Supplement to "On spike and slab empirical Bayes multiple testing"

Ismaël Castillo and Étienne Roquain
Sorbonne Université, Laboratoire de Probabilités, Statistique et Modélisation, LPSM, 4, Place Jussieu, 75252 Paris cedex 05, France
e-mail: ismael.castillo@upmc.fr; etienne.roquain@upmc.fr

Abstract

This supplementary file contains additional materials for the proofs as well as the proof of Propositions 1-2 and Theorem 3; a study of ℓ-values and q-values; inequalities for the thresholds of the corresponding BMT procedures; properties of the moment functions \tilde{m}, m_{1} and m_{2} and additional numerical experiments.

AMS 2000 subject classifications: Primary 62C12, 62G10.
Keywords and phrases: Frequentist properties of Bayesian procedures, False discovery rate, sparsity, multiple testing.

Contents

S-1 Intermediate lemmas used in the proof of main results 1
S-2 Auxiliary proofs 5
S-2.1 Proof of Proposition 1 5
S-2.2 Proof of Proposition 2 6
S-2.3 Proof of Theorem 3 6
S-3Basic properties of $\ell-, q$ - and p-values 11
S-4Threshold properties 13
S-4.1 Link between ξ, χ and ζ 14
S-4.2 Bounds for ξ, χ and ζ 14
S-4.3 Relations between $\xi(r(w, t)), \chi(r(w, t))$ and $\zeta(w)$ 16
S-4.4 Variations of certain useful functions 19
S-5 Moment properties 21
S-5.1 Basic lemmas on moments 21
S-5.2 Behaviour of \tilde{m} 23
S-5.3 Upper bound on m_{1} 24
S-5.4 Upper bound on m_{2} 26
S-5.5 Lower bound on m_{1} 27
S-5.6 Results for m_{1} and \tilde{m} ratio 30
S-6 Auxiliary lemmas 32
S-7 Additional numerical experiments 35
References 36

S-1. Intermediate lemmas used in the proof of main results

In the sequel we freely use that $s_{n} \leq n^{v}$ as assumed in the main results of the paper. We assume that the function g satisfies the assumptions from (38) up to and including (42) (recall that this is in particular the case if g arises from a convolution $g=\gamma \star \phi$ for γ satisfying (16)-(18), which is the case in the Bayesian setting with a slab density γ).

We start by two basic lemmas on $w_{0}=w_{0}(n, M), w_{1}=w_{1}\left(n, M, \theta_{0}, \nu\right)$, $w_{2}=w_{2}\left(n, M, \theta_{0}, \nu\right)$, quantities introduced in (60), (67), (68), respectively.
Lemma S-1. Let w_{0} as in (60) with $M>1$ arbitrary. Let \tilde{m} be defined by (56). Then, for an integer $N_{0}(g)>0$, and constants $c_{1}=1 / \tilde{m}(1), c_{2}=c_{2}(g)$, we have for all $n \geq N_{0}(g)$,

$$
\frac{n}{M} \tilde{m}\left(M c_{1} / n\right) \leq \frac{1}{w_{0}} \leq \frac{n}{M} \tilde{m}\left(\sqrt{M c_{2} / n}\right) .
$$

In particular, for any $M \in[1, \log n]$, for C_{1}, C_{2} depending only on g,

$$
C_{1} \frac{\sqrt{\log n}}{n} \leq w_{0} \leq \frac{\log n}{n} e^{C_{2} \sqrt{\log n}}
$$

Proof. Lemma S-24 gives $\tilde{m}(w) \gtrsim w^{c}$ for any $c>0$. Setting $c=1$ and using the equation defining w_{0}, that is $n w_{0} \tilde{m}\left(w_{0}\right)=M$, leads to $w_{0} \leq(C M / n)^{1 / 2}$. Reinserting this estimate into \tilde{m} in the equation defining w_{0} (by using that \tilde{m} is increasing by Lemma S-22) gives the first upper bound of the lemma. Next, one notes that $\tilde{m}(w) \leq \tilde{m}(1)$, which leads to $w_{0} \geq M /(n \tilde{m}(1))$. Reinserting this estimate into \tilde{m} in the equation defining w_{0} gives the first lower bound of the lemma.

To prove the second display of the lemma, one notes that the fact that $\log g$ is Lipschitz and $g(u) \lesssim\left(1+u^{2}\right)^{-1}$ by (41) imply for w small enough,

$$
\zeta(w)^{\kappa-1} e^{-\Lambda \zeta(w)} \lesssim \tilde{m}(w) \lesssim \zeta(w)^{\kappa-3}
$$

Using the first display of the lemma together with Lemma S-15 on ζ and $1 \leq$ $M \leq \log n$ leads to the result.

Lemma S-2. For $M>0$ and $\nu \in(0,1)$, there exist an integer $N_{0}=N_{0}(\nu, v, g)>$ 0 and $r=r(\nu, v, g) \in(0,1)$ such that for all $n \geq N_{0}$ and $\theta_{0} \in \ell_{0}\left[s_{n}\right]$, if a solution $w_{1}=w_{1}\left(n, M, \theta_{0}, \nu\right)$ of (67) exists, then

$$
w_{0} \leq w_{1} \leq n^{-r}
$$

Proof. The lower bound follows from the definition of w_{0} and w_{1}. For the upper bound, one uses the definition of w_{1} and the global bound $\left|m_{1}(\mu, w)\right| \leq 1 /\left(w \wedge c_{1}\right)$ (which follows from Lemma S-21) to get,

$$
\frac{\sigma_{0}}{w_{1} \wedge c_{1}} \geq(1-\nu)\left(n-\sigma_{0}\right) \tilde{m}\left(w_{1}\right)
$$

As \tilde{m} is increasing and $\tilde{m}(w) \gtrsim w^{c}$ for arbitrary $c \in(0,1)$ (see Lemma S-24), one gets $\left(w_{1} \wedge c_{1}\right)^{1+c} \leq C \sigma_{0} / n \leq C s_{n} / n$. Using $s_{n} \leq n^{v}$ gives the result.

Lemma S-3 (Bernstein $\left.w_{0}\right)$. There exist an integer $N_{0}=N_{0}(g, v)>0$ and $C_{0}=C_{0}(g)>0$ such that the following holds for all $n \geq N_{0}$ and $\theta_{0} \in \ell_{0}\left[s_{n}\right]$. Let $M \in[1, \log n]$ and w_{0} as in (60). Let $\nu \in(0,1)$ and assume (62) (which is implied by the fact that (61) has no solution). Then the MMLE estimate \hat{w} satisfies

$$
\begin{equation*}
P_{\theta_{0}}\left(\hat{w}>w_{0}\right) \leq e^{-C_{0} \nu^{2} n w_{0} \tilde{m}\left(w_{0}\right)}=e^{-C_{0} \nu^{2} M} . \tag{S-1}
\end{equation*}
$$

Proof of Lemma S-3. One first notes the almost sure equality of events $\{\hat{w}>$ $\left.w_{0}\right\}=\left\{S\left(w_{0}\right)>0\right\}$. This follows since S is (strictly) decreasing and continuous on $[0,1]$ (except in the case that $g\left(X_{i}\right)=\phi\left(X_{i}\right)$ for all i which happens with probability 0). Then, with $P=P_{\theta_{0}}, E=E_{\theta_{0}}$ as shorthand,

$$
\begin{aligned}
P\left(\hat{w}>w_{0}\right) & =P\left(S\left(w_{0}\right)>0\right)=P\left(S\left(w_{0}\right)-E S\left(w_{0}\right)>-E S\left(w_{0}\right)\right) \\
& \leq P\left(S\left(w_{0}\right)-E S\left(w_{0}\right)>\nu\left(n-\sigma_{0}\right) \tilde{m}\left(w_{0}\right)\right),
\end{aligned}
$$

as $E S\left(w_{0}\right)=\sum_{i \in S_{0}} m_{1}\left(\theta_{0, i}, w_{0}\right)-\left(n-\sigma_{0}\right) \tilde{m}\left(w_{0}\right)<-\nu\left(n-\sigma_{0}\right) \tilde{m}\left(w_{0}\right)$ using (62). Now, the score function equals $S\left(w_{0}\right)=\sum_{i=1}^{n} \beta\left(X_{i}, w_{0}\right)$, a sum of independent variables. One applies Bernstein's inequality (see Lemma S-35 and notation therein) to the variables $W_{i}=\beta\left(X_{i}, w_{0}\right)-E \beta\left(X_{i}, w_{0}\right)$. Note that $\left|W_{i}\right| \leq 2 / w_{0}=$: \mathcal{M} as $|\beta| \leq\left(w_{0} \wedge c_{1}\right)^{-1}=w_{0}^{-1}$ by Lemma S-21 for n large enough (indeed, w_{0} goes to 0 with n by Lemma S-1). Also,

$$
V:=\sum_{i=1}^{n} \operatorname{Var}\left(W_{i}\right) \leq \sum_{i=1}^{n} m_{2}\left(\theta_{0, i}, w_{0}\right)
$$

One splits the last sum in two. Consider $\zeta_{0}=\beta^{-1}\left(w_{0}^{-1}\right)$ the pseudo-threshold associated to w_{0}. Using Corollary S-29 (recall as noted above that w_{0} goes to 0 with n), with M_{0} the constant therein, combined with (62), one gets

$$
\begin{aligned}
\sum_{i:\left|\theta_{0, i}\right|>M_{0}} m_{2}\left(\theta_{0, i}, w_{0}\right) & \leq \frac{C_{2}}{w_{0}} \sum_{i:\left|\theta_{0, i}\right|>M_{0}} m_{1}\left(\theta_{0, i}, w_{0}\right) \\
& \leq \frac{C_{2}}{w_{0}}(1-\nu)\left(n-\sigma_{0}\right) \tilde{m}\left(w_{0}\right)-\frac{C_{2}}{w_{0}} \sum_{i:\left|\theta_{0, i}\right| \leq M_{0}} m_{1}\left(\theta_{0, i}, w_{0}\right) \\
& \leq \frac{2 C_{2}}{w_{0}}(1-\nu) n \tilde{m}\left(w_{0}\right)
\end{aligned}
$$

because $\mu \in \mathbb{R}_{+} \rightarrow m_{1}\left(\mu, w_{0}\right)$ is nondecreasing (see Lemma S-22) and bounded from below by $-\tilde{m}\left(w_{0}\right)$.

For small non-zero signals, one uses Lemma S-27 to get, with $\zeta_{0}:=\zeta\left(w_{0}\right)$,

$$
\sum_{i: 0<\left|\theta_{0, i}\right| \leq M_{0}} m_{2}\left(\theta_{0, i}, w_{0}\right) \leq C \sum_{i: 0<\left|\theta_{0, i}\right| \leq M_{0}} \frac{\bar{\Phi}\left(\zeta_{0}-\left|\theta_{0, i}\right|\right)}{w_{0}^{2}} \leq C \sigma_{0} \frac{\bar{\Phi}\left(\zeta_{0}-M_{0}\right)}{w_{0}^{2}}
$$

and one uses $\bar{\Phi}\left(\zeta_{0}-M_{0}\right) \leq C \phi\left(\zeta_{0}-M_{0}\right) / \zeta_{0} \leq C^{\prime} e^{M_{0} \zeta_{0}} \phi\left(\zeta_{0}\right) / \zeta_{0}$. With Lemma S-24, one gets plutot $\phi(\zeta) / \zeta \asymp w g(\zeta) / \zeta \asymp w \tilde{m}(w) / \zeta^{\kappa}$ for small w, so that

$$
\sum_{i:\left|\theta_{0, i}\right| \leq M_{0}} m_{2}\left(\theta_{0, i}, w_{0}\right) \lesssim \frac{s_{n} e^{M_{0} \zeta_{0}}}{n \zeta_{0}^{\kappa}} \frac{n \tilde{m}\left(w_{0}\right)}{w_{0}} \lesssim \frac{n \tilde{m}\left(w_{0}\right)}{\zeta_{0}^{\kappa} w_{0}},
$$

where we use that $s_{n} e^{M_{0} \zeta_{0}} / n \leq C$, as follows from $s_{n}=O\left(n^{v}\right)$ and $\zeta_{0}^{2} \lesssim \log n$ (combining Lemmas S-1 on w_{0} and Lemma S-15). With $A=\left(n-\sigma_{0}\right) \nu \tilde{m}\left(w_{0}\right)$, one gets, for $n \geq N_{0}$,

$$
\frac{V+\frac{1}{3} \mathcal{M} A}{A^{2}} \lesssim \frac{\nu^{-2}}{n w_{0} \tilde{m}\left(w_{0}\right)}+\frac{\nu^{-2}}{n w_{0} \tilde{m}\left(w_{0}\right) \zeta_{0}^{\kappa}} \lesssim \frac{\nu^{-2}}{n w_{0} \tilde{m}\left(w_{0}\right)}
$$

An application of Bernstein's inequality (see Lemma S-35) now gives (S-1).
Lemma S-4 (Bernstein $\left.w_{1}, w_{2}\right)$. There exist an integer $N_{0}=N_{0}(g, v)>0$ and $C_{1}=C_{1}(g)>0$ such that the following holds for all $n \geq N_{0}$ and $\theta_{0} \in \ell_{0}\left[s_{n}\right]$: for $\nu \in(0,1)$, suppose that a solution w_{1} of (67) exists, and let w_{2} be the solution of (68). Then the MMLE estimate \hat{w} satisfies

$$
\begin{equation*}
P_{\theta_{0}}\left(\hat{w} \notin\left[w_{2}, w_{1}\right]\right) \leq e^{-C_{1} \nu^{2} n w_{1} \tilde{m}\left(w_{1}\right)}+e^{-C_{1} \nu^{2} n w_{2} \tilde{m}\left(w_{2}\right)} . \tag{S-2}
\end{equation*}
$$

Proof. One bounds successively each of the probabilities $P\left(\hat{w}>w_{1}\right)$ and $P(\hat{w}<$ w_{2}). The first bound is obtained in exactly the same way as in the proof of Lemma S-3, with w_{0} replacing w_{1}. We note the two minor differences: $E S\left(w_{1}\right)=$ $\sum_{i \in S_{0}} m_{1}\left(\theta_{0, i}, w_{1}\right)-\left(n-\sigma_{0}\right) \tilde{m}\left(w_{1}\right)$ now equals $-\nu\left(n-\sigma_{0}\right) \tilde{m}\left(w_{1}\right)$ by the definition (67) of w_{1}. Then bounds on m_{2} can be carried out in the same way - now evaluated at $w=w_{1}$ - as in the proof of Lemma S-3. We note that w_{1} goes to zero with n by Lemma $S-2$. This means that we can use the bounds of Lemma S-27 and Corollary S-29 as in the proof of Lemma S-3. Further, if $\zeta_{1}:=\zeta\left(w_{1}\right)$, we have $\zeta_{1} \leq \zeta_{0}$, so one also has $s_{n} e^{M_{0} \zeta_{1}} / n \leq C$ using the corresponding bound for ζ_{0}. This shows the desired result for w_{1}.

For w_{2}, one proceeds similarly. If $w_{2}=0$ the result is immediate. Otherwise we have $\left\{\hat{w}<w_{2}\right\}=\left\{S\left(w_{2}\right)<0\right\}$. Again, one applies Bernstein's inequality to the score function $S(w)=\sum_{i=1}^{n} \beta\left(X_{i}, w\right)$ and set $W_{i}=\beta\left(X_{i}, w_{2}\right)-m_{1}\left(\theta_{0, i}, w_{2}\right)$. As W_{i} are centered independent variables with $\left|W_{i}\right| \leq \mathcal{M}$ and $\sum_{i=1}^{n} \operatorname{Var}\left(W_{i}\right) \leq$ $\sum_{i=1}^{n} E\left[\beta\left(X_{i}, w_{2}\right)^{2}\right]=: V_{2}$, for any $B>0$,

$$
P\left[\sum_{i=1}^{n} W_{i}<-B\right] \leq \exp \left\{-\frac{1}{2} B^{2} /\left(V_{2}+\frac{1}{3} M B\right)\right\}
$$

One can take $\mathcal{M}=c_{3} / w$, using Lemma S-21. Set $B=\sum_{i=1}^{n} m_{1}\left(\theta_{0, i}, w_{1}\right)$. By definition of w_{2} in (68), we have

$$
B=-\left(n-\sigma_{0}\right) \tilde{m}\left(w_{2}\right)+\sum_{i \in S_{0}} m_{1}\left(\theta_{0, i}, w_{2}\right)=\nu\left(n-\sigma_{0}\right) \tilde{m}\left(w_{2}\right) .
$$

The term V_{2} is bounded in a similar way as in the proof of Lemma S-3, using the bounds of Lemma S-27 and Corollary S-29. As for w_{1} above, one notes that, if $\zeta_{2}=\zeta\left(w_{2}\right)$, one has $s_{n} e^{M_{0} \zeta_{2}} / n \leq C$ as, using Lemma S-5, we have $w_{1} \lesssim w_{2}$, so that $w_{2} \gtrsim 1 / n$ and $\zeta_{2} \lesssim \sqrt{\log n}$. One obtains $V_{2} \lesssim\left(n w_{2} \tilde{m}\left(w_{2}\right)\right)^{-1}$ which leads to

$$
\frac{V_{2}+\frac{1}{3} \mathcal{M} B}{B^{2}} \lesssim \frac{\nu^{-2}}{n w_{2} \tilde{m}\left(w_{2}\right)},
$$

and the desired bound on w_{2} is obtained.

Lemma S-5. Let $\nu \in(0,1)$. There exist some integer $N=N(\nu, v, g)>0$ and $C=C(\nu, v, g)>1$ such that, for all $n \geq N$ and $\theta_{0} \in \ell_{0}\left[s_{n}\right]$, if (67) has a solution w_{1}, the solution w_{2} of (68) verifies

$$
\begin{equation*}
w_{1} / C \leq w_{2} \leq w_{1} \tag{S-3}
\end{equation*}
$$

Proof. The behaviour of w_{1}, w_{2} for a given specific true signal θ_{0} is determined through properties of the function

$$
H_{\theta_{0}}(w)=\sum_{i \in S_{0}} m_{1}\left(\theta_{0, i}, w\right) / \tilde{m}(w)
$$

This function is decreasing, as $w \rightarrow m_{1}\left(\theta_{0, i}, w\right), 1 \leq i \leq n$, and $w \rightarrow \tilde{m}(w)^{-1}$ both are, by Lemma S-22. It suffices to show that for an appropriately large constant $z \geq 1$ (possibly depending on v, g, ν), for n large enough,

$$
\begin{equation*}
H_{\theta_{0}}\left(\frac{w_{1}}{z}\right) \geq \frac{1+\nu}{1-\nu} H_{\theta_{0}}\left(w_{1}\right) \tag{S-4}
\end{equation*}
$$

Indeed, by definition of w_{1}, w_{2}, one has $H_{\theta_{0}}\left(w_{2}\right)=(1+\nu)\left(n-\sigma_{0}\right)=(1+\nu)(1-$ $\nu)^{-1} H_{\theta_{0}}\left(w_{1}\right)$. So, if (S-4) holds, $H_{\theta_{0}}\left(w_{2}\right) \leq H_{\theta_{0}}\left(w_{1} / z\right)$ which in turn yields $w_{2} \geq w_{1} / z$ by monotonicity.

Now, (S-4) is obtained in two steps. First, one shows that appropriately small signals do not contribute too much to the sum defining $H_{\theta_{0}}$, so that one can replace the sum in (S-4) by a sum $H_{\theta_{0}}^{\circ}$, to be defined now, on large signals only. For $w \in(0,1)$ and $K>1$, set $\mathcal{C}_{0}(w, K)=\left\{1 \leq i \leq n:\left|\theta_{0, i}\right| \geq \zeta(w) / K\right\}$ and

$$
H_{\theta_{0}}^{\circ}(w, K)=\sum_{i \in \mathcal{C}_{0}(w, K)} m_{1}\left(\theta_{0, i}, w\right) / \tilde{m}(w)
$$

Set $K_{2}=4 /(1-v)$. By Lemmas S-1 and S-2, both w_{1} and w_{1} / z belong to the interval $[1 / n, 1 / \log n]$, provided $z \lesssim(\log n)^{1 / 4}$ (which will be the case below). Let us now use, with $K_{1}=K_{2} / 2$ and $D>0$, both Lemmas S-31 and S-32, and $z=z(\nu, v, g)$ a constant to be chosen below,

$$
\begin{aligned}
H_{\theta_{0}}\left(\frac{w_{1}}{z}\right) & =H_{\theta_{0}}^{\circ}\left(\frac{w_{1}}{z}, K_{2}\right)+H_{\theta_{0}}\left(\frac{w_{1}}{z}\right)-H_{\theta_{0}}^{\circ}\left(\frac{w_{1}}{z}, K_{2}\right) \\
& \geq C z^{1 /\left(2 K_{2}\right)} H_{\theta_{0}}^{\circ}\left(w_{1}, K_{2} / 1.1\right)-C^{\prime} n^{1-D} \\
& \geq C z^{(1-v) / 8} H_{\theta_{0}}^{\circ}\left(w_{1}, K_{1}\right)-C^{\prime} n^{1-D}
\end{aligned}
$$

where in the last inequality one uses that $K \rightarrow H_{\theta_{0}}^{\circ}(w, K)$ is nondecreasing by definition. Using Lemma S-31 again now shows that, for $D>0$,

$$
\left|H_{\theta_{0}}\left(w_{1}\right)-H_{\theta_{0}}^{\circ}\left(w_{1}, K_{1}\right)\right| \leq C^{\prime} n^{1-D}
$$

One deduces that, for C the constant in the one but last display,

$$
H_{\theta_{0}}\left(\frac{w_{1}}{z}\right) \geq C z^{(1-v) / 8} H_{\theta_{0}}\left(w_{1}\right)+o(n)
$$

Since $H_{\theta_{0}}\left(w_{1}\right) \asymp n$ by definition of w_{1}, the latter is bounded from below by $(C / 2) z^{(1-v) / 8} H_{\theta_{0}}\left(w_{1}\right)$ for n large enough. Taking $z=\{\max ((2 / C), 1)(1+$ $\nu) /(1-\nu)\}^{8 /(1-v)}$ shows (S-4) and the proof is complete.

S-2. Auxiliary proofs

S-2.1. Proof of Proposition 1

For any multiple testing procedure φ,

$$
\operatorname{BFDR}(\varphi ; w, \gamma)=\int_{\mathbb{R}^{n}} \operatorname{FDR}(\theta, \varphi) d \Pi_{w, \gamma}(\theta)=E_{X, \theta}\left[\frac{\sum_{i=1}^{n} \mathbf{1}\left\{\theta_{i}=0\right\} \varphi_{i}}{1 \vee \sum_{i=1}^{n} \varphi_{i}}\right] .
$$

For φ^{ℓ}, using the chain rule $E[\cdot]=E[E[\cdot \mid X]]$, one gets

$$
\begin{aligned}
\operatorname{BFDR}\left(\varphi^{\ell} ; w, \gamma\right) & =E_{X}\left[\frac{\sum_{i=1}^{n} \ell_{i}(X) \varphi_{i}^{\ell}}{1 \vee \sum_{i=1}^{n} \varphi_{i}^{\ell}}\right]=E_{X}\left[\frac{\sum_{i=1}^{n} \ell_{i}(X) \mathbb{1}_{\left\{\ell_{i}(X) \leq \alpha\right\}}}{1 \vee \sum_{i=1}^{n} \mathbb{1}_{\left\{\ell_{i}(X) \leq \alpha\right\}}}\right] \\
& \leq \alpha P\left(\exists i: \ell_{i}(X) \leq \alpha\right) .
\end{aligned}
$$

For φ^{q}, conditioning this time on the variables $\varphi_{1}^{q}(X), \ldots, \varphi_{n}^{q}(X)$ and using that for the prior $\Pi_{w, g}$ the conditional distribution of $\theta_{i} \mid X$ only depends on X_{i} for all i, so that $E\left[\mathbf{1}\left\{\theta_{i}=0\right\} \mid \varphi_{1}^{q}, \ldots, \varphi_{n}^{q}\right] \varphi_{i}^{q}=P\left(\theta_{i}=0 \mid \varphi_{i}^{q}=1\right) \varphi_{i}^{q}$ a.s., one obtains

$$
\begin{aligned}
\operatorname{BFDR}\left(\varphi^{q} ; w, \gamma\right) & =E_{X}\left[\frac{\sum_{i=1}^{n} P\left(\theta_{i}=0 \mid \varphi_{i}^{q}=1\right) \varphi_{i}^{q}}{1 \vee \sum_{i=1}^{n} \varphi_{i}^{q}}\right] \\
& =E_{X}\left[\frac{\sum_{i=1}^{n} P\left(\theta_{i}=0 \mid q_{i}(X) \leq \alpha\right) \mathbb{1}_{\left\{q_{i}(X) \leq \alpha\right\}}}{1 \vee \sum_{i=1}^{n} \mathbb{1}_{\left\{q_{i}(X) \leq \alpha\right\}}}\right] .
\end{aligned}
$$

Now observe that from (43), $q_{i}(X) \leq \alpha$ if and only if $\left|X_{i}\right| \geq \Psi(\alpha)$, for some function Ψ such that $q(\Psi(\alpha) ; w, g)=\alpha$ (namely, Ψ is the inverse of $u \in(0, \infty) \rightarrow$ $q(u ; w, g))$. Now, the result follows from

$$
P\left(\theta_{i}=0 \mid q_{i}(X) \leq \alpha\right)=P\left(\theta_{i}=0| | X_{i} \mid \geq \Psi(\alpha)\right)=q(\Psi(\alpha) ; w, g)=\alpha .
$$

Finally, the relation between (24) and (25) comes from Lemma S-10.

S-2.2. Proof of Proposition 2

For (i), we use Lemma S-33:

$$
P_{\theta_{0}=0}\left(\ell_{i}(X) \leq t\right)=2 \bar{\Phi}(\xi(r(w, t))) \leq 2 \frac{\phi(\xi(r(w, t)))}{\xi(r(w, t))},
$$

which provides (53) because $\phi(\xi(r(w, t)))=r(w, t) g(\xi(r(w, t)))$ by definition of $\xi(\cdot)$. Next, if $\xi(r(w, t)) \geq 1$, we also have the lower bound:

$$
P_{\theta_{0}=0}\left(\ell_{i}(X) \leq t\right) \geq \frac{\phi(\xi(r(w, t)))}{\xi(r(w, t))},
$$

which provides (54). Finally, (ii) follows from the definition of χ.

S-2.3. Proof of Theorem 3

We prove the result first for EBayesq. Recall that the exact number of nonzero coefficients σ_{0} of θ_{0} is s_{n} by definition of $\mathcal{L}_{0}\left[s_{n}\right]$. Set $b=(a+1) / 2>1$ and let \mathcal{A} be the event, for $K_{n}<s_{n}$ to be specified below,

$$
\mathcal{A}=\left\{\#\left\{i \in S_{0},\left|X_{i}\right|>b\left\{2 \log \left(n / s_{n}\right)\right\}^{1 / 2}\right\} \geq s_{n}-K_{n}\right\}
$$

If \mathcal{A}^{c} denotes the complement of \mathcal{A},

$$
\begin{aligned}
\mathcal{A}^{c} & =\left\{\#\left\{i \in S_{0},\left|X_{i}\right|>b\left\{2 \log \left(n / s_{n}\right)\right\}^{1 / 2}\right\}<s_{n}-K_{n}\right\} \\
& =\left\{\#\left\{i \in S_{0},\left|X_{i}\right| \leq b\left\{2 \log \left(n / s_{n}\right)\right\}^{1 / 2}\right\}>K_{n}\right\} \\
& \subset\left\{\#\left\{i \in S_{0},\left|\varepsilon_{i}\right|>(a-b)\left\{2 \log \left(n / s_{n}\right)\right\}^{1 / 2}\right\}>K_{n}\right\}=: \mathcal{C}
\end{aligned}
$$

where we have used $X_{i}=\theta_{0, i}+\varepsilon_{i}$ to get $\left|\varepsilon_{i}\right| \geq\left|\theta_{0, i}\right|-\left|X_{i}\right|$ by the triangle inequality. Let $c=\sqrt{2}(a-b)>0$. By looking at the indicator variables $Z_{i}=$ $1_{\left|\varepsilon_{i}\right| \geq x_{n}}$ with $x_{n}=c\left\{\log \left(n / s_{n}\right)\right\}^{1 / 2}$, one can translate the event \mathcal{C} in the last display into an event for a binomial trial, leading to

$$
\sup _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} P_{\theta_{0}}\left[\mathcal{A}^{c}\right] \leq P\left[\operatorname{Bin}\left(s_{n}, 2 \bar{\Phi}\left(x_{n}\right)\right)>K_{n}\right] .
$$

Let $p_{n}=2 \bar{\Phi}\left(x_{n}\right)$, then using the expression of x_{n} above,

$$
p_{n} \leq 2 \phi\left(x_{n}\right) / x_{n} \leq C\left(s_{n} / n\right)^{c^{2} / 2} /\left(c \sqrt{\log \left(n / s_{n}\right)}\right)
$$

which goes to 0 with n as $s_{n} / n \rightarrow 0$.
Let $K_{n}=\max \left(2 s_{n} p_{n}, s_{n} / \log s_{n}\right)$. By Bernstein's inequality, see Lemma S-35, as $K_{n} \geq 2 s_{n} p_{n}$ and $\sum_{i \in S_{0}} \operatorname{Var}\left(Z_{i}\right) \leq s_{n} p_{n}$,

$$
P\left[\sum_{i \in S_{0}} Z_{i}>K_{n}\right] \leq P\left[\sum_{i \in S_{0}}\left(Z_{i}-p_{n}\right)>K_{n} / 2\right] \leq \exp \left\{-\frac{1}{8} \frac{K_{n}^{2}}{K_{n} / 6+s_{n} p_{n}}\right\}
$$

which is less, using $s_{n} p_{n} \leq K_{n} / 2$ again, than $\exp \left(-C K_{n}\right)$, which goes to 0 with n, since $K_{n} \geq s_{n} / \log s_{n} \rightarrow \infty$. So, we have obtained $P_{\theta_{0}}\left[\mathcal{A}^{c}\right]=o(1)$.

Now one can follow the proof of Theorems 1 and 2 and consider the fundamental equation (61), for some fixed $\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]$, and n large enough. The lower bound on w is given here by w_{0} in (60), for some $M=M_{n}$ that we choose as $M_{n}=\min \left(c_{0} s_{n}, \log n\right)$, so that $M_{n} \rightarrow \infty$ and c_{0} a small enough constant to be chosen below.

Consider both sides of the equation (61) at the point $w=s_{n} / n$. On the one hand, by definition of $\mathcal{L}_{0}\left[s_{n}\right]$, we have $\left|\theta_{0, i}\right| \geq a\left\{2 \log \left(n / s_{n}\right)\right\}^{1 / 2}$ for $i \in S_{0}$. Lemma S-15 implies $\zeta\left(s_{n} / n\right) \sim\left\{2 \log \left(n / s_{n}\right)\right\}^{1 / 2}$, so one can apply Lemma S-30 (recall $\mu \rightarrow m_{1}(\mu, w)$ is even for all w) for a small $\varepsilon>0$ to get, for large enough n,

$$
\sum_{i \in S_{0}} m_{1}\left(\theta_{0, i}, s_{n} / n\right) \geq(1-\varepsilon) \frac{s_{n}}{\left(s_{n} / n\right)}=(1-\varepsilon) n
$$

On the other hand, the right hand side of (61) equals $(1-\nu)\left(n-s_{n}\right) \tilde{m}\left(s_{n} / n\right)=$ $o(n)$, since $\tilde{m}(w)$ goes to 0 as $w \rightarrow 0$. Recall that $\sum_{i \in S_{0}} m_{1}\left(\theta_{0, i}, 1\right)$ is bounded from above by a constant times s_{n} (as $m_{1}\left(\theta_{0, i}, 1\right)$ is bounded, see Section 7.3.1) and that $(1-\nu) n \tilde{m}(1)$ is of the order n. Combining the previous inequalities, the intermediate values theorem shows that (61) has a solution, at least on $\left[s_{n} / n, 1\right)$, for n large enough.

To show that w_{1} exists, it is enough to check that the solution also belongs to [$w_{0}, 1$). We distinguish two cases. If $w_{0} \leq s_{n} / n$ then this is obvious by definition. In case $w_{0}>s_{n} / n$, let us evaluate both sides of (61) this time at $w=w_{0}$. First, using the second display of Lemma S-1 (compatible with the present choice on $\left.M_{n}=\min \left(c_{0} s_{n}, \log n\right)\right)$ combined with Lemma S-15 on ζ, one gets, for arbitrary $\varepsilon>0$ and using $w_{0}>s_{n} / n$, that

$$
\zeta\left(w_{0}\right) \leq(1+\varepsilon) \sqrt{2 \log \left(1 / w_{0}\right)} \leq(1+\varepsilon) \sqrt{2 \log \left(n / s_{n}\right)}
$$

for large enough n. Deduce that one can apply Lemma S-30 as $(1+\rho) \zeta\left(w_{0}\right) \leq$ $\left|\theta_{0, i}\right|$ for small enough ρ. In particular

$$
\sum_{i \in S_{0}} m_{1}\left(\theta_{0, i}, w_{0}\right) \geq(1-\varepsilon) \frac{s_{n}}{w_{0}}
$$

On the other hand, the right hand side of (61) is $(1-\nu)\left(n-s_{n}\right) \tilde{m}\left(w_{0}\right)=$ $(1-\nu)\left\{\left(n-s_{n}\right) / n\right\} M_{n} / w_{0}$ by definition of w_{0}. As $M_{n} \leq c_{0} s_{n}$, this quantity is thus smaller than the last display, provided c_{0} is small enough. By the same reasoning as above, this shows that the solution to (61) indeed belongs to $\left[w_{0}, 1\right.$), so w_{1} exists.

Now that we have the existence of w_{1}, the fact that $w=s_{n} / n$ cannot be a solution of (61) (for n large enough) and the monotonicity of both sides of (61) show that $w_{1} \geq s_{n} / n$, for n large enough. Using the same argument with equation (68) leads to $w_{2} \geq s_{n} / n$, for n large enough.

As (61) has a solution, we can use the properties of the proof of Section 7 in this case (referred to as Case 2 in that proof). In particular, (72) provides for some constant $C>0$,

$$
\sup _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} P_{\theta_{0}}\left(\hat{w} \notin\left[w_{2}, w_{1}\right]\right) \leq 2 e^{-C M_{n}}
$$

Let us introduce the event $\Omega_{0}=\mathcal{A} \cap\left\{\hat{w} \in\left[w_{2}, w_{1}\right]\right\}$. By the previous bounds, we have $P\left[\Omega_{0}^{c}\right]=o(1)$. Note that, on the event Ω_{0},

$$
\chi(r(\hat{w}, t)) \leq \zeta(\hat{w}) \leq \zeta\left(w_{2}\right)
$$

using Lemma S-16 and the monotonicity of $\zeta(\cdot)$. We have seen that here $w_{2} \geq$ s_{n} / n, so $\zeta\left(w_{2}\right) \leq \zeta\left(s_{n} / n\right)$ and combining with the equivalent of $\zeta(w)$ as $w \rightarrow 0$ from Lemma S-15, one finally gets $\chi(r(\hat{w}, t)) \leq c\left(2 \log \left(n / s_{n}\right)\right)^{1 / 2}$ for any $c>1$ for n large enough, so in particular for $c=b$ as defined above. One deduces that on Ω_{0}, the q-value procedure $\varphi^{q \text {-val }}$ rejects the null hypotheses corresponding to the (at least $s_{n}-K_{n}$) indexes i in S_{0} such that $\left|X_{i}\right|>b\left\{2 \log \left(n / s_{n}\right)\right\}^{1 / 2}$,
because $b\left\{2 \log \left(n / s_{n}\right)\right\}^{1 / 2} \geq \chi(r(\hat{w}, t))$ by using the previous bounds and the definition of the event \mathcal{A}.

Combining the above facts, we obtain

$$
\begin{aligned}
& \sup _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} \operatorname{FDR}\left(\theta_{0}, \varphi^{q-\text { val }}(t ; \hat{w}, g)\right) \\
= & \sup _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} E_{\theta_{0}}\left[\frac{\sum_{i=1}^{n} \mathbf{1}\left\{\theta_{0, i}=0\right\} \varphi^{q-\mathrm{val}}(t ; \hat{w}, g)}{1 \vee \sum_{i=1}^{n} \varphi^{q-\mathrm{val}}(t ; \hat{w}, g)}\right] \\
\leq & \sup _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} E_{\theta_{0}}\left[\frac{\sum_{i=1}^{n} \mathbf{1}\left\{\theta_{0, i}=0\right\} \varphi^{q-\mathrm{val}}(t ; \hat{w}, g)}{1 \vee \sum_{i=1}^{n} \varphi^{q-\mathrm{val}}(t ; \hat{w}, g)} \mathbf{1}\left\{\Omega_{0}\right\}\right]+o(1)
\end{aligned}
$$

Therefore, since $\varphi^{q-\mathrm{val}}(t ; \hat{w}, g)$ makes at least $s_{n}-K_{n}$ correct rejections, that is, $\#\left\{i \in S_{0}: \varphi_{i}^{q \text {-val }}(t ; \hat{w}, g)=1\right\} \geq s_{n}-K_{n}$, we derive

$$
\begin{align*}
& \sup _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} \operatorname{FDR}\left(\theta_{0}, \varphi^{q-\text { val }}\right) \\
& \leq \sup _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} E_{\theta_{0}}\left[\frac{\sum_{i=1}^{n} \mathbb{1}\left\{\theta_{0, i}=0\right\} \varphi_{i}^{q \text {-val }}\left(t ; w_{1}\right)}{\sum_{i=1}^{n} \mathbb{1}\left\{\theta_{0, i}=0\right\} \varphi_{i}^{q-\text { val }}\left(t ; w_{1}\right)+s_{n}-K_{n}}\right]+o(1) \\
& \leq \frac{\sup _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} E_{\theta_{0}}\left[\sum_{i=1}^{n} \mathbb{1}\left\{\theta_{0, i}=0\right\} \varphi_{i}^{q \text {-val }}\left(t ; w_{1}\right)\right]}{\sup _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} E_{\theta_{0}}\left[\sum_{i=1}^{n} \mathbb{1}\left\{\theta_{0, i}=0\right\} \varphi_{i}^{q \text {-val }}\left(t ; w_{1}\right)\right]+s_{n}-K_{n}}+o(1), \tag{S-5}
\end{align*}
$$

by concavity and monotonicity of the function $x \in[0,+\infty) \rightarrow x /(x+1)$.
Now combine (55), Lemma S-17 and Lemma S-24 to get for any $\varepsilon \in(0,1)$, for any $\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]$,

$$
\begin{aligned}
E_{\theta_{0}}\left[\sum_{i=1}^{n} \mathbb{1}\left\{\theta_{0, i}=0\right\} \varphi_{i}^{q \text {-val }}\left(t ; w_{1}\right)\right] & =\left(n-s_{n}\right) r\left(w_{1}, t\right) 2 \bar{G}\left(\chi\left(r\left(w_{1}, t\right)\right)\right) \\
& \leq(1+\varepsilon) t(1-t)^{-1} w_{1}\left(n-s_{n}\right) 2 \bar{G}\left(\zeta\left(w_{1}\right)\right) \\
& \leq(1+\varepsilon)^{2} t(1-t)^{-1}\left(n-s_{n}\right) w_{1} \tilde{m}\left(w_{1}\right)
\end{aligned}
$$

Next, since w_{1} is a solution of (61), the latter is bounded above by

$$
(1+\varepsilon)^{2}(1-\nu)^{-1} t(1-t)^{-1} \sum_{i \in S_{0}} w_{1} m_{1}\left(\theta_{0, i}, w_{1}\right) \leq(1+\varepsilon)^{2}(1-\nu)^{-1} t(1-t)^{-1} s_{n}
$$

by using that $m_{1}(\cdot, w)$ is always upper-bounded by $1 / w$ for small w, see Lemma S22 (recall that w_{1} goes to 0 with n by Lemma S-2). Putting this back into (S-5) gives for n large enough,

$$
\sup _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} \operatorname{FDR}\left(\theta_{0}, \varphi^{q \text {-val }}\right) \leq \frac{(1+\varepsilon)^{2}(1-\nu)^{-1} t(1-t)^{-1} s_{n}}{(1+\varepsilon)^{2}(1-\nu)^{-1} t(1-t)^{-1} s_{n}+s_{n}-K_{n}}+o(1) .
$$

As $K_{n}=o\left(s_{n}\right)$ as shown above, taking the limsup as $n \rightarrow \infty$ and then letting ε, ν go to 0 , we get, observing that $\frac{t(1-t)^{-1}}{t(1-t)^{-1}+1}=t$,

$$
\varlimsup_{n} \sup _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} \operatorname{FDR}\left(\theta_{0}, \varphi^{q-\text { val }}\right) \leq t .
$$

Let us now turn to prove

$$
\begin{equation*}
\varliminf_{n} \inf _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} \operatorname{FDR}\left(\theta_{0}, \varphi^{q-\text { val }}\right) \geq t, \tag{S-6}
\end{equation*}
$$

which will lead to the conclusion. Fix some $\delta \in(0,1)$ and for any $\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]$ consider w_{1} and w_{2} the associated solution of (61) and (68), respectively. The fact that both exist has been seen above. Let $\Omega_{1}=\left\{\hat{w} \in\left[w_{2}, w_{1}\right]\right\}$, then

$$
\begin{aligned}
& \inf _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} \operatorname{FDR}\left(\theta_{0}, \varphi^{q-\mathrm{val}}\right) \\
& \geq \inf _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} E_{\theta_{0}}\left[\frac{V_{q}}{V_{q}+s_{n}} \mathbb{1}\left\{\Omega_{1}\right\}\right] \\
& \geq \inf _{\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]} E_{\theta_{0}}\left[\frac{E_{\theta_{0}} V_{q}(1-\delta)}{E_{\theta_{0}} V_{q}(1-\delta)+s_{n}} \mathbb{1}\left\{\Omega_{1}\right\} \mathbb{1}\left\{\left|V_{q}-E_{\theta_{0}} V_{q}\right| \leq \delta E_{\theta_{0}} V_{q}\right\}\right],
\end{aligned}
$$

where we have denoted $V_{q}=\sum_{i=1}^{n} \mathbb{1}\left\{\theta_{0, i}=0\right\} \varphi_{i}^{q-\text { val }}\left(t ; w_{2}\right)$, which is a Binomial variable. Similarly to the upper bound, combine (55), Lemma S-16 and Lemma S-24 to get for any $\varepsilon \in(0,1)$ and $\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]$,

$$
\begin{aligned}
E_{\theta_{0}} V_{q} & =\left(n-s_{n}\right) r\left(w_{2}, t\right) 2 \bar{G}\left(\chi\left(r\left(w_{2}, t\right)\right)\right) \\
& \geq t(1-t)^{-1} w_{2}\left(1-w_{2}\right)^{-1}\left(n-s_{n}\right) 2 \bar{G}\left(\zeta\left(w_{2}\right)\right) \\
& \geq(1-\varepsilon) t(1-t)^{-1} w_{2}\left(n-s_{n}\right) 2 \bar{G}\left(\zeta\left(w_{2}\right)\right) \\
& \geq(1-\varepsilon)^{2} t(1-t)^{-1}\left(n-s_{n}\right) w_{2} \tilde{m}\left(w_{2}\right) .
\end{aligned}
$$

Now using that w_{2} is a solution of (68) and Lemma S-30, we obtain

$$
\begin{aligned}
E_{\theta_{0}} V_{q} & \geq(1-\varepsilon)^{2}(1+\nu)^{-1} t(1-t)^{-1} \sum_{i \in S_{0}} w_{2} m_{1}\left(\theta_{0, i}, w_{2}\right) \\
& \geq(1-\varepsilon)^{3}(1+\nu)^{-1} t(1-t)^{-1} s_{n} .
\end{aligned}
$$

Next, observe that by Chebychev's inequality, the supremum over $\theta_{0} \in \mathcal{L}_{0}\left[s_{n}\right]$ of the following probability

$$
P_{\theta_{0}}\left(\left|V_{q}-E_{\theta_{0}} V_{q}\right|>\delta E_{\theta_{0}} V_{q}\right) \leq \frac{\operatorname{Var}_{\theta_{0}}\left(V_{q}\right)}{\delta^{2}\left(E_{\theta_{0}} V_{q}\right)^{2}} \leq \frac{1}{\delta^{2} E_{\theta_{0}} V_{q}}
$$

goes to 0 , because s_{n} tends to infinity. Combining the above facts leads to

$$
\inf _{\theta \in \mathcal{L}_{0}\left[s_{n}\right]} \operatorname{FDR}\left(\theta, \varphi^{q-\text { val }}\right) \geq \frac{(1-\varepsilon)^{3}(1-\delta)(1+\nu)^{-1} t(1-t)^{-1}}{(1-\varepsilon)^{3}(1-\delta)(1+\nu)^{-1} t(1-t)^{-1}+1}+o(1),
$$

and the result is proved by taking the liminf in n and then δ, ε, ν tending to zero.

Finally, to prove the result for EBayesq.0, one notes that by the previous arguments \hat{w} belows to $\left[w_{1}, w_{2}\right]$ with probability tending to 1 , and $w_{2} \geq s_{n} / n$ which is larger than $2 \omega_{n}$ by assumption. Deduce that the event $\left\{\hat{w}>\omega_{n}\right\}$ has probability going to 1 so the procedures EBayesq and EBayesq. 0 coincide with probability going to 1 , which proves that EBayesq. 0 also satisfies the desired property.

S-3. Basic properties of $\ell-, q-$ and $p-$ values

Let us assume that g satisfies (38) throughout this section. Recall that this assumption holds in particular whenever g is of the form $g=\phi \star \gamma$ as in the Bayesian setting.
Lemma S-6. The q-value functional (14) has the explicit expression

$$
q(x ; w, g)=\frac{(1-w) \bar{\Phi}(|x|)}{(1-w) \bar{\Phi}(|x|)+w \bar{G}(|x|)}, x \in \mathbb{R}, w \in[0,1]
$$

Proof. The latter comes from the fact that, for $s \geq 0$ and by symmetry of γ and ϕ,

$$
\begin{aligned}
P\left(\left|X_{i}\right| \geq s \mid \theta_{i}=0\right) & =P\left(\left|\varepsilon_{1}\right| \geq s\right)=2 \bar{\Phi}(s) \\
P\left(\left|X_{i}\right| \geq s \mid \theta_{i} \neq 0\right) & =\int P\left(\left|\varepsilon_{1}+u\right| \geq s\right) \gamma(u) d u=\int(\bar{\Phi}(s-u)+\bar{\Phi}(s+u)) \gamma(u) d u \\
& =2 \int \bar{\Phi}(s-u) \gamma(u) d u=2 \iint \mathbb{1}_{\{s-x \leq u\}} \gamma(u) d u \phi(x) d x \\
& =2 \iint \mathbb{1}_{\{s \leq v\}} \gamma(v-x) d v \phi(x) d x=2 \int \mathbb{1}_{\{s \leq v\}} g(v) d v .
\end{aligned}
$$

Lemma S-7. For any fixed $x \in \mathbb{R}$, the ℓ-value functional $\ell(x ; w, g)(12)$ and the q-value functional $q(x ; w, g)(14)$ are both nonincreasing in w.
Proof. This is immediate from their explicit expression.
Lemma S-8. Under (40), $\log \bar{G}$ is Lipschitz on \mathbb{R}^{+}
Proof. We have $(\log \bar{G})^{\prime}=-g / \bar{G}$. Now using (40), we have $(g / \bar{G})(x) \asymp x^{1-\kappa}$ $(x \rightarrow \infty)$. This provides that $(\log \bar{G})^{\prime}$ is a bounded function.

Lemma S-9. Assumption (42) implies (43).
Proof. Let us consider the function

$$
\Psi: u \in(0,1 / 2) \rightarrow \bar{G}\left(\bar{\Phi}^{-1}(u)\right)=\int_{\bar{\Phi}^{-1}(u)}^{\infty} g(x) d x
$$

This defines a continuous function on $[0,1 / 2)$ by setting $\Psi(0)=0$. For all $u \in(0,1 / 2)$, we have $\Psi^{\prime}(u)=\frac{g}{\phi}\left(\bar{\Phi}^{-1}(u)\right)$, which means by (42) that Ψ^{\prime} is decreasing on $(0,1 / 2)$ and therefore Ψ is strictly concave on $(0,1 / 2)$. This implies that $u \in(0,1 / 2) \rightarrow \Psi(u) / u$ is decreasing and thus that $x \in \mathbb{R}_{+} \rightarrow \bar{G}(x) / \bar{\Phi}(x)$ is increasing by letting $u=\bar{\Phi}(x), x>0$. Moreover, since $\infty=\lim _{u \rightarrow 0^{+}} \Psi^{\prime}(u)=$ $\lim _{u \rightarrow 0^{+}} \Psi(u) / u=\lim _{x \rightarrow \infty} \bar{G}(x) / \bar{\Phi}(x)$ and $\bar{G}(0) / \bar{\Phi}(0)=1$, (43) is proved.
Lemma S-10. Assume that g comes from (39)-(42). For $w \in[0,1]$, the functions $x \rightarrow \ell(x ; w, g)$ and $x \rightarrow q(x ; w, g)$ are symmetric and decreasing on \mathbb{R}_{+}. For all $x \in \mathbb{R}, w \in[0,1]$, we have $q(x ; w, g) \leq \ell(x ; w, g)$. In particular, $q_{i}(X) \leq \ell_{i}(X)$ almost surely.

Proof. The first claim comes from the explicit expressions of $\ell(x ; w, g)$ and $q(x ; w, g)$ together with (42) and (43), respectively. Now, denoting P the probability operator in the Bayesian setting, a simple relation is that for all $x \in \mathbb{R}$,

$$
\begin{aligned}
q(x ; w, g) & =P\left(\theta_{i}=0| | X_{i}|\geq|x|)\right. \\
& =E\left(\mathbb{1}\left\{\theta_{i}=0\right\}| | X_{i}|\geq|x|)\right. \\
& =E\left[P\left(\theta_{i}=0 \mid X_{i}\right)| | X_{i}|\geq|x|]\right. \\
& =E\left[\ell_{i}(X)| | X_{i}|\geq|x|]\right. \\
& \leq \ell(x ; w, g),
\end{aligned}
$$

by using the monotonicity of $x \rightarrow \ell(x ; w, g)$.
Figure S-1 shows how the choice of the prior influences the quantities g and \bar{G}. The Laplace calculations are done thanks to Remark S-11. Strikingly, while the quantities g stays of the same order (which guided the choice $a=1 / 2$), the difference for \bar{G} is more substantial.

Fig S-1. Plots of the functions g and \bar{G} for the quasi-Cauchy and Laplace ($a=1 / 2$) priors respectively (left) and ratio (right).

Figure S-2 below shows how the parameters w and g interplay in the quantities $q(x ; w, g)$ and $\ell(x ; w, g)$: for large values of $|x|$ (which play a central role in the multiple testing phase), the quantity $\ell(x ; w, g)$ decreases as the prior puts its mass away from 0 , that is, making the tail distribution heavier or increasing w.

Remark S-11 (Explicit expressions for Laplace prior). The Laplace prior of parameter $a>0$ is given by

$$
\begin{equation*}
\gamma(x)=\gamma_{a}(x)=(a / 2) e^{-a|x|}, \quad x \in \mathbb{R} \tag{S-7}
\end{equation*}
$$

FIG S-2. Plot of the functions $x \rightarrow \ell(x, g, w)$ and $x \rightarrow q(x, g, w)$ for different values of w and g (see text, top) and ratio (bottom).

Straightforward calculations show, for γ as in (S-7),

$$
\begin{aligned}
g(x) & =(a / 2) e^{a^{2} / 2}\left(e^{-a x} \bar{\Phi}(a-x)+e^{a x} \bar{\Phi}(a+x)\right) \\
g(x) / \phi(x) & =(a / 2)\left(\frac{\bar{\Phi}(a-x)}{\phi(a-x)}+\frac{\bar{\Phi}(a+x)}{\phi(a+x)}\right) \\
\bar{G}(x) & =(1 / 2) e^{a^{2} / 2}\left(e^{-a x} \bar{\Phi}(a-x)-e^{a x} \bar{\Phi}(a+x)\right)+\bar{\Phi}(x)
\end{aligned}
$$

S-4. Threshold properties

We henceforth assume that g satisfies (38)-(42). In this section, all the nonuniversal constants appearing in the results depend on g.

S-4.1. Link between ξ, χ and ζ

Recall the definitions (47)-(49)-(50) of the thresholds ξ, ζ, χ. We start by a simple connection between ζ and ξ. Namely,

$$
\frac{\phi(\zeta)}{g(\zeta)}=\frac{1}{\beta(\zeta)+1}=1 /(1 / w+1)=w /(1+w)
$$

so

$$
\begin{equation*}
\zeta(w)=(\phi / g)^{-1}(w /(1+w))=\xi(w /(1+w)) \tag{S-8}
\end{equation*}
$$

which implies in particular that $\zeta(w) \geq \xi(w)$. The next lemma relates these quantities to $\chi(w)$.

Lemma S-12. For any $w \in(0,1)$, we have $\chi(w) \leq \xi(w) \leq \zeta(w)$.
Proof. From the proof of Lemma S-9, by concavity $\bar{G}\left(\bar{\Phi}^{-1}(u)\right) / u \geq \frac{g}{\phi}\left(\bar{\Phi}^{-1}(u)\right)$ holds for any $u \in(0,1 / 2)$. Any $x>0$ can be written $\bar{\Phi}^{-1}(u)$ for $u \in(0,1 / 2)$, so for such x we have $(\bar{\Phi} / \bar{G})(x) \leq(\phi / g)(x)$. As $\bar{\Phi} / \bar{G}$ is decreasing by (43), so is its reciprocal, which implies $x \geq(\bar{\Phi} / \bar{G})^{-1}((\phi / g)(x))$. The inequality follows by setting $x=(\phi / g)^{-1}(w)=\xi(w)$.

S-4.2. Bounds for ξ, χ and ζ

Lemma S-13. Consider ξ as in (47). Then for $C=(2 \pi)^{1 / 2}\|g\|_{\infty}$ we have for $u \in(0,1]$ small enough,

$$
\begin{align*}
& \xi(u) \geq(-2 \log u-2 \log g(\sqrt{-2 \log (C u)})-\log (2 \pi))^{1 / 2} \tag{S-9}\\
& \xi(u) \leq(-2 \log u-2 \log g(\sqrt{-4 \log u})-\log (2 \pi))^{1 / 2} \tag{S-10}
\end{align*}
$$

We also have the following sharper bound: for $u \in(0,1]$ small enough,

$$
\begin{equation*}
\xi(u) \leq\left(-2 \log u-2 \log g\left(\left(-2 \log u+5 \Lambda(-\log u)^{1 / 2}\right)^{1 / 2}\right)-\log (2 \pi)\right)^{1 / 2} \tag{S-11}
\end{equation*}
$$

In particular, $\xi(u) \sim(-2 \log u)^{1 / 2}$ when u tends to zero.
Proof. Now fix $u \in(0,1]$. Since $\phi(\xi(u))=g(\xi(u)) u$, we have $\phi(\xi(u)) \leq\|g\|_{\infty} u$ which implies $\xi(u) \geq \sqrt{-2 \log (C u)}$, so $g(\xi(u)) \leq g(\sqrt{-2 \log (C u)})$ for u small enough. This in turn implies $\phi(\xi(u)) \leq u g(\sqrt{-2 \log (C u)})$ and thus (S-9). Conversely, using (39), $g(|x|) \geq g(0) e^{-\Lambda|x|}$ for all $x \in \mathbb{R}$ and thus $\phi(|x|) / g(|x|) \leq$ $(g(0) \sqrt{2 \pi})^{-1} e^{-x^{2} / 2} e^{\Lambda|x|} \leq e^{-x^{2} / 4}$ for $|x|$ larger than a constant, which in turn provides $|x| \leq \sqrt{-4 \log (\phi(|x|) / g(|x|))}$ and thus $\phi(|x|) / g(|x|) \leq(g(0) \sqrt{2 \pi})^{-1} e^{-x^{2} / 2} e^{\Lambda \sqrt{-4 \log (\phi(|x|) / g(|x|))}}$.

On the one hand, this gives that if u is small enough, $\phi(\xi(u)) \geq g(0) u e^{-\Lambda \sqrt{-4 \log u}}$, so

$$
\begin{align*}
\xi(u) & \leq\left(-2 \log u+4 \Lambda(-\log u)^{1 / 2}-2 \log g(0)-\log (2 \pi)\right)^{1 / 2} \\
& \leq\left(-2 \log u+5 \Lambda(-\log u)^{1 / 2}\right)^{1 / 2} \tag{S-12}
\end{align*}
$$

As g decreases on a vicinity of ∞, we have $g(\xi(u)) \geq g(\sqrt{-4 \log u})$ for u small enough. Hence,

$$
\phi(\xi(u)) \geq(\phi(\xi(u)) / g(\xi(u))) g(\sqrt{-4 \log u})=u g(\sqrt{-4 \log u})
$$

which leads to (S-10). To get (S-11) we use the same reasoning as above with the bound (S-12) instead of $\sqrt{-4 \log u}$.

Lemma S-14. Consider χ as in (50). Then we have for all $u \in(0,1]$,
$\chi(u) \geq \bar{\Phi}^{-1}\left(u \bar{G}\left(\bar{\Phi}^{-1}(u)\right)\right) ;$
$\chi(u) \leq \bar{\Phi}^{-1}\left(u \bar{G}\left(\left(-2 \log u+4 \Lambda(-\log u)^{1 / 2}+C\right)^{1 / 2}\right)\right)$ for u small enough,
and $C=-2 \log g(0)-\log (2 \pi)$. We also have the following sharper bound: for some constant $C^{\prime}>0$, for $u \in(0,1]$ small enough,

$$
\begin{equation*}
\chi(u) \geq\left(-2 \log \left(u \bar{G}\left(\bar{\Phi}^{-1}(u)\right)\right)-\log \log (1 / u)-C^{\prime}\right)^{1 / 2} \tag{S-15}
\end{equation*}
$$

Proof. Let $u \in(0,1]$. Since $\bar{\Phi}(\chi(u))=\bar{G}(\chi(u)) u$, we have $\bar{\Phi}(\chi(u)) \leq u$ and thus $\chi(u) \geq \bar{\Phi}^{-1}(u)$, which in turn implies $\bar{\Phi}(\chi(u)) \leq \bar{G}\left(\bar{\Phi}^{-1}(u)\right) u$ and (S-13). Conversely, as $\chi \leq \xi$ by Lemma S-12, using the bound on $\xi(u)$ just above (S-12) in the proof of Lemma S-13,

$$
\chi(u) \leq \xi(u) \leq\left(-2 \log u+4 \Lambda(-\log u)^{1 / 2}-2 \log g(0)-\log (2 \pi)\right)^{1 / 2}
$$

so the relation $\chi(u)=\bar{\Phi}^{-1}(\bar{G}(\chi(u)) u)$ leads to (S-14). Let us now prove (S-15). First observe, by using (45), that $\bar{G}(\chi(u)) \gtrsim e^{-\Lambda \chi(u)}$. Next using the upper bound (S-12) on $\xi \geq \chi$ leads to $u \bar{G}(\chi(u)) \geq u^{2}$ for u small enough. Now, by the second part of Lemma S-33, for u small enough,

$$
\begin{aligned}
\chi(u) & =\bar{\Phi}^{-1}(\bar{G}(\chi(u)) u) \\
& \geq\{2 \log (1 /\{u \bar{G}(\chi(u))\})-\log \log (1 /\{u \bar{G}(\chi(u))\})-C\}^{1 / 2} \\
& \geq\left\{2 \log (1 /\{u \bar{G}(\chi(u))\})-\log \log \left(1 / u^{2}\right)-C\right\}^{1 / 2},
\end{aligned}
$$

for some constant $C>0$, which gives the result.

Lemma S-15. Consider ζ as in (49). Then for a constant $C>0$, we have for w small enough,

$$
\begin{align*}
& \zeta(w) \geq(-2 \log w-2 \log g(\sqrt{-2 \log (C w)})-\log (2 \pi))^{1 / 2} \tag{S-16}\\
& \zeta(w) \leq(-2 \log w-2 \log g(\sqrt{-5 \log w})+C)^{1 / 2} \tag{S-17}
\end{align*}
$$

We also have the following sharper bound: for $w \in(0,1]$ small enough,

$$
\begin{equation*}
\zeta(w) \leq\left(-2 \log w-2 \log g\left(\left(-2 \log w+6 \Lambda(-\log w)^{1 / 2}\right)^{1 / 2}\right)+C\right)^{1 / 2} . \tag{S-18}
\end{equation*}
$$

In particular, $\zeta(w) \sim(-2 \log w)^{1 / 2}$ as w tends to zero.
Proof. The result follows from Lemma S-13, combined with the relations $\zeta(w) \geq$ $\xi(w)$ and $\zeta(w)=\xi(w /(1+w))$ established above.

S-4.3. Relations between $\xi(r(w, t)), \chi(r(w, t))$ and $\zeta(w)$

Let us recall the definition $r(w, t)=w t /\{(1-w)(1-t)\}$, see (46).
Lemma S-16. For any $t \in(0,1)$, for $\omega_{0}=\omega_{0}(t)$ small enough, for all $w \leq \omega_{0}$, we have $\chi(r(w, t)) \leq \zeta(w)$.
Proof. Denote by $T(u)=\left(-2 \log u+4 \Lambda(-\log u)^{1 / 2}+C\right)^{1 / 2}$ the term appearing in (S-14). By (S-14) and Lemma S-33, for u small enough,

$$
\begin{aligned}
\chi(u) & \leq \bar{\Phi}^{-1}(u \bar{G}(T(u))) \\
& \leq\{(2 \log (1 / u)-2 \log \bar{G}(T(u))-\log \log (1 / u))\}^{1 / 2}
\end{aligned}
$$

Now using that $\bar{G}(y) \geq D g(y)$ for y large enough (see (40)), we have for u small enough,

$$
\chi(u)^{2} \leq 2 \log (1 / u)-2 \log D-2 \log g(T(u))-\log \log (1 / u)
$$

Hence, for w small enough, denoting $R=(1-t)(1-w) / t$ and recalling $r(w, t)=$ w / R via (46), and using (S-16) together with assumption (39),

$$
\begin{aligned}
& \chi(r(w, t))^{2}-\zeta(w)^{2} \\
& \quad \leq 2 \log (1 / r(w, t))-2 \log D-2 \log g(T(r(w, t)))-\log \log (1 / r(w, t)) \\
& \quad+2 \log w+2 \log g\left(\{-2 \log (C w)\}^{1 / 2}\right)+\log (2 \pi) \\
& \leq
\end{aligned} \frac{2 \log R+2 \Lambda\left|\{-2 \log (C w)\}^{1 / 2}-T(r(w, t))\right|-\log \log (1 / r(w, t))+C^{\prime}}{}
$$

for some constant $C^{\prime}>0$. Now using $|\sqrt{a}-\sqrt{b}|=|a-b| /(\sqrt{a}+\sqrt{b})$ one gets, for w small enough,

$$
\begin{aligned}
& \left|\{-2 \log (C w)\}^{1 / 2}-T(r(w, t))\right| \\
& \leq \frac{\left|2 \log (r(w, t) /(C w))-4 \Lambda(-\log r(w, t))^{1 / 2}-C\right|}{\{2 \log (1 /(C w))\}^{1 / 2}} \\
& \leq C_{1}^{\prime}\left(\frac{|\log ((1-t) / t)|}{(\log 1 / w)^{1 / 2}}+1\right)
\end{aligned}
$$

As a result, for w small enough and smaller than a threshold $\omega_{0}(t)$ (depending on t in a way such that $\log (1 / w) \geq \log ^{2}((1-t) / t)$ as well as $\log \log (1 / w) \geq$ $2 \log R+C^{\prime \prime}$ for a large enough constant $\left.C^{\prime \prime}>0\right)$ we have $\chi(r(w, t))^{2}-\zeta(w)^{2} \leq 0$ and the result holds.

Lemma S-17. There exists some constant $C=C(g)>0$ such that for all $t \in(0,1)$ there exists $\omega_{0}(t)$ such that for all $w \leq \omega_{0}(t)$,

$$
\begin{equation*}
|\zeta(w)-\xi(r(w, t))| \leq \frac{2\left|\log \left(\frac{t}{1-t}\right)\right|+C}{\zeta(w)+\xi(r(w, t))} \tag{S-19}
\end{equation*}
$$

Furthermore, for all $\varepsilon>0$ and $t \in(0,1)$, there exists $\omega_{0}(t, \varepsilon)$ such that for $w \leq \omega_{0}(t, \varepsilon)$,

$$
\begin{gather*}
\frac{g(\xi(r(w, t)))}{g(\zeta(w))} \leq 1+\varepsilon \tag{S-20}\\
\frac{\bar{G}(\chi(r(w, t)))}{\bar{G}(\zeta(w))} \leq 1+\varepsilon \tag{S-21}
\end{gather*}
$$

Proof. Let us set

$$
S_{1}(w)=\left(-2 \log w+6 \Lambda(-\log w)^{1 / 2}\right)^{1 / 2}
$$

and $S_{2}(w)=\sqrt{-2 \log (C w)}$ the terms appearing in the bounds (S-18) and (S-9), respectively. Using these bounds, one obtains

$$
\begin{aligned}
& \zeta(w)^{2}-\xi(r(w, t))^{2} \\
& \leq 2 \log (r(w, t) / w)+2 \log g\left(S_{2}(r(w, t))\right)-2 \log g\left(S_{1}(w)\right)+D \\
& \leq 2|\log (t /(1-t))|+D^{\prime}
\end{aligned}
$$

for w smaller than a threshold depending on t, by using that $\log g$ is Lipschitz and proceeding as in the proof of Lemma S-16 to bound the difference $\mid S_{1}(w)$ $S_{2}(r(w, t))$ by a universal constant. Conversely, by using (S-11) and (S-16), we
have, with $S_{3}(w)$ as $S_{1}(w)$ except that 6Λ is replaced by 5Λ and $S_{4}(w)$ as $S_{2}(w)$ with C as in (S-16),

$$
\begin{aligned}
& \xi(r(w, t))^{2}-\zeta(w)^{2} \\
& \leq-2 \log (r(w, t) / w)-2 \log g\left(S_{3}(w)\right)+2 \log g\left(S_{4}(w)\right)+D^{\prime \prime} \\
& \leq 2|\log (t /(1-t))|+D^{\prime \prime \prime}
\end{aligned}
$$

as above, which leads to (S-19) by using $a^{2}-b^{2}=(a-b)(a+b)$. Next, (S-20) is a direct consequence of (S-19) by using that $\log g$ is Lipschitz. Finally, let us prove (S-21). By Lemma S-16 and the bounds (S-18) and (S-15), we have for $w \leq w_{0}(t)$ and $S_{1}(w)$ as above,

$$
\begin{aligned}
0 \leq & \zeta(w)^{2}-\chi(r(w, t))^{2} \\
\leq & -2 \log w-2 \log g\left(S_{1}(w)\right)+C \\
& +2 \log \left\{r(w, t) \bar{G} \circ \bar{\Phi}^{-1}(r(w, t))\right\}+\log \log \{1 / r(w, t)\}+C^{\prime} \\
\leq & |2 \log (t /(1-t))|+D+\log \log \{1 / r(w, t)\}+2 \log \left\{\frac{\bar{G} \circ \bar{\Phi}^{-1}(r(w, t))}{g\left(S_{1}(w)\right)}\right\} .
\end{aligned}
$$

Next, we have

$$
\log \left\{\frac{\bar{G} \circ \bar{\Phi}^{-1}(r(w, t))}{g\left(S_{1}(w)\right)}\right\}=\log \left\{\frac{\bar{G} \circ \bar{\Phi}^{-1}(r(w, t))}{\bar{G}\left(S_{1}(w)\right)}\right\}+\log \left\{\frac{\bar{G}\left(S_{1}(w)\right)}{g\left(S_{1}(w)\right)}\right\}
$$

The first term is bounded by a constant, by an argument similar to the proof of Lemma S-16, as $\log \bar{G}$ is Lipschitz. For the second term, by (40),

$$
\log \left\{\frac{\bar{G}\left(S_{1}(w)\right)}{g\left(S_{1}(w)\right)}\right\} \leq \log S_{1}(w)
$$

This gives, upon dividing by $\zeta(w)+\chi\left(r(w, t)\right.$ the obtained inequality on $\zeta(w)^{2}-$ $\chi\left(r(w, t)^{2}\right.$, that $\mid \zeta(w)-\chi(r(w, t) \mid$ is arbitrary small when w is small, which leads to (S-21) by using again that $\log \bar{G}$ is Lipschitz.

Lemma S-18. There exists a constant $C=C(g)>0$ such that for all $t \in$ $(0,0.9)$ there exists $\omega_{0}(t)$ such that for $w \leq \omega_{0}(t)$ and $\mu \in \mathbb{R}$,

$$
\begin{equation*}
\bar{\Phi}(\xi(r(w, t))-\mu) \geq C t \bar{\Phi}(\zeta(w)-\mu) \tag{S-22}
\end{equation*}
$$

Proof. By Lemma S-17, for small $w,|\zeta(w)-\xi(r(w, t))| \leq 1 / 4$. Hence, we can apply Lemma S-34, which gives

$$
\begin{aligned}
\frac{\bar{\Phi}(\xi(r(w, t))-\mu)}{\bar{\Phi}(\zeta(w)-\mu)} & \geq \frac{1}{4} e^{-\left|\xi\left(r(w, t)^{2}\right)-\zeta(w)^{2}\right| / 2} \\
& \geq C e^{-\left|\log \left(\frac{t}{1-t}\right)\right|}
\end{aligned}
$$

by using again (S-19). This shows the desired result.

S-4.4. Variations of certain useful functions

For any $w \in(0,1)$ and $\mu \neq 0$, let us denote

$$
\begin{equation*}
T_{\mu}(w)=1+\frac{|\zeta(w)-|\mu||}{|\mu|} . \tag{S-23}
\end{equation*}
$$

Lemma S-19. First, for all $\varepsilon \in(0,1)$, for any $z \geq 1$, there exists $\omega_{0}=$ $\omega_{0}(z, \varepsilon) \in(0,1)$, such that for all $w \leq \omega_{0}$,

$$
\left\{\begin{align*}
1-\varepsilon \leq g(\zeta(w / z)) / g(\zeta(w)) & \leq 1 \tag{S-24}\\
1-\varepsilon \leq \bar{G}(\zeta(w / z)) / \bar{G}(\zeta(w)) & \leq 1
\end{align*}\right.
$$

Second, for any $K \geq 1$, one can find $d_{1}=d_{1}(K)$ and $d_{2}=d_{2}(K)>0$ such that for all $z \geq 1$, for $w \leq \omega_{0}=\omega_{0}(z, 1 / 2)$ as before and $|\mu|>\zeta(w) / K$,

$$
\begin{equation*}
d_{1} \leq T_{\mu}(w / z) / T_{\mu}(w) \leq d_{2} \tag{S-25}
\end{equation*}
$$

Proof. Since $\log g$ and $\log \bar{G}$ are Lipschitz and by monotonicity, it is sufficient to bound $\zeta(w / z)-\zeta(w)$ from above. For this, we combine (S-16) and (S-18) to obtain, with S_{1}, S_{4} as in the proof of Lemma S-17,

$$
\begin{aligned}
& \zeta(w / z)^{2}-\zeta(w)^{2} \\
\leq & 2 \log w+2 \log g\left(S_{4}(w)\right)+\log (2 \pi)-2 \log (w / z)-2 \log g\left(S_{1}(w / z)\right)+C \\
\leq & 2 \log z+D+2 \Lambda\left|S_{4}(w)-S_{1}(w / z)\right|
\end{aligned}
$$

by using that $\log g$ is Λ-Lipschitz by (39). Since the last bound is bounded by some constant for $w \leq w_{0}(z)$, we obtain (S-24).

To prove (S-25), one notes that since $|\mu|>\zeta(w) / K$, we have $1 \leq T_{\mu}(w / z) \leq$ $2+K \zeta(w / z) / \zeta(w)$ which itself is less than $2+K+K(\zeta(w / z)-\zeta(w)) / \zeta(w)$. Using the previous bound on $\zeta(w / z)-\zeta(w)$ and the fact that $\zeta(w)$ goes to ∞ as w goes to 0 the last bound is no more than a constant $C=C(K)$ whenever $w \leq \omega(z, 1 / 2)$. On the other hand, $1 \leq T_{\mu}(w) \leq 2+K$ for $|\mu|>\zeta(w) / K$. The desired inequality follows.

Let us denote, for $w \in(0,1)$ and $\mu \in \mathbb{R}$,

$$
\begin{equation*}
G_{\mu}(w)=\frac{\bar{\Phi}(\zeta(w)-|\mu|)}{w} \tag{S-26}
\end{equation*}
$$

Lemma S-20. Consider G_{μ} defined by (S-26). For all $K_{0}>1$ and any $z \geq 1$, there exists $\omega_{0}=\omega_{0}\left(K_{0}, z\right)$ such that for all $w \leq \omega_{0}$, any $\mu \in \mathbb{R}$ with $|\mu| \geq$ $\zeta(w) / K_{0}$, we have

$$
\begin{equation*}
G_{\mu}(w / z) \geq z^{1 /\left(2 K_{0}\right)} G_{\mu}(w) \tag{S-27}
\end{equation*}
$$

Proof. Let us focus on $\mu \geq 0$ without loss of generality. Let us rewrite the desired inequality as, with $\Gamma(u)=\log G_{\mu}\left(e^{-u}\right)$,

$$
\Gamma\left(\log \frac{z}{w}\right)-\Gamma\left(\log \frac{1}{w}\right) \geq \frac{1}{2 K_{0}}\left(\log \frac{z}{w}-\log \frac{1}{w}\right)
$$

To prove this, it is enough to check that $\Gamma^{\prime}(u) \geq 1 /\left(2 K_{0}\right)$ for $u \in\left[\log \frac{1}{w}, \log \frac{z}{w}\right]$, for appropriately small w. To do so, one computes the derivative of Γ explicitly using the chain rule. First one notes that

$$
\zeta^{\prime}(w)=-\frac{1}{w^{2} \beta^{\prime}(\zeta(w))}
$$

and from this one deduces that

$$
\Gamma^{\prime}(u)=1-\frac{e^{u}}{\beta^{\prime}\left(\zeta\left(e^{-u}\right)\right)} \frac{\phi}{\bar{\Phi}}\left(\zeta\left(e^{-u}\right)-\mu\right)
$$

One further computes

$$
\beta^{\prime}(x)=(\beta(x)+1) x Q(x), \text { for } Q(x)=1+\frac{(\log g)^{\prime}(x)}{x}
$$

which gives $\beta^{\prime}\left(\zeta\left(e^{-u}\right)\right)=\zeta\left(e^{-u}\right) Q\left(\zeta\left(e^{-u}\right)\right)\left(\beta\left(\zeta\left(e^{-u}\right)\right)+1\right)$. Using the identity $\beta\left(\zeta\left(e^{-u}\right)\right)=e^{u}$ leads to

$$
\Gamma^{\prime}(u)=1-\frac{e^{u}}{1+e^{u}} \frac{1}{Q\left(\zeta\left(e^{-u}\right)\right)} \frac{1}{\zeta\left(e^{-u}\right)} \frac{\phi}{\bar{\Phi}}\left(\zeta\left(e^{-u}\right)-\mu\right) .
$$

Now, by using (39) one sees that the map $u \rightarrow e^{u}\left(1+e^{u}\right)^{-1} Q\left(\zeta\left(e^{-u}\right)\right)^{-1}$ has limit 1 as u goes to infinity. So, for u large enough, $e^{u}\left(1+e^{u}\right)^{-1} Q\left(\zeta\left(e^{-u}\right)\right)^{-1} \leq$ $1+\varepsilon$ for some $\varepsilon>0$ to be chosen later on. Now using Lemma S-33, whenever $\mu \leq \zeta\left(e^{-u}\right)-1$,

$$
\begin{aligned}
\frac{1}{\zeta\left(e^{-u}\right)} \frac{\phi}{\bar{\Phi}}\left(\zeta\left(e^{-u}\right)-\mu\right) & \leq \frac{1}{\zeta\left(e^{-u}\right)} \frac{1+\left(\zeta\left(e^{-u}\right)-\mu\right)^{2}}{\zeta\left(e^{-u}\right)-\mu} \\
& =\frac{\zeta\left(e^{-u}\right)-\mu}{\zeta\left(e^{-u}\right)}+\frac{1}{\zeta\left(e^{-u}\right)\left(\zeta\left(e^{-u}\right)-\mu\right)}
\end{aligned}
$$

By definition of u, we have $e^{-u} \in[w / z, w]$, so $\zeta\left(e^{-u}\right) \leq \zeta(w / z)$. Deduce that, using that by assumption $\mu \geq \zeta(w) / K_{0}$,

$$
\frac{\zeta\left(e^{-u}\right)-\mu}{\zeta\left(e^{-u}\right)} \leq 1-\frac{1}{K_{0}} \frac{\zeta(w)}{\zeta(w / z)}
$$

The behaviour of the difference $\zeta(w / z)-\zeta(w)$ was studied in the proof of Lemma S-19 where it is seen that this quantity is smaller a certain universal constant if w is small enough. By writing

$$
\zeta(w / z) / \zeta(w)=\left(1+\frac{\zeta(w / z)-\zeta(w)}{\zeta(w)}\right)^{-1}
$$

one gets that this ratio is at least $1-1 / 8$ for w small enough, using $\zeta(w) \rightarrow \infty$ as $w \rightarrow 0$. This shows that for $w \leq \omega(z)$ small enough,

$$
\frac{1}{\zeta\left(e^{-u}\right)} \frac{\phi}{\bar{\Phi}}\left(\zeta\left(e^{-u}\right)-\mu\right) \leq 1-\left(1 / K_{0}\right)(1-1 / 8)+\frac{1}{\zeta\left(e^{-u}\right)}
$$

where we have used $\zeta\left(e^{-u}\right)-\mu \geq 1$. On the other hand, if $\mu \geq \zeta\left(e^{-u}\right)-1$,

$$
\frac{1}{\zeta\left(e^{-u}\right)} \frac{\phi}{\bar{\Phi}}\left(\zeta\left(e^{-u}\right)-\mu\right) \leq \frac{\phi(0)}{\bar{\Phi}(1) \zeta\left(e^{-u}\right)}
$$

which can be made arbitrarily small for w small enough. As a result, in both cases, for $w \leq \omega\left(K_{0}, z\right)$ small enough, for all $\mu \geq \zeta(w) / K_{0}$,
$1-\Gamma^{\prime}(u) \leq(1+\varepsilon)\left(1-7 / 8 K_{0}+1 /\left(4 K_{0}\right)\right) \leq(1+\varepsilon)\left(1-5 /\left(8 K_{0}\right)\right)=1-1 /\left(2 K_{0}\right)$
by choosing $\varepsilon^{-1}=8 K_{0}-5$. This proves the desired inequality.

S-5. Moment properties

The main results in this section concern the moments of the score function, $\tilde{m}(w)=-E_{0} \beta(X, w)=-\int_{-\infty}^{\infty} \beta(t, w) \phi(t) d t$ and $m_{1}(\tau, w)=E_{\tau}[\beta(X, w)]$, $m_{2}(\tau, w)=E_{\tau}\left[\beta(X, w)^{2}\right]$. Remember that g is assumed to enjoy (38)-(42). Also, since these functions only depends on g, all the constants appearing in the results of this section only depend on g (except in Section S- 5.6 where the sparsity comes in). In this section, we freely use $\zeta=\zeta(w)$ as a shorthand notation.

S-5.1. Basic lemmas on moments

The following two lemmas are (mostly) small parts of Lemmas 7-9 in [1]. We include the proofs for completeness.
Lemma S-21. For $c_{1}=(-\beta(0))^{-1}-1>0$, for any $x \in \mathbb{R}$ and $w \in(0,1]$,

$$
\begin{equation*}
|\beta(x, w)| \leq \frac{1}{w \wedge c_{1}} \tag{S-28}
\end{equation*}
$$

Proof. It suffices to distinguish the cases $\beta(x)<0$ and $\beta(x) \geq 0$ and to bound $|\beta(x, w)|$ by $|\beta(0)| /(1+\beta(0))$ and $1 / w$, respectively.

Lemma S-22. The function $w \in(0,1] \rightarrow \tilde{m}(w)$ is continuous, nonnegative, increasing and $\tilde{m}(0)=0$. The map $w \in(0,1] \rightarrow m_{1}(\mu, w)$ is continuous and decreasing. In addition, $m_{1}(\mu, 0)>0$ if $\mu \neq 0$ and $\mu \in \mathbb{R}_{+} \rightarrow m_{1}(\mu, w)$ is nondecreasing for any $w \in[0,1]$. Also, there exists a constant $\omega=\omega(g)$ such that, for any $w \leq \omega$ and any $\mu \in \mathbb{R}$,

$$
m_{1}(\mu, w) \leq \frac{1}{w}, \quad m_{2}(\mu, w) \leq \frac{1}{w}
$$

Proof. Since $w \rightarrow \beta(u, w)$ is decreasing (for any u with $\beta(u) \neq 0$), so are $w \rightarrow-\tilde{m}(w)$ and $w \rightarrow m_{1}(\mu, w)$ for any real μ. The continuity of \tilde{m} follows by continuity of $\beta(u, w)$ and domination of $\beta(u, w) \phi(u)$ by $g(u)+\phi(u)$ (up to a constant). In addition, since, as g is a density, $\int \beta(u) \phi(u) d u=0$, and we have

$$
\begin{equation*}
\tilde{m}(w)=-\int \frac{\beta(u)}{1+w \beta(u)} \phi(u) d u=\int \frac{w \beta(u)^{2}}{1+w \beta(u)} \phi(u) d u \tag{S-29}
\end{equation*}
$$

From this one deduces that \tilde{m} is nonnegative. For m_{1}, the continuity follows by local domination using Lemma S-21. Next, if $\mu \neq 0$, say $\mu>0$, we have

$$
m_{1}(\mu, 0)=\int_{-\infty}^{\infty} \beta(u+\mu) \phi(u) d u=\int_{-\infty}^{\infty}(\beta(u+\mu)-\beta(u)) \phi(u) d u
$$

Moreover, by (42), $u \rightarrow \beta(u+\mu)-\beta(u)$ is a positive function. Since it is also continuous, the integral is positive, which means that $m_{1}(\mu, 0)>0$. To see that $\mu \in \mathbb{R}_{+} \rightarrow m_{1}(\mu, w)$ is nondecreasing, we compute its derivative

$$
\frac{\partial m_{1}(\mu, w)}{\partial \mu}=\int_{0}^{\infty} \frac{\partial\{\beta(x) /(1+w \beta(x))\}}{\partial x}(\phi(x-\mu)-\phi(x+\mu)) d x \geq 0
$$

Finally, the bounds on m_{1}, m_{2} follow from Lemma S-21, with $\omega=c_{1}$.
The following is a reformulation of Corollary 1 in [1] (see (58) therein). We provide a proof below for completeness.
Lemma S-23. Consider Λ as in (39). Then for all $z \geq 4 \Lambda$ and all $\mu \geq 0$,

$$
\begin{equation*}
\int_{0}^{z}\left(\frac{g(u)}{\phi(u)}\right)^{2} \phi(u-\mu) d u \leq \frac{8}{z}\left(\frac{g(z)}{\phi(z)}\right)^{2} \phi(z-\mu) . \tag{S-30}
\end{equation*}
$$

Proof. We have for all $u \in[0, z]$,
$\left(\frac{g(u)}{\phi(u)}\right)^{2} \phi(u-\mu)=\left(\frac{g(z)}{\phi(z)}\right)^{2} \phi(z-\mu) \exp \left\{-\int_{u}^{z}\left[\log \left\{g^{2} / \phi^{2}(\cdot) \phi(\cdot-\mu)\right\}\right]^{\prime}(v) d v\right\}$.
Now, by (39), for all $v \in[0, z]$ and $\mu \geq 0$,

$$
(2 \log g-2 \log \phi+\log \phi(\cdot-\mu))^{\prime}(v) \geq-2 \Lambda+2 v-(v-\mu) \geq v-2 \Lambda
$$

Therefore, inserting the latter in the above display, we obtain

$$
\left(\frac{g(u)}{\phi(u)}\right)^{2} \phi(u-\mu) \leq\left(\frac{g(z)}{\phi(z)}\right)^{2} \phi(z-\mu) e^{-(z-2 \Lambda)^{2} / 2} e^{(u-2 \Lambda)^{2} / 2}
$$

One concludes because letting $s=z-2 \Lambda \geq z / 2$ and noting that

$$
\begin{aligned}
e^{-s^{2} / 2} \int_{0}^{z} e^{(u-2 \Lambda)^{2} / 2} d u & \leq e^{-s^{2} / 2} \int_{-s}^{s} e^{t^{2} / 2} d t=2 \int_{0}^{s} e^{-(s-t)(s+t) / 2} d t \\
& \leq 2 \int_{0}^{s} e^{-(s-t) s / 2} \leq \int_{0}^{\infty} e^{-x s / 2} d x=4 / s \leq 8 / z
\end{aligned}
$$

S-5.2. Behaviour of \tilde{m}

The next lemma refines Lemma 7 in [1].
Lemma S-24. For $\tilde{m}(w)$ defined by (56), we have, for $\zeta=\zeta(w)$ and asymptotically as $w \rightarrow 0$,

$$
\begin{equation*}
\frac{\tilde{m}(w)}{2 \bar{G}(\zeta)} \sim 1 \tag{S-31}
\end{equation*}
$$

In particular, for κ as in (40), as $w \rightarrow 0, \tilde{m}(w) \asymp \zeta^{\kappa-1} g(\zeta)$ and $\tilde{m}(w) \gtrsim w^{c}$ for arbitrary $c \in(0,1)$.

Proof. Using (S-29), symmetry of β and $\beta \phi=g-\phi$ on $[\zeta, \infty)$,
$\tilde{m}(w)=2 \int_{0}^{\zeta} \frac{w \beta(u)^{2}}{1+w \beta(u)} \phi(u) d u-\int_{\zeta}^{\infty} \frac{2 w \beta(u)}{1+w \beta(u)} \phi(u) d u+\int_{\zeta}^{\infty} \frac{2 w \beta(u)}{1+w \beta(u)} g(u) d u$.

For the first term of (S-32), since for $u \in[0, \zeta], 1+w \beta(u) \geq 1+\beta(0)$,

$$
\begin{aligned}
2 \int_{0}^{\zeta} \frac{w \beta(u)^{2}}{1+w \beta(u)} \phi(u) d u & \leq 2 w(1+\beta(0))^{-1} \int_{0}^{\zeta} \beta(u)^{2} \phi(u) d u \\
& \leq \frac{C}{\zeta} w \beta(\zeta)(g / \phi)(\zeta)=\frac{C g(\zeta)}{\zeta}
\end{aligned}
$$

for $C=20 /(1+\beta(0))$, by Lemma $\operatorname{S-23}(\mu=0)$, where we use that $\beta(\zeta) \leq$ $(g / \phi)(\zeta) \leq(5 / 4) \beta(\zeta)$ which holds for ζ large enough, or equivalently for $w \leq \omega_{1}$ with $\omega_{1}=\omega_{1}(g)$ a universal constant. The second term of (S-32) is negative whenever $\zeta>\beta^{-1}(0)$ and of smaller order than the third term. For the third term we use that for $u \geq \zeta, w \beta(u) \geq 1$ and thus $1 \leq 2 w \beta(u) /(1+w \beta(u)) \leq 2$, hence

$$
\bar{G}(\zeta) \leq \int_{\zeta}^{\infty} \frac{2 w \beta(u)}{1+w \beta(u)} g(u) d u \leq 2 \bar{G}(\zeta)
$$

Now, by assumption $\bar{G}(\zeta) \asymp g(\zeta) \zeta^{\kappa-1}$, see (40). Hence, when w is small, the dominating term in (S-32) is the third one, which gives

$$
\begin{equation*}
\tilde{m}(w) \sim \int_{\zeta}^{\infty} \frac{2 w \beta(u)}{1+w \beta(u)} g(u) d u \tag{S-33}
\end{equation*}
$$

Now, let us prove

$$
\begin{equation*}
\int_{\zeta}^{\infty} \frac{w \beta(u)}{1+w \beta(u)} g(u) d u \sim \bar{G}(\zeta) \tag{S-34}
\end{equation*}
$$

from which (S-31) follows. To prove (S-34), let us write

$$
\int_{\zeta}^{\infty} \frac{w \beta(u)}{1+w \beta(u)} g(u) d u=\bar{G}(\zeta)-\int_{\zeta}^{\infty} \frac{g(u)}{1+w \beta(u)} d u
$$

Hence, we obtain

$$
\begin{aligned}
\left|\bar{G}(\zeta)-\int_{\zeta}^{\infty} \frac{w \beta(u)}{1+w \beta(u)} g(u) d u\right| & \leq \int_{\zeta}^{\infty} \frac{g(u)}{1+w \beta(u)} d u \\
& \leq w^{-1} \int_{\zeta}^{\infty} \phi(u) d u=\frac{\bar{\Phi}(\zeta)}{w}
\end{aligned}
$$

because $1+w \beta(u)=1-w+w g(u) / \phi(u) \geq w g(u) / \phi(u)$. Now using that $\bar{\Phi}(\zeta) \sim$ $\phi(\zeta) / \zeta \sim w g(\zeta) / \zeta$ and since $\bar{G}(\zeta) \asymp g(\zeta) \zeta^{\kappa-1}$ (see (40)), the difference in the last display is a $o(\bar{G}(\zeta))$ and (S-31) is proved. Then, $\tilde{m}(w) \asymp \zeta^{\kappa-1} g(\zeta)$ follows from (40) and this in turn implies by (44) and Lemma S-15, $\tilde{m}(w) \gtrsim e^{-\Lambda \zeta(w)} \gtrsim w^{c}$ for any $c>0$.

S-5.3. Upper bound on m_{1}

The next lemma refines the bounds on m_{1} of Lemma 9 in [1]. The refinement is important in that we obtain a precise upper-bound for any μ larger than a constant. Moreover, the bound is sharp in this regime of μ 's, as we shall see below.

Lemma S-25. There exist constants $C>0$ and $\omega_{0} \in(0,1)$ such that for any $w \leq \omega_{0}$, for any μ such that $\mu \geq \mu_{0}:=2 \Lambda$, with $T_{\mu}(w)$ as in (S-23),

$$
m_{1}(\mu, w) \leq C \frac{\bar{\Phi}(\zeta-|\mu|)}{w} T_{\mu}(w)
$$

In particular, $m_{1}(\mu, w) \leq C \zeta^{2} \bar{\Phi}(\zeta-\mu) / w$ holds for any $\mu \geq \mu_{0}$ and $w \leq \omega_{0}$. For any $w \leq \omega_{0}$, one also has

$$
\begin{aligned}
m_{1}(\mu, w) & \leq \frac{C}{|\mu|} e^{-\mu^{2} / 2+|\mu| \zeta}, & \text { for any } \zeta^{-1} \leq|\mu| \leq \mu_{0} \\
\left|m_{1}(\mu, w)\right| & \leq C\left(1+\zeta \mu^{2}\right), & \text { for any }|\mu| \leq \zeta^{-1}
\end{aligned}
$$

Since $T_{\mu}(w)=1+|\zeta-|\mu|| /|\mu|$ can be written $1+(\zeta-|\mu|)_{+} /|\mu|+(|\mu|-\zeta)_{+} /|\mu| \leq$ $2+(\zeta /|\mu|-1)_{+}$, we deduce the following corollary.
Corollary S-26. There exists $\omega_{0} \in(0,1)$ such that for any $K>1$, there exist constants $C(K)>0$ such that for any $w \leq \omega_{0}$, for any μ such that $\mu \geq \zeta / K$, we have

$$
m_{1}(\mu, w) \leq C(K) \frac{\bar{\Phi}(\zeta-|\mu|)}{w}
$$

We now prove Lemma S-25.
Proof. As $\mu \rightarrow m_{1}(\mu, w)$ is even by symmetry of β and ϕ, it suffices to consider the case $\mu \geq 0$. For $\mu>\zeta-1$, the result directly follows from the global bound
$\left|m_{1}(\mu, w)\right| \leq C w^{-1}$, a consequence of Lemma S-21. By definition

$$
\begin{aligned}
m_{1}(\mu, w) & =\int_{-\infty}^{\infty} \frac{\beta(x)}{1+w \beta(x)} \phi(x-\mu) d x \\
& =\int_{-\zeta}^{\zeta} \frac{\beta(x)}{1+w \beta(x)} \phi(x-\mu) d x+\int_{|x|>\zeta} \frac{\beta(x)}{1+w \beta(x)} \phi(x-\mu) d x \\
& =\quad+\quad(I)
\end{aligned}
$$

We first deal with the term (II), for which $\beta(x) \geq \beta(\zeta) \geq 0$ (for small enough universal ω_{0}), so (II) ≥ 0, and using $1+w \beta(x) \geq w \beta(x)$ one obtains

$$
(I I) \leq \frac{1}{w} \int_{|x|>\zeta} \phi(x-\mu) d x \leq \frac{2}{w} \bar{\Phi}(\zeta-\mu)
$$

Now one rewrites (I) as

$$
\begin{aligned}
(I) & =\int_{-\zeta}^{\zeta} \beta(x) \phi(x-\mu) d x-w \int_{-\zeta}^{\zeta} \frac{\beta(x)^{2}}{1+w \beta(x)} \phi(x-\mu) d x \\
& \leq \int_{-\zeta}^{\zeta} \beta(x) \phi(x-\mu) d x
\end{aligned}
$$

Let us split

$$
\begin{aligned}
\int_{-\zeta}^{\zeta} \beta(x) \phi(x-\mu) d x & =\int_{|x| \leq 1 / \mu} \beta(x) \phi(x-\mu) d x+\int_{1 / \mu \leq|x| \leq \zeta} \beta(x) \phi(x-\mu) d x \\
& =\quad(a) \quad+\quad(b)
\end{aligned}
$$

First, the integral (a) can be written, by definition of β,

$$
\int_{|x| \leq 1 / \mu} \beta(x) \phi(x-\mu) d x=\int_{-1 / \mu}^{1 / \mu}(g-\phi)(x) e^{\mu x-\frac{\mu^{2}}{2}} d x
$$

Using $|g-\phi| \leq\|g-\phi\|_{\infty} \leq C$, one gets $(a) \lesssim e^{-\mu^{2} / 2} / \mu$. For the integral (b), with $\beta(x) \leq(g / \phi)(x)$ (note that $\beta(x)$ is possibly negative here),

$$
\begin{aligned}
(b) & \leq \int_{-\zeta}^{-1 / \mu} g(x) e^{\mu x-\frac{\mu^{2}}{2}} d x+\int_{1 / \mu}^{\zeta} g(x) e^{\mu x-\frac{\mu^{2}}{2}} d x \\
& \leq \int_{1 / \mu}^{\zeta} g(x) e^{-\mu x-\frac{\mu^{2}}{2}} d x+\int_{1 / \mu}^{\zeta} g(x) e^{\mu x-\frac{\mu^{2}}{2}} d x \\
& \leq 2 e^{-\frac{\mu^{2}}{2}} \int_{1}^{\mu \zeta} g(t / \mu) e^{t} d t / \mu .
\end{aligned}
$$

From this one deduces the global bound, for $\mu>1 / \zeta$,

$$
\begin{aligned}
m_{1}(\mu, w) & \leq \frac{2}{w} \bar{\Phi}(\zeta-\mu)+\frac{C}{\mu}\|g\|_{\infty} e^{-\mu^{2} / 2+\mu \zeta} \\
& \lesssim \frac{g(\zeta)}{\phi(\zeta)} \phi(\zeta-\mu)+\frac{1}{\mu} e^{-\mu^{2} / 2+\mu \zeta} \lesssim\left(\|g\|_{\infty}+\mu^{-1}\right) e^{-\mu^{2} / 2+\mu \zeta}
\end{aligned}
$$

which leads to the second inequality of the lemma. Now turning to the first inequality, an integration by parts gives, with $0 \leq-g^{\prime} / g \leq \Lambda$ from (39),

$$
\begin{aligned}
\int_{1}^{\mu \zeta} g(t / \mu) e^{t} d t & =\left[g(t / \mu) e^{t}\right]_{1}^{\mu \zeta}-\int_{1}^{\mu \zeta} \frac{1}{\mu} g^{\prime}(t / \mu) e^{t} d t \\
& \leq g(\zeta) e^{\mu \zeta}+\frac{\Lambda}{\mu} \int_{1}^{\mu \zeta} g(t / \mu) e^{t} d t
\end{aligned}
$$

One obtains

$$
(b) \leq 2\left(1-\frac{\Lambda}{\mu}\right)^{-1} g(\zeta) e^{\mu \zeta} \frac{e^{-\frac{\mu^{2}}{2}}}{\mu}
$$

Noting that $g(\zeta) e^{\mu \zeta} \geq g(0) e^{(\mu-\Lambda) \zeta}$ using (39) again, and that this quantity is bounded away from 0 for $\mu \geq \mu_{0}=2 \Lambda$, one concludes that for such μ 's the upper-bound for (b) dominates the one for (a), so that

$$
(a)+(b) \leq C g(\zeta) \frac{e^{\mu \zeta-\frac{\mu^{2}}{2}}}{\mu}
$$

Now one can note, using $\mu_{0} \leq \mu \leq \zeta-1$ and $(g / \phi)(\zeta) \asymp w^{-1}$,

$$
\begin{aligned}
g(\zeta) \frac{e^{\mu \zeta-\frac{\mu^{2}}{2}}}{\mu} & =g(\zeta) \frac{\phi(\zeta-\mu)}{\phi(\zeta)} \frac{1}{\mu} \\
& \leq C \frac{\bar{\Phi}(\zeta-\mu)}{w} \frac{|\zeta-\mu|}{\mu}
\end{aligned}
$$

This gives the result in the case $\mu_{0} \leq \mu \leq \zeta-1$, which concludes the proof of the first inequality. The last part of the lemma follows by noting that $T_{\mu}(w) \leq C \zeta^{2}$.

For $|\mu| \leq 1 / \zeta$, we can invoke Lemma 9, eq. (89) from [1], that is

$$
m_{1}(\mu, w) \leq-\tilde{m}(w)+C \zeta \mu^{2}
$$

which is at most $C+C \zeta \mu^{2}$.

S-5.4. Upper bound on m_{2}

Lemma S-27. There exist constants $C>0$ and $\omega_{0} \in(0,1)$ such that for any $w \leq \omega_{0}$, for any $\mu \in \mathbb{R}$,

$$
m_{2}(\mu, w) \leq C \frac{\bar{\Phi}(\zeta-|\mu|)}{w^{2}}
$$

Proof. Since $m_{2}(\mu, w)=E\left[\beta(Z+\mu, w)^{2}\right]=\int_{-\infty}^{\infty} \beta(u, w)^{2} \phi(u-\mu) d u$ by definition, we first bound

$$
\beta(u, w)^{2}=\left(\frac{\beta(u)}{1+w \beta(u)}\right)^{2} \leq C \beta(u)^{2} 1_{|u| \leq \zeta}+w^{-2} 1_{|u|>\zeta}
$$

Indeed, for $\beta(u) \geq 0$ this follows from bounding the denominator from below by 1 or $w \beta(u)$ respectively, and for $\beta(u)<0$ (in which case $|u|<\zeta$, as soon as $\left.w_{0}<\beta^{-1}(0)\right)$ one uses the fact that $1+w \beta(u) \geq 1+w \beta_{\min } \geq c_{0}>0$. Deduce that

$$
\begin{aligned}
m_{2}(\mu, w) & \leq C \int_{-\zeta}^{\zeta} \beta(z)^{2} \phi(z-\mu) d z+\int_{|z|>\zeta} w^{-2} \phi(z-\mu) d z \\
& \leq \quad(A) \quad+\quad .
\end{aligned}
$$

By definition of (B),

$$
(B)=w^{-2}(\bar{\Phi}(\zeta-\mu)+\bar{\Phi}(\zeta+\mu)) \leq 2 w^{-2} \bar{\Phi}(\zeta-|\mu|) .
$$

To bound (A), we note
$(A)=C\left(\int_{0}^{\zeta} \beta(z)^{2} \phi(z+\mu) d z+\int_{0}^{\zeta} \beta(z)^{2} \phi(z-\mu) d z\right) \leq 2 C \int_{0}^{\zeta} \beta(z)^{2} \phi(z-|\mu|) d z$.
As the last bound is symmetric in μ, it is enough to obtain the desired bound for $\mu \geq 0$, which we thus assume for the remaining of the proof. For large enough C, it holds $\left(\frac{g}{\phi}-1\right)^{2} \leq C\left(\frac{g}{\phi}\right)^{2}$ (e.g. expanding the square and using that g / ϕ is bounded away from 0) which with Lemma S-23 leads to

$$
\int_{0}^{\zeta} \beta(z)^{2} \phi(z-\mu) d z \leq C \int_{0}^{\zeta}(g / \phi)(z)^{2} \phi(z-\mu) d z \leq C \frac{8}{\bar{\zeta}}\left(\frac{g}{\phi}\right)^{2}(\zeta) \phi(\zeta-\mu) .
$$

Also, $(g / \phi)(\zeta)=\beta(\zeta)+1=w^{-1}+1 \leq 2 w^{-1}$. To conclude one writes

$$
\frac{\phi(\zeta-\mu)}{\zeta}=\frac{\phi(\zeta-\mu)}{\zeta-\mu+\mu} .
$$

If $\zeta-\mu \geq 1$, one can use Lemma S-33 to obtain that the previous quantity is less than $2 \bar{\Phi}(\zeta-\mu)$ (bound the denominator from below by $\zeta-\mu$). If $\zeta-\mu \leq 1$, there exist $C_{1}, C_{2}>0$ with

$$
\sup _{\mu: \mu \geq \zeta-1} \frac{\phi(\zeta-\mu)}{\zeta} \leq C_{1} \leq C_{2} \bar{\Phi}(1) \leq C_{2} \bar{\Phi}(\zeta-\mu) .
$$

The lemma follows by combining the previous bounds.

S-5.5. Lower bound on m_{1}

Lemma S-28. There exist constants $M_{0}, C_{1}>0$ and $\omega_{0} \in(0,1)$ such that for any $w \leq \omega_{0}$, and any $\mu \geq M_{0}$, with $T_{\mu}(w)$ defined by (S-23),

$$
m_{1}(\mu, w) \geq C_{1} \frac{\bar{\Phi}(\zeta-\mu)}{w} T_{\mu}(w) .
$$

Proof. By definition, using $\zeta=\zeta(w)$ as shorthand,

$$
\begin{aligned}
m_{1}(\mu, w) & =\int_{-\zeta}^{\zeta} \frac{\beta(x)}{1+w \beta(x)} \phi(x-\mu) d x+\int_{|x|>\zeta} \frac{\beta(x)}{1+w \beta(x)} \phi(x-\mu) d x \\
& =\quad+\quad+\quad(I)
\end{aligned}
$$

To bound (II) from below, one notes that $1+w \beta(x) \leq 2 w \beta(x)$ for $|x| \geq \zeta$, so

$$
(I I) \geq \frac{1}{2 w} \int_{|x|>\zeta} \phi(x-\mu) d x=\frac{1}{2 w}(\bar{\Phi}(\zeta-\mu)+\bar{\Phi}(\zeta+\mu)) \geq \frac{1}{2 w} \bar{\Phi}(\zeta-\mu)
$$

To bound (I) from below, let us introduce $d=\max \left(d_{1}, d_{2}\right)$, where d_{1} verifies $\beta\left(d_{1}\right)=1$ and d_{2} is such that for $x \geq d_{2}$, the map $x \rightarrow g(x)$ is decreasing (such d_{2} exists by (38)). We isolate first the possibly negative part of the integral defining (I) and write

$$
\begin{aligned}
\int_{|x| \leq d} \frac{\beta(x)}{1+w \beta(x)} \phi(x-\mu) d x & \geq-\int_{|x| \leq d} \frac{|\beta(x)|}{1+w \beta(0)} \phi(x-\mu) d x \\
& \geq-\int_{|x| \leq d} \frac{|\beta(x)|}{1+w \beta(0)} \frac{d x}{\sqrt{2 \pi}}=:-D_{1}
\end{aligned}
$$

Let I_{1} be the part of the integral (I) corresponding to x in $\Gamma:=\{x: d \leq|x| \leq \zeta\}$. If $\zeta>d$,

$$
\begin{aligned}
I_{1} & \geq \int_{\Gamma} \beta(x) \phi(x-\mu) d x-w \int_{\Gamma} \frac{\beta(x)^{2}}{1+w \beta(x)} \phi(x-\mu) d x \\
& \geq \frac{1}{2} \int_{\Gamma} \beta(x) \phi(x-\mu) d x \\
& \geq \frac{1}{4} \int_{\Gamma} g(x) \frac{\phi(x-\mu)}{\phi(x)} d x
\end{aligned}
$$

where we have used that $w \beta(\cdot) /(1+w \beta(\cdot)) \leq 1 / 2$ on Γ and that $g / \phi-1 \geq g /(2 \phi)$ on Γ by definition of this set. An integration by parts now shows that

$$
\begin{aligned}
\int_{d}^{\zeta} g(x) e^{\mu x} d x & =\frac{1}{\mu} \int_{\mu d}^{\mu \zeta} g(t / \mu) e^{t} d t \\
& =\mu^{-1}\left[g(t / \mu) e^{t}\right]_{\mu d}^{\mu \zeta}-\mu^{-2} \int_{\mu d}^{\mu \zeta} g^{\prime}(t / \mu) e^{t} d t \\
& \geq \mu^{-1}\left[g(\zeta) e^{\mu \zeta}-g(d) e^{\mu d}\right]
\end{aligned}
$$

as $g^{\prime}(u)<0$ for $u>d \geq d_{2}$. We now claim that $g(\zeta) e^{\mu \zeta} \geq 2 g(d) e^{\mu d}$ for any $\mu \geq 2 \Lambda$ and $\zeta \geq d+\log (2) / \Lambda$. Indeed, for such μ, ζ,

$$
e^{\mu(\zeta-d)} \geq e^{2 \Lambda(\zeta-d)} \geq 2 e^{\Lambda(\zeta-d)}
$$

while, using that $-\Lambda \leq(\log g)^{\prime}<0$ on (d, ∞) by (39) and the definition of d, one obtains

$$
2 \frac{g(d)}{g(\zeta)}=2 e^{-\{\log g(\zeta)-\log g(d)\}} \leq 2 e^{\Lambda(\zeta-d)} \leq e^{\mu(\zeta-d)}
$$

Putting the two previous bounds together leads to, for such μ, ζ,

$$
I_{1} \geq \frac{1}{8 \mu} g(\zeta) e^{\mu \zeta-\mu^{2} / 2}
$$

Let us now distinguish two cases. Suppose first that $M_{0} \leq \mu \leq \zeta-1$ for $M_{0}:=2 \Lambda$. The map $\mu \rightarrow \mu \zeta-\mu^{2} / 2$ is increasing on this interval, so its minimum is attained for $\mu=M_{0}$. Combining this with $g(\zeta) \geq C e^{-\Lambda \zeta}$ and using the rough bound $\mu^{-1} \geq \zeta^{-1}$ leads to, uniformly for $\mu \in\left[M_{0}, \zeta-1\right]$,

$$
I_{1} \geq \frac{e^{-\Lambda \zeta+M_{0} \zeta-M_{0}^{2} / 2}}{8 \zeta} \gtrsim \frac{e^{\Lambda \zeta}}{\zeta}
$$

Since $e^{\Lambda u} / u \rightarrow \infty$ as $u \rightarrow \infty$ and $\zeta=\zeta(w) \rightarrow \infty$ as $w \rightarrow 0$, we have $I_{1} \geq 2 D_{1}$ for any $\mu \geq\left[M_{0}, \zeta-1\right]$ and any $w \geq \omega_{0}$ for ω_{0} small enough. One deduces that for such w and μ,

$$
I_{1}-D_{1} \geq \frac{g(\zeta)}{16} \frac{e^{\zeta \mu-\mu^{2} / 2}}{\mu} \gtrsim \frac{1}{\mu} \frac{\phi(\zeta-\mu)}{\phi(\zeta)} g(\zeta)
$$

Noting that $\phi(\zeta) / g(\zeta) \sim w$ and combining with the bound on (II) above, one deduces, for $w \leq \omega_{0}$ and $\mu \in\left[M_{0}, \zeta-1\right]$,

$$
m_{1}(\mu, w) \geq \frac{\bar{\Phi}(\zeta-\mu)}{2 w}+C \frac{\phi(\zeta-\mu)}{\mu w}
$$

Using that $\mu \leq \zeta-1$, one deduces that

$$
\frac{\phi(\zeta-\mu)}{\mu w} \geq \frac{\zeta-\mu}{\mu} \frac{\bar{\Phi}(\zeta-\mu)}{w}
$$

This gives the desired inequality if $\mu \in\left[M_{0}, \zeta-1\right]$. The second case is now $\mu>\zeta-1$. In this case, we simply use $I_{1} \geq 0$ to get

$$
m_{1}(\mu, w) \geq-D_{1}+(I I) \geq-D_{1}+\frac{1}{2 w} \bar{\Phi}(\zeta-\mu)
$$

As $\bar{\Phi}(\zeta-\mu) /(2 w) \geq \bar{\Phi}(1) /(2 w)$ for small enough w, the last display is bounded from below by $\bar{\Phi}(\zeta-\mu) /(4 w)$. Noting that the bound

$$
m_{1}(\mu, w) \geq C \frac{\bar{\Phi}(\zeta-\mu)}{w}\left[1+\frac{|\zeta-\mu|}{\mu}\right]
$$

holds in the two cases, for C a small enough constant, leads to the result, recalling the definition of $T_{w}(\mu)$ in (S-23).

Combining Lemmas S-27 and S-28 (and using $T_{\mu}(w) \geq 1$) one obtains the following bound.
Corollary S-29. There exist constants $M_{0}, C_{2}>0$ and $\omega_{0} \in(0,1)$ such that for any $w \leq \omega_{0}$, and any $\mu \geq M_{0}$,

$$
m_{2}(\mu, w) \leq C_{2} \frac{m_{1}(\mu, w)}{w}
$$

Here is another lower bound for m_{1} when the signal is large
Lemma S-30. For any $\varepsilon \in(0,1)$ and $\rho>0$, there exist $\omega_{0}=\omega_{0}(\varepsilon, \rho) \in(0,1)$ such that for any $w \leq \omega_{0}$, and any $\mu \geq(1+\rho) \zeta(w)$,

$$
m_{1}(\mu, w) \geq(1-\varepsilon) / w
$$

Proof. Let $a=1+(\rho / 2)$ and let us write, for w small enough,

$$
\begin{aligned}
w m_{1}(\mu, w) & =\int_{-a \zeta}^{a \zeta} \frac{w \beta(x)}{1+w \beta(x)} \phi(x-\mu) d x+\int_{|x|>a \zeta} \frac{w \beta(x)}{1+w \beta(x)} \phi(x-\mu) d x \\
& \geq \int_{x>a \zeta} \frac{w \beta(x)}{1+w \beta(x)} \phi(x-\mu) d x-\int_{-a \zeta}^{a \zeta} \phi(x-\mu) d x \\
& \geq \frac{w \beta(a \zeta)}{1+w \beta(a \zeta)} \bar{\Phi}(a \zeta-\mu)-(1-\bar{\Phi}(a \zeta-\mu))
\end{aligned}
$$

Since for $\mu \geq(1+\rho) \zeta$, we have that $\bar{\Phi}(a \zeta-\mu) \geq \bar{\Phi}(-(\rho / 2) \zeta)$ tends to 1 when w tends to zero, we only have to prove that $w \beta(a \zeta)=\beta(a \zeta) / \beta(\zeta)$ tends to infinity. The latter comes from

$$
\beta(a \zeta) / \beta(\zeta) \gtrsim e^{-a \Lambda \zeta} \frac{\phi(\zeta)}{\phi(a \zeta)}=e^{\left(a^{2}-1\right) \zeta^{2}-a \Lambda \zeta}
$$

by using the definition of β and (44).

S-5.6. Results for m_{1} and \tilde{m} ratio

In the next lemmas, we study the behaviour of the functionals, for given $\theta_{0} \in \mathbb{R}^{n}$,

$$
\begin{align*}
H_{\theta_{0}}(w) & =\frac{\sum_{i \in S_{0}} m_{1}\left(\theta_{0, i}, w\right)}{\tilde{m}(w)}, w \in(0,1) \tag{S-35}\\
H_{\theta_{0}}^{\circ}(w, K) & =\frac{\sum_{i \in \mathcal{C}_{0}\left(\theta_{0}, w, K\right)} m_{1}\left(\theta_{0, i}, w\right)}{\tilde{m}(w)}, w \in(0,1), K \geq 1 \tag{S-36}
\end{align*}
$$

where we denoted $S_{0}=\left\{1 \leq i \leq n: \theta_{0, i} \neq 0\right\}$ and

$$
\mathcal{C}_{0}\left(\theta_{0}, w, K\right)=\left\{1 \leq i \leq n:\left|\theta_{0, i}\right| \geq \zeta(w) / K\right\} \subset S_{0} .
$$

The set $\mathcal{C}_{0}\left(\theta_{0}, w, K\right)$ is sometimes denoted by $\mathcal{C}_{0}(w, K)$ or \mathcal{C}_{0} for short.

Lemma S-31. Consider a sparsity $s_{n} \leq n^{v}$ for $v \in(0,1)$. Consider $H_{\theta_{0}}$ and $H_{\theta_{0}}^{\circ}$ as in (S-35) and (S-36), respectively. There exist constants $C=C(v, g)>0$ and $D=D(v, g) \in(0,1)$ such that

$$
\begin{equation*}
\sup _{\theta_{0} \in \ell_{0}\left[s_{n}\right]} \sup _{w \in\left[\frac{1}{n}, \frac{1}{\log n}\right], K \in\left[\frac{2}{1-v}, \frac{4}{1-v}\right]}\left|H_{\theta_{0}}(w)-H_{\theta_{0}}^{\circ}(w, K)\right| \leq C n^{1-D}, \tag{S-37}
\end{equation*}
$$

for any n larger than an integer $N=N(v, g)$.
Proof. For $\theta_{0} \in \ell_{0}\left[s_{n}\right]$ and $w \in\left[n^{-1}, 1 / \log n\right]$, denote

$$
\mathcal{C}_{1}=S_{0} \backslash \mathcal{C}_{0}=\left\{1 \leq i \leq n: 0<\left|\theta_{0, i}\right|<\zeta(w) / K\right\}
$$

By using the upper bounds on m_{1} obtained in Lemma S-25 (and μ_{0} defined therein), with $\zeta=\zeta(w)$, and for now taking $K \geq 2$ arbitrary,

$$
\begin{aligned}
\sum_{i \in \mathcal{C}_{1}} m_{1}\left(\theta_{0, i}, w\right) & =\left\{\sum_{0<\left|\theta_{0, i}\right| \leq \zeta^{-1}}+\sum_{\zeta^{-1}<\left|\theta_{0, i}\right| \leq \mu_{0}}+\sum_{\mu_{0}<\left|\theta_{0, i}\right|<\zeta / K}\right\} m_{1}\left(\theta_{0, i}, w\right) \\
& \lesssim s_{n}\left\{\left(1+\zeta^{-1}\right)+\zeta e^{\mu_{0} \zeta}+\zeta w^{-1} \bar{\Phi}(\zeta-\zeta / K)\right\}
\end{aligned}
$$

where to bound the third sum we use $\bar{\Phi}\left(\zeta-\left|\theta_{0, i}\right|\right) \leq \bar{\Phi}(\zeta-\zeta / K)$ and $T_{\mu}(w) \lesssim$ $\zeta(w)$. Now, by Lemma S-33,

$$
\bar{\Phi}\left(\zeta-\frac{\zeta}{K}\right) \leq \frac{K}{K-1} \zeta^{-1} \exp \left(-\frac{\zeta^{2}}{2} \frac{(K-1)^{2}}{K^{2}}\right) \lesssim \frac{1}{\zeta} w^{(1-1 / K)^{2}}
$$

for n large enough, where we used $\zeta(w)^{2} \geq-2 \log w$ via (S-16) in the last step. Now using that for $w \geq n^{-1}$, we have $\zeta \leq 2 \sqrt{\log n}$ for large n by Lemma S-15, so that $e^{\mu_{0} \zeta}$ is negligible compared to any positive power of n. One deduces that, for n large enough, using $w \geq n^{-1}$ and $s_{n} \lesssim n^{v}$ by assumption, and any $K \geq 2$,

$$
\begin{aligned}
\sum_{i \in \mathcal{C}_{1}} m_{1}\left(\theta_{0, i}, w\right) & \leq C s_{n}\left\{1+e^{C \zeta}+w^{-2 / K+1 / K^{2}}\right\} \\
& \leq C n^{v} e^{C \zeta}+C n n^{v-1+2 / K-1 / K^{2}}
\end{aligned}
$$

Now if $v-1+2 / K \leq 0$, which holds for K as in the statement, one gets

$$
\sup _{\theta_{0} \in \ell_{0}\left[s_{n}\right]} \sup _{w \in\left[n^{-1}, 1 / \log n\right]} \frac{\sum_{i \in \mathcal{C}_{1}} m_{1}\left(\theta_{0, i}, w\right)}{\tilde{m}(w)} \leq \frac{C}{\tilde{m}\left(n^{-1}\right)}\left\{n^{v} e^{2 C \sqrt{\log n}}+n^{1-1 / K^{2}}\right\} .
$$

For K as in the statement, we further have $1-K^{-2} \leq 1-(1-v)^{2} / 16$. Since $\tilde{m}\left(n^{-1}\right)$ decreases to 0 slower than any power of n (see Lemma S-24, combined with (44) and the bound (S-17) on ζ), the last display can be bounded by $C n^{1-D}$, for D small enough, which shows (S-37).

Lemma S-32. Consider $H_{\theta_{0}}^{\circ}$ as in (S-36) for some choice of $K>1$. Then there exists a constant $C=C(K, g)>0$ such that, for all $z \geq 1$, there exists $\omega_{0}=\omega_{0}(z, K, g) \in(0,1)$ such that for all $w \in\left(0, \omega_{0}\right)$ and for all $\theta_{0} \in \mathbb{R}^{n}$, we have

$$
\begin{equation*}
H_{\theta_{0}}^{\circ}(w / z, K) \geq C z^{1 /(2 K)} H_{\theta_{0}}^{\circ}(w, K / 1.1) \tag{S-38}
\end{equation*}
$$

Proof. According to Lemma S-25 and Lemma S-28, there exists constants $C_{1}, C_{2}>$ 0 and $\omega_{0} \in(0,1)$ such that for $w \in\left(0, \omega_{0}\right)$ and any θ_{0},

$$
C_{1} \sum_{i \in \mathcal{C}_{0}(w, K)} G_{\theta_{0, i}}(w) \frac{T_{\theta_{0, i}}(w)}{\tilde{m}(w)} \leq H_{\theta_{0}}^{\circ}(w, K) \leq C_{2} \sum_{i \in \mathcal{C}_{0}(w, K)} G_{\theta_{0, i}}(w) \frac{T_{\theta_{0, i}}(w)}{\tilde{m}(w)}
$$

where T_{μ}, G_{μ} are defined by (S-23), (S-26) respectively. Now, by Lemmas S19 and S-20, for all $z \geq 1$, there exists $\omega_{0}(z, K) \in(0,1)$ such that for $w \leq$ $\omega_{0}(z, K)$ and any $\mu \geq \zeta(w) / K$,

$$
\begin{aligned}
& G_{\mu}(w / z) \geq z^{1 /(2 K)} G_{\mu}(w) \\
& d_{1} T_{\mu}(w) \leq T_{\mu}(w / z) \leq d_{2} T_{\mu}(w)
\end{aligned}
$$

for some constants $d_{1}=d_{1}(K), d_{2}=d_{2}(K)$. Combining Lemma S-24 on \tilde{m} with Lemma S-19 on \bar{G}, one can find $D_{1}, D_{2}>0$ with, for $w \leq \omega(z)$,

$$
D_{1} \tilde{m}(w) \leq \tilde{m}(w / z) \leq D_{2} \tilde{m}(w)
$$

Hence, by combining these results one gets, for $w \leq \omega_{0}(z, K)$ (and then $w / z \leq$ $\omega_{0}(z, K)$ also holds),

$$
\begin{aligned}
H_{\theta_{0}}^{\circ}(w / z, K) & \geq C_{1} \sum_{i \in \mathcal{C}_{0}(w / z, K)} G_{\theta_{0, i}}(w / z) \frac{T_{\theta_{0, i}}(w / z)}{\tilde{m}(w / z)} \\
& \geq\left(C_{1} d_{1} / D_{2}\right) z^{1 /(2 K)} \sum_{i \in \mathcal{C}_{0}(w / z, K)} G_{\theta_{0, i}}(w) \frac{T_{\theta_{0, i}}(w)}{\tilde{m}(w)} .
\end{aligned}
$$

Now we claim that $\mathcal{C}_{0}(w, K / 1.1) \subset \mathcal{C}_{0}(w / z, K)$ for w small enough depending on z. Indeed, $\zeta(w / z) / \zeta(w) \leq 1+(\zeta(w / z)-\zeta(w)) / \zeta(w) \leq 1.1$ for w small enough depending on z, as in the proof of Lemma S-19. So,

$$
\begin{aligned}
\mathcal{C}_{0}(w / z, K) & =\left\{1 \leq i \leq n:\left|\theta_{0, i}\right| \geq \zeta(w / z) / K\right\} \\
& \supset\left\{1 \leq i \leq n:\left|\theta_{0, i}\right| \geq 1.1 \zeta(w) / K\right\}=\mathcal{C}_{0}(w, K / 1.1)
\end{aligned}
$$

One deduces that $H_{\theta_{0}}^{\circ}(w / z, K) \geq C z^{1 /(2 K)} H_{\theta_{0}}^{\circ}(w, K / 1.1)$ for $w \leq \omega_{0}(z, K)$ as announced.

S-6. Auxiliary lemmas

Lemma S-33. For any $x>0$,

$$
\frac{x^{2}}{1+x^{2}} \frac{\phi(x)}{x} \leq \bar{\Phi}(x) \leq \frac{\phi(x)}{x}
$$

In particular, for any $x \geq 1, \bar{\Phi}(x) \geq \frac{1}{2} \frac{\phi(x)}{x}$ and $\bar{\Phi}(x) \sim \frac{\phi(x)}{x}$ when $x \rightarrow \infty$. Furthermore, for any $y \in(0,1 / 2)$,

$$
\left\{(2 \log (1 / y)-\log \log (1 / y)-\log (16 \pi))_{+}\right\}^{1 / 2} \leq \bar{\Phi}^{-1}(y) \leq\{2 \log (1 / y)\}^{1 / 2}
$$

and also for y small enough,

$$
\bar{\Phi}^{-1}(y) \leq\{2 \log (1 / y)-\log \log (1 / y)\}^{1 / 2}
$$

In particular, $\bar{\Phi}^{-1}(y) \sim\{2 \log (1 / y)\}^{1 / 2}$ when $y \rightarrow 0$.
Proof. The first display of the lemma are classical bounds on $\bar{\Phi}$. The second display follows using the first one and similar inequalities as those used to derive bounds on ξ, ζ, χ. Let us prove the last relation: for all $y \in(0,1 / 2)$,

$$
y\left\{(2 \log (1 / y)-\log \log (1 / y)-\log (16 \pi))_{+}\right\}^{1 / 2} \leq y \bar{\Phi}^{-1}(y) \leq \phi\left(\bar{\Phi}^{-1}(y)\right)
$$

Hence,

$$
\begin{aligned}
\bar{\Phi}^{-1}(y) & \leq\left\{-2 \log \left(y\left\{(2 \log (1 / y)-\log \log (1 / y)-\log (16 \pi))_{+}\right\}^{1 / 2}\right)\right\}^{1 / 2} \\
& \leq\left\{-2 \log y-\log \left((2 \log (1 / y)-\log \log (1 / y)-\log (16 \pi))_{+}\right)\right\}^{1 / 2}
\end{aligned}
$$

which provides the result.
Lemma S-34. For any $x, y \in \mathbb{R}$, with $|x-y| \leq 1 / 4$, we have

$$
\begin{equation*}
\bar{\Phi}(x) \geq \bar{\Phi}(y) \frac{1}{4} e^{-\left(x^{2}-y^{2}\right)_{+} / 2} \tag{S-39}
\end{equation*}
$$

Proof. Let us assume $x>y$ (otherwise the result is trivial). If $y \leq 0$, we have $\bar{\Phi}(x) \geq \bar{\Phi}(1 / 4) \geq 1 / 4 \geq 1 / 4 \bar{\Phi}(y)$ so the inequality is true. Assume now $y>0$. By Lemma S-33,

$$
\begin{aligned}
\frac{\bar{\Phi}(x)}{\bar{\Phi}(y)} & \geq \frac{\bar{\Phi}(y+1 / 4)}{\bar{\Phi}(y)} \mathbf{1}\{y \leq 1\}+\frac{x y}{1+x^{2}} e^{-\left(x^{2}-y^{2}\right) / 2} \mathbf{1}\{y \geq 1\} \\
& \geq \frac{\bar{\Phi}(5 / 4)}{\bar{\Phi}(1)} \mathbf{1}\{y \leq 1\}+\frac{x^{2}}{2\left(1+x^{2}\right)} e^{-\left(x^{2}-y^{2}\right) / 2} \mathbf{1}\{y \geq 1\}
\end{aligned}
$$

because $y \in(0, \infty) \rightarrow \frac{\bar{\Phi}(y+1 / 4)}{\bar{\Phi}(y)}$ is decreasing and $y \geq x / 2$ when $y \geq 1$. This concludes the proof.

Lemma S-35. [Bernstein's inequality] Let $W_{i}, 1 \leq i \leq n$ centered independent variables with $\left|W_{i}\right| \leq \mathcal{M}$ and $\sum_{i=1}^{n} \operatorname{Var}\left(W_{i}\right) \leq V$, then for any $A>0$,

$$
P\left[\sum_{i=1}^{n} W_{i}>A\right] \leq \exp \left\{-\frac{1}{2} A^{2} /(V+\mathcal{M} A / 3)\right\}
$$

Lemma S-36. There exists a constant $C>1$ such that, for any $M \geq 1$,

$$
\frac{e^{M}}{M^{2}}-1 \leq \int_{1}^{M} \frac{e^{v}}{v^{2}} d v \leq C \frac{e^{M}}{M^{2}}
$$

Proof. For $M \leq 3$ the result is immediate for C chosen large enough beforehand. For $M>3$, one writes

$$
\int_{3}^{M} \frac{e^{v}}{v^{2}} d v=\left[\frac{e^{v}}{v^{2}}\right]_{3}^{M}+2 \int_{3}^{M} \frac{e^{v}}{v^{3}} d v \leq \frac{e^{M}}{M^{2}}+\frac{2}{3} \int_{3}^{M} \frac{e^{v}}{v^{2}} d v
$$

so that $\int_{3}^{M} \frac{e^{v}}{v^{2}} d v \leq 3 e^{M} / M^{2}$, from which the upper bound follows. The lower bound follows from integrating by parts between 1 and M and noting that the second term is nonnegative.
Lemma S-37. For $m \geq 1, p_{1}, \ldots, p_{m} \in(0,1)$, consider $U=\sum_{i=1}^{m} B_{i}$, where $B_{i} \sim \mathcal{B}\left(p_{i}\right), 1 \leq i \leq m$, are independent. For any nonnegative variable T independent of U, we have

$$
\begin{equation*}
E\left(\frac{T}{T+U} \mathbf{1}\{T>0\}\right) \leq e^{-E U}+\frac{12 E T}{E U} \tag{S-40}
\end{equation*}
$$

Proof. Let us prove the two following inequalities: for all $u>0$,

$$
\begin{aligned}
P(U=0) & \leq e^{-\sum_{i=1}^{m} p_{i}} \\
E\left(\frac{u \sum_{i=1}^{m} p_{i}}{u \sum_{i=1}^{m} p_{i}+U \vee 1}\right) & \leq 12 u
\end{aligned}
$$

For the first inequality, using $\log (1-x) \leq-x$ for all $x \in(0,1)$,

$$
P(U=0)=\prod_{i=1}^{n}\left(1-p_{i}\right)=e^{\sum_{i=1}^{n} \log \left(1-p_{i}\right)} \leq e^{-\sum_{i=1}^{m} p_{i}}=e^{-E U}
$$

For the second assertion, we have

$$
E\left(\frac{u \sum_{i=1}^{m} p_{i}}{u \sum_{i=1}^{m} p_{i}+U \vee 1}\right) \leq E\left(\frac{\sum_{i=1}^{m} p_{i}}{U \vee 1}\right) u
$$

Now applying Bernstein's inequality, we have

$$
\begin{aligned}
P\left(U \leq \sum_{i=1}^{m} p_{i} / 2\right) & =P\left(U-\sum_{i=1}^{m} p_{i} \leq-\sum_{i=1}^{m} p_{i} / 2\right) \\
& \leq \exp \left\{-\frac{1}{2} \sum_{i=1}^{m} p_{i}(1 / 2)^{2} /(1+1 / 6)\right\} \leq e^{-0.1 \sum_{i=1}^{m} p_{i}}
\end{aligned}
$$

As a result, one obtains, using $x e^{-x} \leq 1$ for $x \geq 0$,

$$
\begin{aligned}
& E\left(\frac{\sum_{i=1}^{m} p_{i}}{U \vee 1}\right) \\
& \leq E\left(\frac{\sum_{i=1}^{m} p_{i}}{U \vee 1} \mathbf{1}\left\{U>\sum_{i=1}^{m} p_{i} / 2\right\}\right)+E\left(\frac{\sum_{i=1}^{m} p_{i}}{U \vee 1} \mathbf{1}\left\{U \leq \sum_{i=1}^{m} p_{i} / 2\right\}\right) \\
& \leq 2+10\left(0.1 \sum_{i=1}^{m} p_{i}\right) e^{-0.1 \sum_{i=1}^{m} p_{i}} \leq 12
\end{aligned}
$$

as announced. To show (S-40), we now use the independence assumption and the concavity of $x \rightarrow \frac{x}{x+u}$ (for $u>0$), to obtain

$$
\begin{aligned}
E\left[\frac{T}{T+U} \mathbb{1}\{T>0\}\right] & =P(U=0, T>0)+E\left[\frac{T}{T+U} \mathbb{1}\{U>0\}\right] \\
& \leq P(U=0)+E\left[\frac{E T}{E T+U} \mathbb{1}\{U>0\}\right] \\
& \leq P(U=0)+E\left[\frac{E T}{E T+U \vee 1}\right]
\end{aligned}
$$

The two previous inequalities for $u=E T / E U$ thus give the result.

S-7. Additional numerical experiments

The following pages present further numerical experiments along the lines of the comments of Section 4.

References

[1] I. M. Johnstone and B. W. Silverman. Needles and straw in haystacks: empirical Bayes estimates of possibly sparse sequences. Ann. Statist., 32(4):15941649, 2004.

Fig S-3. FDR of EBayesq. 0 and EBayesq.hybrid procedures with threshold $t \in$ $\{0.05,0.1,0.2\} . \alpha=0.2 ; n=10,000 ; 500$ replications; alternative all equal to μ (on the X-axis).

Fig S-4. FDR for $S C$ procedure with threshold $t \in\{0.05,0.1,0.2\} . \alpha=0.2 ; n=10,000 ; 2000$ replications; alternative all equal to μ (on the X-axis).

Fig S-5. FDR of EBayesL and EBayesq procedures with threshold $t \in\{0.05,0.1,0.2\} . \alpha=0.2$; $n=10$, 000; 2000 replications; alternative values i.i.d. uniformly drawn into $[0,2 \mu]$ (μ on the X-axis).

FIG S-6. FDR of EBayesq. 0 and EBayesq.hybrid procedures with threshold $t \in$ $\{0.05,0.1,0.2\} . \alpha=0.2 ; n=10,000 ; 2000$ replications; alternative values i.i.d. uniformly drawn into $[0,2 \mu]$ (μ on the X-axis).

Fig S-7. FDR for $S C$ procedure with threshold $t \in\{0.05,0.1,0.2\} . \alpha=0.2 ; n=10,000 ; 2000$ replications; alternative values i.i.d. uniformly drawn into $[0,2 \mu]$ (μ on the X-axis).

