(
0.1

m∑
i=1

pi

)
e−0.1

∑m
i=1 pi ≤ 12,
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as announced. To show (S-40), we now use the independence assumption and
the concavity of x→ x

x+u (for u > 0), to obtain

E

[
T

T + U
1{T > 0}

]
= P (U = 0, T > 0) + E

[
T

T + U
1{U > 0}

]
≤ P (U = 0) + E

[
ET

ET + U
1{U > 0}

]
≤ P (U = 0) + E

[
ET

ET + U ∨ 1

]
.

The two previous inequalities for u = ET/EU thus give the result.

S-7. Additional numerical experiments

The following pages present further numerical experiments along the lines of the
comments of Section 4.
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Fig S-3. FDR of EBayesq.0 and EBayesq.hybrid procedures with threshold t ∈
{0.05, 0.1, 0.2}. α = 0.2; n = 10, 000; 500 replications; alternative all equal to µ (on the
X-axis).

imsart-generic ver. 2014/10/16 file: CR2018supp_arXiv.tex date: August 14, 2018



/Supplement to “Spike and slab Emp. Bayes multiple testing” 38

quasi-Cauchy Laplace
s n
/
n

=
0
.1

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

SC 0.05
SC 0.1
SC 0.2

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

SC 0.05
SC 0.1
SC 0.2

s n
/
n

=
0
.0

1

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

SC 0.05
SC 0.1
SC 0.2

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

SC 0.05
SC 0.1
SC 0.2

s n
/
n

=
0
.0

0
1

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

SC 0.05
SC 0.1
SC 0.2

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

SC 0.05
SC 0.1
SC 0.2

Fig S-4. FDR for SC procedure with threshold t ∈ {0.05, 0.1, 0.2}. α = 0.2; n = 10, 000; 2000
replications; alternative all equal to µ (on the X-axis).
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Fig S-5. FDR of EBayesL and EBayesq procedures with threshold t ∈ {0.05, 0.1, 0.2}. α = 0.2;
n = 10, 000; 2000 replications; alternative values i.i.d. uniformly drawn into [0, 2µ] (µ on the
X-axis).
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Fig S-6. FDR of EBayesq.0 and EBayesq.hybrid procedures with threshold t ∈
{0.05, 0.1, 0.2}. α = 0.2; n = 10, 000; 2000 replications; alternative values i.i.d. uniformly
drawn into [0, 2µ] (µ on the X-axis).
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Fig S-7. FDR for SC procedure with threshold t ∈ {0.05, 0.1, 0.2}. α = 0.2; n = 10, 000; 2000
replications; alternative values i.i.d. uniformly drawn into [0, 2µ] (µ on the X-axis).
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