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Abstract: This paper explores a connection between empirical Bayes pos-
terior distributions and false discovery rate (FDR) control. In the Gaussian
sequence model, this work shows that empirical Bayes-calibrated spike and
slab posterior distributions allow a correct FDR control under sparsity.
Doing so, it offers a frequentist theoretical validation of empirical Bayes
methods in the context of multiple testing. Our theoretical results are il-
lustrated with numerical experiments.
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1. Introduction

1.1. Context

In modern high dimensional statistical models, several aims are typically pur-
sued, often at the same time: testing of hypotheses on the parameters of interest,
estimation and uncertainty quantification, among others. Due to their flexibil-
ity, in particular in the choice of the prior, Bayesian posterior distributions are
routinely used to provide solutions to a variety of such inference problems. How-
ever, although practitioners may often directly read off quantities such as the
posterior mean or credible sets once they have simulated posterior draws, the
question of mathematical justification of the use of such quantities, in particular
from a frequentist perspective, has recently attracted a lot of attention. While
the seminal papers [21], [34] set the stage for the study of posterior estimation
rates in general models, the case of estimation in high dimensional models has
been considered only recently from the point of view of estimation, see [24], [14],
[41] among others, while results on frequentist coverage of credible sets are just
starting to emerge, see e.g. [3], [40]. Some of the previous approaches rely on au-
tomatic data-driven calibration of the prior parameters, following the so-called
empirical Bayes approach, notably [24], estimating the proportion of significant
parameters, and [23], where the full distribution function of the unknowns is
estimated.

∗Work partly supported by grants of the ANR, projects ANR-16-CE40-0019 (SansSouci)
and ANR-17-CE40-0001 (BASICS)

1

imsart-generic ver. 2014/10/16 file: CR2018_arXiv.tex date: August 14, 2018

mailto:ismael.castillo@upmc.fr
mailto:etienne.roquain@upmc.fr


/Spike and slab empirical Bayes multiple testing 2

Our interest here is on the issue of multiple testing of hypotheses. Typi-
cally, the problem is to identify the active variables among a large number of
candidates. This task appears in a wide variety of applied fields as genomics,
neuro-imaging, astrophysics, among others. Such data typically involve more
than thousands of variables with only a small part of them being significant
(sparsity).

In this context, a typical aim is to control the false discovery rate (FDR), see
(8) below, that is, to find a selection rule that ensures that the averaged propor-
tion of errors among the selected variables is smaller than some prescribed level
α. This multiple testing type I error rate, introduced in [4], became quickly pop-
ular with the development of high-throughput technologies because it is “scal-
able” with respect to the dimension: the more rejections are possible, the more
false positives are allowed. A common way to achieve this goal is to compute
the p-values (probability under the null that the test statistic is larger than the
observed value) and to run the Benjamini-Hochberg (BH) procedure [4], which
is often considered as a benchmark procedure. In the last decades, an extensive
literature aimed at studying the BH method, by showing that it (or versions of
it) controls the FDR in various frameworks, see [6, 5, 31, 19], among others.

In a fundamental work [1], Abramovich, Benjamini, Donoho and Johnstone
proved that a certain hard thresholding rule deduced from the BH procedure
– keeping only observations with significant p-values – satisfies remarkable risk
properties: it is minimax adaptive simultaneously for a range of losses and spar-
sity classes over a broad range of sparsity parameters. In addition, similar results
hold true for the misclassification risks, see [7, 29]. These results in particular
suggest a link between FDR controlling procedures and adaptation to sparsity.
Further results in this direction include [9], [36] for the SLOPE estimate. Here,
we shall follow a questioning that can be seen as ‘dual’ to the former one: starting
from a commonly used Bayesian procedure that is known to optimally adapt to
the sparsity in terms of risk over a broad range of sparsity classes (and even, un-
der appropriate self-similarity type conditions, to produce adaptive confidence
sets), we ask whether a uniform FDR control can be guaranteed.

1.2. Setting

In this paper, we consider the Gaussian sequence model. One observes, for 1 ≤
i ≤ n,

Xi = θ0,i + εi, (1)

for an unknown n-dimensional vector θ0 = (θ0,i)1≤i≤n ∈ Rn and εi i.i.d. N (0, 1).
This model can be seen as a stylized version of an high-dimensional model. The
problem is to test

H0,i : “θ0,i = 0” against H1,i : “θ0,i 6= 0”,

simultaneously over i ∈ {1, . . . , n}. We also introduce the assumption that the
vector θ0 is sn-sparse, that is, is supposed to belong to the set

`0[sn] = {θ ∈ Rn : #{1 ≤ i ≤ n : θi 6= 0} ≤ sn}, (2)
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for some sequence sn ∈ {0, 1, . . . , n}, typically much smaller than n, measuring
the sparsity of the vector.

1.3. Bayesian multiple testing methodology

From the point of view of posterior distributions, one natural approach for
testing is simply based on comparing posterior probabilities of the hypotheses
under consideration. Yet, to do so, a choice of prior needs to be made, and for
this reason it is important to carefully design a prior that is flexible enough to
adapt to the unknown underlying structure (and, here, sparsity) of the model.
This is one of the reasons behind the use of empirical Bayes approaches, that
aim at calibrating the prior in a fully automatic, data-driven, way. Empirical
Bayes methods for multiple testing have been in particular advocated by Efron
(see e.g. [17] and references therein) in a series of works over the last 10-15
years, reporting excellent behaviour of such procedures – we describe two of
them in more detail in the next paragraphs – in practice. Fully Bayes methods,
that bring added flexibility by putting prior on sensible hyperparameters, are
another alternative. In the sequel Bayesian multiple testing procedures will be
referred to as BMT for brevity.

Several popular BMT procedures rely on two quantities that can be seen as
possible Bayesian counterparts of standard p-values:

• the `-value: the probability that the null is true conditionally on the fact
that the test statistics is equal to the observed value, see e.g. [18];

• the q-value: the probability that the null is true conditionally on the fact
that the test statistics is larger than the observed value, introduced in [35].

(Note that the `-value is usually called “local FDR”. Here, we used another
terminology to avoid any confusion between the procedure and the FDR.) Ob-
viously, these quantities are well defined only if the trueness/falseness of a null
hypothesis is random, which is obtained by introducing an appropriate prior
distribution.

Once the prior is calibrated (in a data-driven way or not), the q-values (resp.
`-values) can be computed and combined to produce BMT procedures. For in-
stance, existing strategies reject null hypotheses with:

• a `-value smaller than a fixed cutoff t = 0.2 [16];
• a q-value smaller than the nominal level α [17];
• averaged `-values smaller than the nominal level α [28, 37, 38].

For alternatives see, e.g., [32]. In particular, one popular fact is that the use
of Bayesian quantities “automatically corrects for the multiplicity of the tests”,
see, e.g., [35]; while using p-values requires to use a cutoff t that decreases with
the dimension n, using `-values/q-values can be used with a cutoff t close to
the nominal level α, without any further correction. This is well known to be
valid from a decision theoretic perspective for the Bayes FDR, that is, for the
FDR integrated w.r.t. the prior distribution, as we recall in Proposition 1 below.
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/Spike and slab empirical Bayes multiple testing 4

When the hyper-parameters are estimated from the data within the BMT, the
Bayes FDR is still controlled to some extent, as proved in [37, 38]. However,
controlling the Bayes FDR does not give theoretical guarantees for the usual
frequentist FDR, that is, for the FDR at the true value of the parameter, as the
pointwise FDR may deviate from an integrated version thereof.

1.4. Frequentist control of BMT

In this paper, our main aim is to study whether BMT procedures have valid
frequentist multiple testing properties.

A first hint has already been given in [35, 17]: it turns out that the BH
procedure can loosely be seen as a “plug-in version” of the procedure rejecting
the q-values smaller than α (namely, the theoretical c.d.f. of the p-values is
estimated by its empirical counterpart). Since the BH procedure controls the
(frequentist) FDR, this might suggest a possible connection between BMT and
successful frequentist multiple testing procedures.

In regard to the rapidly increasing literature on frequentist validity of Bayesian
procedures from the estimation perspective, the multiple testing question for
BMT procedures has been less studied so far from the theoretical, frequentist,
point of view. This is despite a number of very encouraging simulation per-
formance results, see e.g. [28, 10, 22, 26]. A recent exception is the interesting
preprint [30] that shows a frequentist FDR control for a BMT based on a con-
tinuous shrinkage prior; yet, this control holds under a certain signal-strength
assumption only. One main question we ask in the present work is whether a
fully uniform control (over sparse vectors) of the frequentist FDR is possible for
some posterior-based BMT procedures. Also, we would like to clarify whether
the final FDR control is made at, or close to, the required level α.

1.5. Spike and slab prior distributions and sparse priors

Let w ∈ (0, 1) be a fixed hyper-parameter. Let us define the prior distribution
Π = Πw,γ on Rn as

Πw,γ = ((1− w)δ0 + wG)⊗n, (3)

where G is a distribution with a symmetric density γ on R. Such a prior is
a tensor product of a mixture of a Dirac mass at 0 (spike), that reflects the
sparsity assumption, and of an absolutely continuous distribution (slab), that
models nonzero coefficients. This is arguably one of the most natural priors on
sparse vectors and has been considered in many key contributions on Bayesian
sparse estimation and model selection, see, e.g., [27], [20].

Of course, an important question is that of the choice of w and γ. A pop-
ular choice of w is data-driven and based on a marginal maximum likelihood
empirical Bayes method (to be described in more details below). The idea is to
make the procedure learn the intrinsic sparsity while also incorporating some
automatic multiplicity correction, as discussed e.g. in [33, 8]. Following such
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an approach in a fundamental paper, Johnstone and Silverman [24] show that,
provided γ has tails at least as heavy as Laplace, the posterior median of the
empirical Bayes posterior is rate adaptive for a wide range of sparsity parame-
ters and classes, is fast to compute and enjoys excellent behaviour in simulations
(the corresponding R–package EBayesThresh [25] is widely used). Namely, if ‖·‖
denotes the euclidian norm and θ̂ = θ̂(X) is the coordinate-wise median of the
empirical Bayes posterior distribution, there exists c1 > 0 such that

sup
θ0∈`0[sn]

Eθ0‖θ̂ − θ0‖2 ≤ c1sn log(n/sn). (4)

Thus, asymptotically (in the regime sn, n→∞, sn/n→ 0), it matches up to a
constant the minimax risk for this problem ([15]). In the recent work [11], the
convergence of the empirical Bayes full posterior distribution (not only aspects
such as median or mean) is considered, and similar results can be obtained,
under stronger conditions on the tails of γ (for instance γ Cauchy works). More
precisely, for Π(· |X) = Π̂(· |X) the empirical Bayes posterior, one can find a
constant C1 > 0 such that

sup
θ0∈`0[sn]

Eθ0

∫
‖θ − θ0‖2dΠ(θ |X) ≤ C1sn log(n/sn). (5)

Further, under some conditions, one can show that certain credible sets from the
posterior distributions are also adaptive confidence sets in the frequentist sense
[13]. Alternatively, one can also follow a hierarchical approach and put a prior
on w. The paper [14] obtains adaptive rates for such a fully Bayes procedure
over a variety of sparsity classes, and presents a polynomial time algorithm to
compute certain aspects of the posterior.

Empirical Bayes approaches have also been successfully applied to a variety
of different sparse priors such as empirically recentered Gaussian slabs as in
[3, 2], or the horseshoe [39, 40], both studied in terms of estimation and the
possibility to construct adaptive confidence sets. In [23], an empirical Bayes
approach based on the ‘empirical’ cdf of the θs is shown to allow for optimal
adaptive estimation over various sparsity classes. For an overview on the rapidly
growing literature on sparse priors, we refer to the discussion paper [40].

Yet, most of the previous results are concerned with estimation or confidence
sets, although a few of them report empirical false discoveries, e.g. [40], Figure
7, without theoretical analysis though.

1.6. Aim and results of the paper

Here we wish to find – if this is at all possible – a posterior-based procedure
using a prior Π (possibly an empirical Bayes one i.e. Π = Π̂), that can perform
simultaneous inference in that a) it behaves optimally up to constants in terms of
the quadratic risk in the sense of (4) (or (5)), b) its frequentist FDR at any sparse
vector is bounded from above by (a constant times) a given nominal level. More
precisely, given a nominal level t ∈ (0, 1) and ϕt a multiple testing procedure
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deduced from Π (`-values or q-values procedure, as listed in Section 1.3) we
want to validate its use in terms of a uniform control of its false discovery rate
FDR(θ0, ϕt), see (8) below, over the whole parameter space. That is, we ask
whether we can find C2 > 0 independent of t such that, for n large enough,

sup
θ0∈`0[sn]

FDR(θ0, ϕt) ≤ C2 t. (6)

Our main results are as follows: for a sparsity sn = O(nυ) with υ ∈ (0, 1),

• Theorem 1 shows that (6) holds with C2 arbitrary small for the BMT
procedure rejecting the nulls whenever the corresponding `-value is smaller
than t.

• Theorem 2 shows that (6) holds for some C2 > 0 for the BMT procedure
rejecting the nulls whenever the corresponding q-value is smaller than t
(with a slight modification if only few signals are detected).

These results hold for spike and slab priors, for γ being Laplace or Cauchy, or
even for slightly more general heavy-tailed distributions. The hyperparameter ŵ
is chosen according to a certain empirical Bayes approach to be specified below
(with minor modifications with respect to the choice of [24]).

In addition, from a pure multiple testing perspective, it is important to eval-
uate the amplitude of C2 > 0 in (6). Our numerical experiments support the
fact that, roughly, C2 = 1. Furthermore, Theorem 3 shows that for some subset
L0[sn] ⊂ `0[sn] (containing strong signals), we have for the q-value BMT, for
any (sequence) θ0 ∈ L0[sn],

lim
n

FDR(θ0, ϕt) = t , (7)

so the FDR control is exactly achieved asymptotically in that case.
It follows from these results (combined with previous results of [24, 11]) that

the posterior distribution associated to a spike and slab prior, with γ Cauchy
and a suitably empirical Bayes–calibrated w, is appropriate to perform several
tasks: (6) (multiple testing), (5)–(4) (posterior concentration in L2-distance).
The posterior can also be used to build honest adaptive confidence sets ([13]).
The present work, focusing on the multiple testing aspect, then completes the
inference picture for spike and slab empirical Bayes posteriors, confirming their
excellent behaviour in simulations.

1.7. Organisation of the paper

In Section 2, we introduce Bayesian multiple testing procedures associated to
spike and slab posterior distributions as well as the considered empirical Bayes
choice of w. In Section 3, our main results are stated, while Section 4 contains
numerical experiments and Section 5 a short discussion. Preliminaries for the
proofs are given in Section 6, while the proof of the main results can be found
in Section 7. The supplementary file [12] gathers a number of useful lemmas
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used in the proofs, as well as the proofs of Propositions 1–2 and Theorem 3.
The sections and equations of this supplement are referred to with an additional
symbol “S-” in the numbering.

1.8. Notation

In this paper, we use the following notation:

• for F a cdf, we set F = 1− F
• φ(x) = (2π)−1/2e−x

2/2 and Φ(x) =
∫ x
−∞ φ(u)du

• un � vn means that there exists constants C,C ′ > 0 such that |vn|c ≤
|un| ≤ C|vn| for n large enough;

• un . vn means that there exists constants C > 0 such that |un| ≤ C|vn|
for n large enough;

• f(y) � g(y), for y ∈ A means that there exists constants C,C ′ > 0 such
that for all y ∈ A, c|g(y)| ≤ |f(y)| ≤ C|g(y)|;

• f(y) � g(y), as y → ∞ means that there exists constants C,C ′ > 0 such
that c|g(y)| ≤ |f(y)| ≤ C|g(y)| for y large enough;

• un ∼ vn means un − vn = o(un).

Also, for τ ∈ Rn, the symbols Eτ (resp. Pτ ) denotes the expectation (resp.
probability) under θ0 = τ in the model (1). The support of θ0 ∈ Rn is denoted
by Sθ0 = {i : θ0,i 6= 0} or sometimes S0 for simplicity. The cardinality of the
support Sθ0 is denoted by σ0 = |S0|.

2. Preliminaries

2.1. Procedure and FDR

A multiple testing procedure is a measurable function of the form ϕ(X) =
(ϕi(X))1≤i≤n ∈ {0, 1}n, where each ϕi(X) = 0 (resp. ϕi(X) = 1) codes for
accepting H0,i (resp. rejecting H0,i). For any such procedure ϕ, we let

FDR(θ0, ϕ) = Eθ0

[∑n
i=1 1{θ0,i = 0}ϕi(X)

1 ∨
∑n
i=1 ϕi(X)

]
. (8)

A procedure ϕ is said to control the FDR at level α if FDR(θ0, ϕ) ≤ α for any θ0

in Rn. Note that under θ0 = 0, we have FDR(θ0, ϕ) = Pθ0=0(∃i : ϕi(X) = 1),
which means that an α–FDR controlling procedure provides in particular a
(single) test of level α of the full null “θ0,i = 0 for all i”. As already mentioned,
in the framework of this paper, our goal is a control of the FDR around the
pre-specified target level, as in (6) or (7) (where t = α).

2.2. Prior, posterior, `-values and q-values

Recall the definition of the prior distribution Π = Πw,γ from (3) and let

g(x) =

∫
γ(x− u)φ(u)du. (9)
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/Spike and slab empirical Bayes multiple testing 8

The posterior distribution Π[· |X] of θ is then explicitly given by

θ |X ∼
n⊗
i=1

`i(X) δ0 + (1− `i(X))GXi (10)

where Gx is the distribution with density γx(u) := φ(x− u)γ(u)/g(x) and

`i(X) = `(Xi;w, g); (11)

`(x;w, g) = Π(θ1 = 0 |X1 = x) =
(1− w)φ(x)

(1− w)φ(x) + wg(x)
. (12)

The quantities `i(X), 1 ≤ i ≤ n, given by (11) are called the `-values. Note that,
although we do not emphasize it in the notation for short, the `-values depend
also on w and g. The `-value measures locally, for a given observation Xi, the
probability that the latter comes from pure noise. This is why it is sometimes
called ‘local-FDR’, see [18].

If one has in mind a range of values –i.e. those that exceed a given amplitude–,
a different measure is given by the q-values defined by

qi(X) = q(Xi;w, g); (13)

q(x;w, g) = Π(θ1 = 0 | |X1| ≥ |x|) =
(1− w)Φ(|x|)

(1− w)Φ(|x|) + w G(|x|)
; (14)

G(s) =

∫ +∞

s

g(x)dx. (15)

The identity (14) relating the q-value to Φ, G is proved in Section S-3.

2.3. Assumptions

We follow throughout the paper assumptions similar to those of [24]. The prior
γ is assumed to be unimodal, symmetric and so that

| log γ(x)− log γ(y)| ≤ Λ|x− y|, x, y ∈ R; (16)

γ(y)−1

∫ ∞
y

γ(u)du � yκ−1, as y →∞, κ ∈ [1, 2]; (17)

y ∈ R→ y2γ(y) is bounded. (18)

Conditions (16), (17) and (18) above are for instance true when γ is Cauchy
(κ = 2, Λ = 1) or Laplace (κ = 1, Λ is the scaling parameter). As we show in
Remark S-11, explicit expressions exist for g, see (9), in the Laplace case. In the
Cauchy case, the integral is not explicit, but in practice (to avoid approximating
the integral) one can work with the quasi-Cauchy prior, see [25], that satisfies
the above conditions and corresponds to

γ(x) = (2π)−1/2(1− |x|Φ(x)/φ(x)); (19)

g(x) = (2π)−1/2x−2(1− e−x
2/2). (20)
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/Spike and slab empirical Bayes multiple testing 9

2.4. Bayesian Multiple Testing procedures (BMT)

We define the multiple procedures defined from the `-values/q-values in the
following way:

ϕ`-val

i (t;w, g) = 1{`i(X)≤t}, 1 ≤ i ≤ n; (21)

ϕq-val

i (t;w, g) = 1{qi(X)≤t}, 1 ≤ i ≤ n, (22)

where t ∈ (0, 1) is some threshold, that possibly depends on X. As we will see in
Section 6.2, these two procedures, denoted ϕ`-val(t), ϕq-val(t) for brevity, simply
correspond to (hard) thresholding procedures that select the |Xi|’s larger than
some (random) threshold. The value of the threshold is driven by the posterior
distribution in a very specific way: it depends on γ, t, and on the whole data
vector X through the empirical Bayes choice of the hyper-parameter w, that
automatically “scales” the procedure according to the sparsity of the data.

2.5. Controlling the Bayes FDR

If the aim is to control the FDR at some level α, a first result indicates that
choosing t = α in ϕ`-val(t) and ϕq-val(t) may be appropriate, because the cor-
responding procedures control the Bayes FDR, that is, the FDR where the
parameter θ has been integrated with respect to the prior distribution (see, e.g.,
[32]). More formally, for any multiple testing procedure ϕ, and hyper-parameters
w and γ, define

BFDR(ϕ;w, γ) =

∫
Rn

FDR(θ, ϕ)dΠw,γ(θ). (23)

Then the following result holds.

Proposition 1. Let α ∈ (0, 1) and w ∈ (0, 1) and consider any density γ
satisfying the assumptions of Section 2.3. Let ϕ` = ϕ`-val(α;w, g) as defined in
(21) and ϕq = ϕq-val(α;w, g) as defined in (22). Then we have

BFDR(ϕ`;w, γ) ≤ α P (∃i : `i(X) ≤ α) (24)

≤ α P (∃i : qi(X) ≤ α) = BFDR(ϕq;w, γ) ≤ α. (25)

This result can be certainly considered as well known, as (24) (resp. (25)) is
similar in essence to Theorem 4 of [38] (resp. Theorem 1 of [35]). It is essen-
tially a consequence of Fubini’s theorem, see Section S-2.1 for a proof. While
Proposition 1 justifies the use of `/q-values from the purely Bayesian perspec-
tive, it does not bring any information about FDR(θ0, ϕ

`) and FDR(θ0, ϕ
q) at

an arbitrary sparse vector θ0 ∈ Rn.

2.6. Marginal maximum likelihood

In order to choose the hyper-parameter w, we explore now the choice made
in [24], following the popular marginal maximum likelihood method. Let us
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/Spike and slab empirical Bayes multiple testing 10

introduce the auxiliary functions

β(x) =
g

φ
(x)− 1; β(x,w) =

β(x)

1 + wβ(x)
. (26)

A useful property is that β is increasing on [0,∞) from β(0) ∈ (−1, 0) to infinity,
see Section 6.1. The marginal likelihood for w is by definition the marginal
density of X, given w, in the Bayesian setting. Its logarithm is equal to

L(w) =

n∑
i=1

log φ(Xi) +

n∑
i=1

log (1 + wβ(Xi)) ,

which is a differentiable function on [0, 1]. The derivative S of L, the score
function, can be written as

S(w) =
n∑
i=1

β(Xi)

1 + wβ(Xi)
=

n∑
i=1

β(Xi, w). (27)

The function w ∈ [0, 1]→ S(w) is (a.s.) decreasing and thus w ∈ [0, 1]→ L(w) is
(a.s.) strictly concave. Hence, almost surely, the maximum of the function L on
a compact interval exists, is unique, and we can define the marginal maximum
likelihood estimator ŵ by

ŵ = argmax
w∈[ 1

n ,1]
L(w) (a.s.). (28)

This choice of ŵ is close to the one in [24]. The only difference is in the lower
bound, here 1/n, of the maximisation interval, which differs from the choice in
[24] by a slowly varying term. This difference is important for multiple testing
in case of weak or zero signal (in contrast to the estimation task, for which this
different choice does not modify the results). Another slightly different choice
of interval, still close to [1/n, 1], will also be of interest below.

In addition, if ŵ ∈ (1/n, 1), it solves the equation S(w) = 0 in w. However,
note that the maximiser ŵ can be at the boundary and thus may not be a zero
of S.

3. Main results

Let us first describe the `-value algorithm.

Algorithm EBayesL

Input: X1, . . . , Xn, slab prior γ, target confidence t
Output: BMT procedure ϕ`-val

1. Find the maximiser ŵ given by (28);

2. Compute ˆ̀
i(X) = `(Xi; ŵ, g) given by (12);

3. Return, for 1 ≤ i ≤ n,

ϕ`-val

i = 1{ˆ̀i(X) ≤ t}. (29)
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/Spike and slab empirical Bayes multiple testing 11

Theorem 1. Consider the parameter space `0[sn] given by (2) with sparsity
sn ≤ nυ for some υ ∈ (0, 1). Let γ be a unimodal symmetric slab density that
satisfies (16)–(18) with κ as in (17). Then the algorithm EBayesL produces as
output the BMT ϕ`-val defined in (29) that satisfies the following: there exists
a constant C = C(γ, υ) such that for any t ≤ 3/4, there exists an integer
N0 = N0(γ, υ, t) such that, for any n ≥ N0,

sup
θ0∈`0[sn]

FDR(θ0, ϕ
`-val) ≤ C log log n

(log n)κ/2
. (30)

Theorem 1 is proved in Section 7. The proof relies mainly on two different
arguments: first, a careful analysis of the concentration of ŵ, which requires
to distinguish between two regimes (signal weak/moderate or strong, basically).
Second, study the FDR behavior of the `-value procedure taken at some sparsity
parameter w (not random but depending on n) in each of these two regimes.
This requires to analyse the mathematical behavior of a number of functions
of w, θ0, uniformly over a wide range of possible sparsities, which is one main
technical difficulty of our results. In particular, the concentration of ŵ is ob-
tained uniformly over all sparse vectors with polynomial sparsity, without any
strong-signal or self-similarity-type assumption, as would typically be the case
for obtaining adaptive confidence sets. Such assumptions would of course sim-
plify the analysis significantly, but the point here is precisely that a uniform
FDR control is possible for rate-adaptive procedures without any assumption
on the true sparse signal. The uniform concentration of ŵ is expressed implicitly
and requires sharp estimates, contrary to rate results for which a concentration
in a range of values is typically sufficient. In particular, some of our lemmas in
the supplementary file [12] are refined versions of lemmas in [24].

As a corollary, (30) entails

lim
n

sup
θ0∈`0[sn]

FDR(θ0, ϕ
`-val) = 0,

and this for any chosen threshold t ∈ (0, 1) in ϕ`-val. From a pure α-FDR con-
trolling point of view, while making a vanishing small proportion of errors is
obviously desirable, it implies that ϕ`-val is, as far as the FDR is concerned,
somewhat conservative, in the sense that it does not spend all the allowed type
I errors (0 instead of α) and thus will make too few (true) discoveries at the end.
It turns out that in the present setting `-values are not quite on the “exact”
scale for FDR control. An alternative is to consider the q-value scale, as we now
describe.
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Algorithm EBayesq

Input: X1, . . . , Xn, slab prior γ, target confidence t
Output: BMT procedure ϕq-val

1. Find the maximiser ŵ given by (28).
2. Compute q̂i(X) = q(Xi; ŵ, g)
3. Return, for 1 ≤ i ≤ n,

ϕq-val

i = 1{q̂i(X) ≤ t} (31)

We also consider the following variant of the procedure EBayesq, which is
mostly the same, except that it does not allow for too small estimated weight
ŵ. Set, for Ln tending slowly to infinity,

ωn =
Ln

nG(
√

2.1 log n)
. (32)

For instance, for γ Cauchy or quasi-Cauchy, we have ωn � (Ln/n)
√

log n while
for γ Laplace(1) we have ωn � (Ln/n) exp{C

√
log n}.

Algorithm EBayesq.0

Input: X1, . . . , Xn, slab prior γ, target confidence t, sequence Ln
Output: BMT procedure ϕq-val.0

1.-2. Same as for EBayesq, returning q̂i(X)
3. Return, for 1 ≤ i ≤ n, and ωn as in (32),

ϕq-val.0

i = 1{q̂i(X) ≤ t}1{ŵ > ωn} (33)

Theorem 2. Consider the same setting as Theorem 1. Then the algorithm
EBayesq produces the BMT procedure ϕq-val in (31) that satisfies the following:
there exists a constant C = C(γ, υ) such that for any t ≤ 3/4, there exists an
integer N0 = N0(γ, υ, t) such that, for any n ≥ N0,

sup
θ0∈`0[sn]

FDR(θ0, ϕ
q-val) ≤ Ct log(1/t). (34)

In addition, the algorithm EBayesq.0 produces the BMT procedure ϕq-val.0 in (33)
that satisfies, for ωn as in (32) with Ln → ∞, Ln ≤ log n, t ≤ 3/4 and C,N0

as before (but with possibly different numerical values), for any n ≥ N0,

sup
θ0∈`0[sn]

FDR(θ0, ϕ
q-val.0) ≤ Ct. (35)

The proof of Theorem 2 is technically close to that of Theorem 1 and is
given in Section 7, see also Section 7.2 for an informal heuristic that serves as
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guidelines for the proof. The statements of Theorem 2 are however of different
nature, because the q-value threshold t appears explicitly in the bounds (34)-
(35), that do not vanish as n→∞.

The two bounds (34) and (35) differ from a log(1/t) term, which may become
significant for small t. This term appears in the case where the signal is weak
(only few rejected nulls), for which the calibration ŵ is slightly too large. This
may not be the case using a different type of sparsity–adaptation, or a different
estimate ŵ. Indeed, this phenomenon disappears when using EBayesq.0 , since
ŵ is then set to 0 when it is not large enough, in which case the FDR control is
shown to be guaranteed, and we retrieve a dependence in terms of a constant
times the target level t.

A consequence of Theorem 2 is that an α–FDR control can be achieved with
EBayesq/EBayesq.0 procedures by taking t = t(α) sufficiently small (although
not tending to zero). Again, it is important to known how small the constant
C > 0 can be taken in (34) and (35). When the signal is strong enough, the
following result shows that C = 1 and the log(1/t) factor can be removed in
(34).

Let us first introduce a set L0[sn] of ‘large’ signals, for arbitrary a > 1,

L0[sn] =

{
θ ∈ `0[sn] : |θi| ≥ a

√
2 log(n/sn) for i ∈ Sθ, |Sθ| = sn

}
. (36)

Theorem 3. Consider L0[sn] = L0[sn; a] defined by (36) with an arbitrary
a > 1, for sn → ∞ and sn ≤ nυ for some υ ∈ (0, 1). Assume that γ is a
unimodal symmetric slab density that satisfies (16)–(18) with κ as in (17). Then,
for any pre-specified level t ∈ (0, 1), EBayesq produces the BMT procedure ϕq-val

in (31) such that

lim
n

sup
θ0∈L0[sn]

FDR(θ0, ϕ
q-val) = lim

n
inf

θ0∈L0[sn]
FDR(θ0, ϕ

q-val) = t . (37)

In addition, EBayesq.0 with Ln → ∞, satisfies the same property whenever
sn/n ≥ 2ωn, for ωn as in (32), which is in particular the case if sn grows
faster than a given power of n and Ln ≤ log n.

Theorem 3, although focused on a specific regime, shows that empirical Bayes
procedures are able to produce an asymptotically exact FDR control. Again, this
may look surprising at first, as the prior slab density γ is not particularly linked
to the true value of the parameter θ0 ∈ L0[sn] in (37). This puts forward a
strong adaptive property of the spike and slab prior for multiple testing.

Remark 4. Our three results can be extended to the case where g is not of the
form (9) (that is, not necessarily of the form of a convolution with the standard
gaussian), but satisfies some weaker properties, see Section 6.1. This extended
setting corresponds to a “quasi-Bayesian” approach where the `-values (resp.
q-values) are directly given by the formulas (11) (resp. (13)), without specifying
a slab prior γ.
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4. Numerical experiments

In this section, our theoretical findings are illustrated via numerical experiments.
A motivation here is also to evaluate how the parameters sn, θ0 ∈ `0[sn], and
the hyper-parameter γ (or g) affect the FDR control, in particular the value of
the constant in the bound of Theorem 2.

For this we consider n = 104, sn ∈ {10, 102, 103} and the following two
possible scenarios for θ0 ∈ `0[sn]:

• constant alternatives: θ0,i = µ if 1 ≤ i ≤ sn and 0 otherwise;
• randomized alternatives: θ0,i i.i.d. uniformly distributed on (0, 2µ) if 1 ≤
i ≤ sn and 0 otherwise.

The parameter range for µ is taken equal to {0.01, 0.5, 1, 2, . . . , 10}. The marginal
likelihood estimator ŵ given by (28) is computed by using a modification of the
function wfromx of the package EbayesThresh [25], that accommodates the
lower bound 1/n in our definition (instead of wn = ζ−1(

√
2 log n), see (49), in

the original version). The parameter γ is either given by the quasi-Cauchy prior
(19)-(20) or by the Laplace prior of scaling parameter a = 1/2 (see Remark S-11
for more details). For any of the above parameter combinations, the FDR of the
procedures EBayesL, EBayesq (defined in Section 3) is evaluated empirically via
500 replications.

Figure 1 displays the FDR of the procedures EBayesL (`-values) and EBayesq

(q-values). Concerning EBayesL, in all situations, the FDR is small while not
exactly equal to the value 0, which seems to indicate that the bound found in
Theorem 1 is not too conservative. Moreover, the quasi-Cauchy version seems
more conservative than the Laplace version, which corroborates our theoretical
findings (in our bound (30), we have the factor (log n)−1 for quasi-Cauchy and
(log n)−1/2 for Laplace). As for EBayesq, when the signal is large, the FDR
curves are markedly close to the threshold value t when sn/n is small, which
is in line with Theorem 3. However, for a weak sparsity sn/n = 0.1, the FDR
values are slightly inflated (above the threshold t), which seems to indicate that
the asymptotical regime is not yet reached for this value. Looking now at the
whole range of signal strengths, one notices the presence of a ‘bump‘ in the
regime of intermediate values of µ, especially for the Laplace prior. However,
this bump seems to disappear when sn/n decreases. We do not known presently
whether this bump is vanishing with n or if this corresponds to a necessary
additional constant C = C(γ, υ) > 1 (or log(1/t)) in the achieved FDR level,
but we suspect that this is related to the fact that the intermediate regime was
the most challenging part of our proofs. Overall, the Cauchy slab prior seems
to have a particularly suitable behavior. This was not totally surprising for us
as it already showed more stability than the Laplace prior in the context of
estimation with the full empirical Bayes posterior distribution, as seen in [11].

Finally, we provide additional experiments in the supplement, see Section S-7.
The findings can be summarized as follows:

• the curves behave qualitatively similarly for randomized alternatives (sec-
ond scenario);
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• at least in the considered framework, the classical BMT procedure based
on averaged `-values [37] seems to fail to control the frequentist FDR for
large signals, which is markedly different from EBayesq;

• the procedure EBayesq.0 (with Ln = log log n) has a global behavior simi-
lar to EBayesq, with more conservativeness for weak signal (as expected).

• it is possible to uniformly improve EBayesq.0 by considering the following
modification (named EBayesq.hybrid below): if w ≤ ωn, instead of reject-
ing no null, EBayesq.hybridperforms a standard Bonferroni correction,
that is, rejects the H0,i’s such that pi(X) ≤ t/n. Note that a careful in-
spection of the proof of Theorem 2 (EBayesq.0 part) shows that the bound
(35) is still valid for EBayesq.hybrid.

5. Discussion

Our results show that spike and slab priors produce posterior distributions with
particularly suitable multiple testing properties. One main challenge in deriv-
ing the results was to build bounds that are uniform over sparse vectors. We
demonstrate that such a uniform control is possible up to a constant term away
from the target control level. This constant is very close to 1 in simulations, and
can even be shown to be 1 asymptotically for some subclass of sparse vectors.

The results of the paper are meant as a theoretical validation of the common
practical use of posterior-based quantities for (frequentist) FDR control. While
the main purpose here was validation, and as such the proposed procedures
were not particularly meant to improve upon the classical FDR-controlling pro-
cedures (which specifically target the FDR control, while here the starting point
is the posterior, which is rather a global inference object over the whole vector
θ), it is remarkable that a uniform control of the FDR very close to the tar-
get level can be obtained for the spike and slab BMT procedure in the present
unstructured sparse high-dimensional model.

While many studies focused on controlling the Bayes FDR with Bayesian mul-
tiple testing procedures, this work paves the way for a frequentist FDR analysis
of Bayesian multiple testing procedures in different settings. In our study, the
perhaps most surprising fact is how well marginal maximum likelihood estima-
tion combines with FDR control under sparsity: as shown in our proof (and
summarized in our heuristic) the score function is linked to a peculiar equation
that makes perfectly the link between the numerator and the denominator in
the FDR of the q-value–based multiple testing procedure. This phenomenon has
not been noticed before to the best of our knowledge. We suspect that this link
is only part of a more general picture, in which the concentration of the score
process in general sparse high dimensional models plays a central role. While
this exceeds the scope of this paper, generalizing our results to such settings is
a very interesting direction for future work.
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Fig 1. FDR of EBayesL and EBayesq procedures with threshold t ∈ {0.05, 0.1, 0.2}. α = 0.2;
n = 10, 000; 500 replications; alternative all equal to µ (on the X-axis).
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6. Preliminaries for the proofs

6.1. Working with general g

As noted in Remark 4, the results of Theorems 1, 2 and 3 are also true under
slightly more general assumptions, that do not impose that g is coming from a
γ by a convolution product. Namely, let us assume

g is a positive, symmetric, differentiable density
that decreases on a vicinity of +∞ (38)

(g decreasing on a vicinity of +∞ means that x→ g(x) is decreasing for x > M ,
for a suitably large constant M = M(g)). Assume moreover that

|(log g)′(y)| ≤ Λ, for all y ∈ R, Λ > 0; (39)

G(y) � g(y) yκ−1, as y →∞, for some κ ∈ [1, 2]; (40)

y ∈ R→ (1 + y2)g(y) is bounded; (41)

g/φ is increasing on [0,∞) from (g/φ)(0) < 1 to ∞; (42)

By Lemma S-9, it is worth to note that (42) implies

G/Φ is increasing on [0,∞) from 1 to ∞. (43)

In the case where g is of the form of a convolution with γ, see (9), conditions
(39), (40) and (41) are easy consequences of the fact g(y) � γ(y) when y →∞
and condition (42) follows from the fact that for all fixed u > 0, the function
x ∈ [0,∞)→ (φ(x+ u) + φ(x− u))/φ(x) is increasing, see Lemma 1 of [24] for
a detailed derivation.

A consequence of (39) is that g and G have at least Laplace tails

g(y) ≥ g(0)e−Λy, y ≥ 0; (44)

G(y) ≥ g(0)Λ−1e−Λy, y ≥ 0. (45)

6.2. BMT as thresholding-based procedures

Recall the definitions (21) and (22). Let, for any w and t in [0, 1),

r(w, t) =
wt

(1− w)(1− t)
. (46)

The following quantity plays the role of threshold for `–values,

ξ = (φ/g)−1 : (0, (φ/g)(0)]→ [0,∞), (47)

i.e. ξ is the decreasing continuous invert of φ/g (that exists thanks to (42)).
Simple algebra shows that for w, t ∈ [0, 1) with r(w, t) ≤ φ(0)/g(0),

`i(X) ≤ t ⇔ |Xi| ≥ ξ(r(w, t)). (48)
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When u becomes small, the order magnitude of ξ(u) is given in Lemma S-13:

ξ(u) slightly exceeds (−2 log u)
1/2

but not by much, which comes from the fact
that g has heavy tails.

Another quantity close to ξ we shall use in the sequel is the threshold ζ
introduced in [24] and defined as, for any w ∈ (0, 1],

ζ(w) = β−1(w−1). (49)

Combining the definitions leads, see (S-8) for details, to ζ(w) = ξ(w/(1 + w))
and ξ(w) ≤ ζ(w). Similarly, let us introduce a threshold for q–values as

χ = (Φ/G)−1 : (0, 1]→ [0,∞), (50)

which is the decreasing continuous invert of Φ/G (that exists thanks to (43)).
For all w ∈ [0, 1) and t ∈ [0, 1) with r(w, t) ≤ 1,

qi(X) ≤ t ⇔ |Xi| ≥ χ(r(w, t)). (51)

Lemma S-14 shows that, for small u, the order of magnitude of χ(u) is slightly

more than Φ
−1

(u) but not by much, which comes from the fact that G has heavy
tails. Also, Lemma S-10 together with (48)-(51) imply

χ(u) ≤ ξ(u), for u ≤ 1. (52)

6.3. Single type I error rates

The single type I error rates of our procedures are evaluated by the following
result (proved in Section S-2.2).

Proposition 2. Consider any function g satisfying the assumptions of Sec-
tion 6.1. Consider r(·, ·) as in (46), ξ as in (47) and χ as in (50). Then the
following bounds hold. For all t, w such that r(w, t) ≤ (φ/g)(0),

Pθ0=0(`i(X) ≤ t) ≤ 2r(w, t)
g(ξ(r(w, t)))

ξ(r(w, t))
; (53)

Pθ0=0(`i(X) ≤ t) ≥ r(w, t)g(ξ(r(w, t)))

ξ(r(w, t))
if r(w, t) is small enough. (54)

For q-values, we have, for all t, w such that r(w, t) ≤ 1,

Pθ0=0(qi(X) ≤ t) = r(w, t) 2G (χ(r(w, t))) . (55)

As a result, for a fixed w, we see that the more g is heavily tailed, the more
the type I error rate is large. This is well–expected, as the heavier the tails of
g, the more mass the prior puts on large values.
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7. Proof of of the main results

7.1. Notation

The following moments are useful when studying the score function S. Let us
set

m̃(w) = −E0β(X,w) =

∫ ∞
−∞

β(t, w)φ(t)dt (56)

and further denote

m1(τ, w) = Eτ [β(X,w)] =

∫ ∞
−∞

β(t, w)φ(t− τ)dt. (57)

m2(τ, w) = Eτ [β(X,w)2] =

∫ ∞
−∞

(β(t, w))2φ(t− τ)dt. (58)

These expectations are well defined and studied in detail in Appendix S-5, re-
fining previous results established in [24].

In order to study the FDR of a procedure ϕ, we introduce the notation

V (ϕ) =
∑

i: θ0,i=0

ϕi , S(ϕ) =
∑

i: θ0,i 6=0

ϕi, (59)

counting for ϕ the number of false and true discoveries, respectively.

7.2. Heuristic

Why should the marginal empirical Bayes choice of w lead to a correct control
of the FDR? Here is an informal argument that will give a direction for our
proofs. We consider the case of ϕq-val here as it is expected to reject more nulls
than ϕ`-val and thus to have a larger FDR.

First, let us note that, when there is enough signal, one can expect ŵ to
be approximately equal to the solution w? of the score equation in expectation
Eθ0(S(w?)) = 0, that is, by using (27),∑

i:θ0,i 6=0

m1(θ0,i, w
?) = (n− sn)m̃(w?),

where m̃ and m1 are defined by (56) and (57), respectively, if there θ0 has
exactly sn nonzero coordinates. As seen in Section S-5, up to log-terms,

∑
i:θ0,i 6=0

m1(θ0,i, w
?) ≈

∑
i:θ0,i 6=0

Φ(ζ(w?)− θ0,i) + Φ(ζ(w?) + θ0,i)

w?
;

m̃(w?) ≈ 2G(ζ(w?)).
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Now consider the FDR and assume that all quantities are well concentrated (in
particular, take the expectation both in the numerator and denominator in (8)).
Then, by using (55), we have

FDR(θ0, ϕ
q-val(α; ŵ, g)) ≈ FDR(θ0, ϕ

q-val(α;w?, g))

≈
∑
i:θ0,i=0 Pθ0,i(q

?
i (X) ≤ α)∑

i:θ0,i=0 Pθ0,i(q
?
i (X) ≤ α) +

∑
i:θ0,i 6=0 Pθ0,i(q

?
i (X) ≤ α)

≈ (n− sn)r(w?, α) 2G (ζ(w?))

(n− sn)r(w?, α) 2G (ζ(w?)) +
∑
i:θ0,i 6=0 Pθ0,i(q

?
i (X) ≤ α)

,

where we denoted q?i (X) = q(Xi;w
?, g) and we used that χ(r(w?, t)) is close to

ζ(w?), as seen in Section S-4. Now, by using the definition of q?i (X),∑
i:θ0,i 6=0

Pθ0,i(q
?
i (X) ≤ α) =

∑
i:θ0,i 6=0

Φ (χ(r(w?, α))− θ0,i) + Φ (χ(r(w?, α)) + θ0,i)

≈
∑

i:θ0,i 6=0

Φ (ζ(w?)− θ0,i) + Φ (ζ(w?) + θ0,i) ,

where we used again χ(r(w?, t)) ≈ ζ(w?). Now using the above properties of
w?, the latter is

≈ w?
∑

i:θ0,i 6=0

m1(θ0,i, w
?) = (n− sn)w?m̃(w?) ≈ (n− sn)w?2G(ζ(w?)).

Putting the previous estimates together yields

FDR(θ0, ϕ
q-val(α; ŵ, g)) ≈ (n− sn)r(w?, α) 2G (ζ(w?))

(n− sn)r(w?, α) 2G (ζ(w?)) + (n− sn)w?2G(ζ(w?))

=
r(w?, α)

r(w?, α) + w?
=

w?

1−w?
α

1−α
w?

1−w?
α

1−α + w?
≈

α
1−α
α

1−α + 1
= α.

We will see that this heuristic holds, up to some constant terms that may come
in factor of the target level α.

7.3. Proof of Theorems 1 and 2

We prove results for `- and q-values together. The proof for EBayesq.0 is given
at the end of this section. First, let w0 be the solution of the equation,

nw0m̃(w0) = M, (60)

for M to be chosen below in the range [1, log n] (more precisely, equal to ei-
ther C log(1/t) or Ct−1 log log n for a constant C independent of t and large
enough; both bounds belong to the previous interval for n large enough). For
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any M ∈ [1, log n], this equation has always a unique solution, as m̃ is contin-
uous increasing (see Lemma S-22) so the map w → wm̃(w) increases from 0 at
w = 0 to a constant at w = 1, and in particular has a continuous inverse. This
implies that w0 goes to 0 with n, which we use freely in the sequel. Also, we
note that w0 is larger than 1/n for C in the choice of M large enough. Indeed,
w0 ≥ m̃(1)−1M/n by monotonicity of m̃. But m̃(1) is at most a constant, so,
provided M is large enough, w0 ≥ 1/n. Thus w0 is always inside the interval
[n−1, 1] over which the maximiser ŵ is defined.

Let ν ∈ (0, 1) and θ0 ∈ `0[sn]. Recall that S0 denotes the support of θ0 and
that σ0 = |S0| denotes the exact number of nonzero coefficients of θ0, so that
0 ≤ σ0 ≤ sn. The next equation, depending on the configuration θ0, and on the
just defined w0, plays a key role in the proof:∑

i∈S0

m1(θ0,i, w) = (1− ν)(n− σ0)m̃(w), w ∈ [w0, 1). (61)

This equation may or may not have a solution, depending on the true θ0 and
the values of n and ν. We will now assume n ≥ N0 for some universal constant
N0 to be determined below.

7.3.1. Case 1: (61) has no solution

For a given value of n, let us consider the case where (61) has no solution in
w ∈ [w0, 1).

First, the maps w ∈ [0, 1] → m̃(w) and w ∈ [0, 1] → m1(µ,w) (µ ∈ R) are
continuous, see Lemmas S-22 and S-24 and, for any µ ∈ R,

|m1(µ, 1)| ≤
∫ ∣∣∣∣ β(x)

1 + β(x)

∣∣∣∣φ(x− µ)dx ≤ max
x∈R

∣∣∣∣ β(x)

1 + β(x)

∣∣∣∣ ,
so thatD

∑
i∈S0

m1(θ0,i, 1) ≤ Cσ0 < (1− ν)(n− σ0)m̃(1) for n ≥ N0, where we
use σ0 ≤ sn ≤ dnυ and m̃(1) > 0 and N0 = N0(g, υ). This means∑

i∈S0

m1(θ0,i, w) < (1− ν)(n− σ0)m̃(w), for w ∈ [w0, 1), (62)

as otherwise by the intermediate value theorem the graphs of the functions on
the two sides of the previous inequality would have to cross on [w0, 1) and (61)
would have a solution. Lemma S-3 shows that, under (62), we have

Pθ0(ŵ > w0) ≤ e−C0ν
2M , (63)

for some constant C0 = C0(g, υ). Now consider ϕ being either ϕ`-val or ϕq-val and
upper-bound the FDR by the so-called family-wise error rate by distinguishing
the two cases ŵ ≤ w0 and ŵ > w0 as follows:

FDR(θ0, ϕ(t; ŵ, g)) ≤ Pθ0(∃i : θ0,i = 0, ϕi(t; ŵ, g) = 1)

≤ Pθ0(∃i : θ0,i = 0, ϕi(t;w0, g) = 1) + Pθ0(ŵ > w0)

≤ (n− σ0)Pθ0,i=0(ϕi(t;w0, g) = 1) + e−C0ν
2M , (64)
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where we use that w → ϕi(t;w, g) is nondecreasing, see Lemma S-7, together
with a union bound.

`-value part Let ξ0 = ξ(r(w0, t)) and ζ0 = ζ(w0), hen (53) leads to (provided
r(w0, t) ≤ (φ/g)(0), which holds for e.g. t ≤ 3/4 and w0 ≤ 1/4)

FDR(θ0, ϕ
`-val(t; ŵ, g)) ≤ 2

nw0

1− w0

t

1− t
g (ξ0)

ξ0
+ e−C0ν

2M .

Combining the definition of w0 and Lemma S-24, taking n large enough so that
w0 is appropriately small, with t ≤ 3/4,

FDR(θ0, ϕ
`-val(t; ŵ, g)) ≤ 5M

ξ0

g (ξ0)

G(ζ0)
t+ e−C0ν

2M .

Noting that |ξ0 − ζ0| . 1, g(ξ0) ≤ Dg(ζ0) and G(ζ0) � ζκ−1
0 g(ζ0) by Lemma

S-17 and S-24, one obtains

FDR(θ0, ϕ
`-val(t; ŵ, g)) ≤ C(g)M

ζκ0
t+ e−C0ν

2M . (65)

q-value part For the q-value case, we come back to (64) and use (55) instead
of (53) to get, setting χ0 = χ(r(w0, t)),

FDR(θ0, ϕ
q-val(t; ŵ, g)) ≤ 2

nw0

1− w0

t

1− t
G (χ0) + e−C0ν

2M .

As a result, by (60) and Lemma S-24, one gets for n large enough, t ≤ 3/4,

FDR(θ0, ϕ
q-val(t; ŵ, g)) ≤ 5Mt

G(χ0)

G (ζ0)
+ e−C0ν

2M .

Now, by the last assertion of Lemma S-17, the ratio in the last display is bounded
by 2 (say) provided n is large enough, which gives

FDR(θ0, ϕ
q-val(t; ŵ, g)) ≤ 10Mt+ e−C0ν

2M . (66)

7.3.2. Case 2: (61) has a solution

In this case we denote the solution by w1 ∈ [w0, 1), so that one can write∑
i∈S0

m1(θ0,i, w1) = (1− ν)(n− σ0)m̃(w1). (67)

Now consider the slightly different equation in w∑
i∈S0

m1(θ0,i, w) = (1 + ν)(n− σ0)m̃(w), w ∈ [0, 1). (68)
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Equation (68) always has a (unique) solution w2 ∈ [0, w1). To see this, first note
that the case θ0 = 0 is excluded from (67), as m1(0, w) = −m̃(w) < 0 if w 6= 0.
By Lemma S-22, w → m1(µ,w) and w → m̃(w) are continuous and respectively
decreasing and increasing (both strictly), and m̃(0) = 0, while it can be seen
that m1(µ, 0) > 0 if µ 6= 0, see Lemma S-22. On the other hand, the value at
w = 1 of the left hand side of (68) is at most σ0C/w . σ0, and so is of smaller
order than (1 + ν)(n− σ0)m̃(1) � n.

The purpose of w1, w2 is to provide (implicit) deterministic upper and lower
bounds for the random ŵ: this is the content of Lemma S-4. Additionally, the
key Lemma S-5 shows that, in case where the solution w1 of (67) exists, we have
w1 � w2; that is, the bounds are of the same order.

q-value part Recall the notation (59). We focus on the case of q-values first.
We come back to the case of `-values at the end, its proof being similar. For
simplicity, we write Vq(w) = V (ϕq−val(t;w, g)) and Sq(w) = S(ϕq−val(t;w, g)).
By definition of the FDR,

FDR(θ0, ϕ
q-val(t; ŵ, g)) = Eθ0

[
Vq(ŵ)

(Vq(ŵ) + Sq(ŵ)) ∨ 1

]
≤ Eθ0

[
Vq(ŵ)

(Vq(ŵ) + Sq(ŵ)) ∨ 1
1{w2 ≤ ŵ ≤ w1}

]
+ Pθ0 [ŵ /∈ [w2, w1]] .

The last expectation in the previous display is now bounded by, using first the
monotonicity of the maps w → Vq(w), w → Sq(w), x → x/(1 + x) and x →
1/(1+x), then bounding the indicator variable by 1, and finally combining with
Lemma S-37 applied to the independent variables U = Vq(w1) and T = Sq(w2),

Eθ0

[
Vq(ŵ)

(Vq(ŵ) + Sq(ŵ)) ∨ 1
1{w2 ≤ ŵ ≤ w1}

]
≤ Eθ0

[
Vq(w1)

(Vq(w1) + Sq(w2)) ∨ 1

]
;

≤ exp{−Eθ0Sq(w2)}+ 12
Eθ0Vq(w1)

Eθ0Sq(w2)
.

Next, by using the definition of Vq, one writes

Eθ0Vq(w1) =
∑

i: θ0,i=0

2Φ(χ(r(w1, t))) = 2(n− σ0)Φ(χ(r(w1, t))).

Using the definition of χ, we have Φ(χ(u)) = G(χ(u))u for u ∈ (0, 1), so

Φ(χ(r(w1, t))) = r(w1, t)G(χ(r(w1, t))).

Then (S-21) in Lemma S-17 implies, for small enough w1,

G(χ(r(w1, t))) ≤ 2G(ζ(w1)).

Combining (S-3) in Lemma S-5, that is w1/C ≤ w2 ≤ w1, for a constant C =
C(ν, υ, g) > 0 and Lemma S-19, we have (with, say, c1 = 1/2),

(1/2)G(ζ(w1)) ≤ G(ζ(w1/C)) ≤ G(ζ(w2)).
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Next using Lemma S-24, one obtains G(χ(r(w1, t))) ≤ 3 m̃(w2), so that

Eθ0Vq(w1) ≤ 3(n− σ0)
w1

1− w1
m̃(w2)

t

1− t

≤ 3C(n− σ0)
w2

1− Cw2
m̃(w2)

t

1− t
≤ C∗(n− σ0)w2m̃(w2)t,

because t ≤ 3/4 for some constant C∗ = C∗(ν, υ, g) > 0. On the other hand, by
definition of Sq, one can write

Eθ0Sq(w2) =
∑

i:θ0,i 6=0

Φ (χ(r(w2, t))− θ0,i) + Φ (χ(r(w2, t)) + θ0,i) .

Let us introduce the set of indices, for K1 = 2/(1− υ),

C0(w,K1) =

{
1 ≤ i ≤ n : |θ0,i| ≥

ζ(w)

K1

}
. (69)

Moreover, χ(r(w2, t)) ≤ ζ(w2) by Lemma S-16. Hence,

Eθ0Sq(w2) ≥
∑

i∈C0(w2,K1)

Φ (ζ(w2)− θ0,i) + Φ (ζ(w2) + θ0,i)

≥
∑

i∈C0(w2,K1)

Φ (ζ(w2)− |θ0,i|) . (70)

First, we apply Corollary S-26 with K = K1, w = w2 to bound each term
in the sum in terms of m1, noting that |θ0,i| ≥ ζ(w2)/K1 by definition of the
set C0(w2,K1). Next, one uses Lemma S-31 restricting the suprema to w = w2

(which is in the prescribed interval by Lemmas S-1, S-2 and S-5) and K = K1,
to get for n large enough and constants C = C(υ, g) > 0, C ′ = C ′(υ, g) > 0,
D = D(υ, g) ∈ (0, 1),∑

i∈C0(w2,K1)

Φ (ζ(w2)− |θ0,i|) ≥ Cw2

∑
i∈C0(w2,K1)

m1(θ0,i, w2)

≥ Cw2

{∑
i∈S0

m1(θ0,i, w2)− Cn1−Dm̃(w2)
}

= Cw2

{
(1 + ν)(n− σ0)m̃(w2)− C ′n1−Dm̃(w2)

}
,

where the last equality comes from (68). As a consequence, for n large enough,
for a positive constant C∗ = C∗(υ, g) > 0, we have

Eθ0Sq(w2) ≥ C∗(n− σ0)w2m̃(w2).

Combining the previous bounds leads to

Eθ0

[
Vq(ŵ)

Vq(ŵ) + Sq(ŵ) ∨ 1
1{w2 ≤ ŵ ≤ w1}

]
≤ e−C∗(n−σ0)w2m̃(w2) + 12

C∗

C∗
t.
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As w → wm̃(w) is increasing, and w1/C ≤ w2 by Lemma S-5, we have w2m̃(w2) ≥
(w1/C)m̃(w1/C). Recall that w1 ≥ w0 by definition, so Lemma S-24 together
with (S-24) of Lemma S-19 imply

m̃(w1/C) ≥ (1/2)m̃(w1) ≥ (1/2)m̃(w0).

Combining the obtained inequalities leads to

(n− σ0)w2m̃(w2) ≥ C ′(n− σ0)w0m̃(w0) ≥ C ′M, (71)

where the last inequality follows from the definition of w0. Now turning to a
bound on the FDR, Lemma S-4 and the above inequality imply, with ν = 1,

Pθ0 [ŵ /∈ [w1, w2]] ≤ 2e−C1ν
2nw2m̃(w2) ≤ 2e−CM , (72)

for some C = C(υ, g) > 0. Conclude that in the considered case, for some
constants c1 = c1(υ, g), c2 = c2(υ, g) > 0,

FDR(θ0, ϕ
q-val(t; ŵ, g)) ≤ c2t+ 3e−c1M . (73)

`-value part In the case of `-values, one can follow a similar argument. We
write V`(w) = V (ϕ`-val(t;w, g)) and S`(w) = S(ϕ`-val(t;w, g)). Again, the maps
w → V`(w) and w → S`(w) are monotone. As above for q-values, one deduces

FDR(θ0, ϕ
`-val(t; ŵ, g)) ≤ exp{−Eθ0S`(w2)}+ 12

Eθ0V`(w1)

Eθ0S`(w2)
.

By definition of V` and ξ, one can write

Eθ0V`(w1) = 2(n− σ0)Φ(ξ(r(w1, t))).

The bound Φ(u) ≤ φ(u)/u for u > 0 (see Lemma S-33), combined with the
definition of ξ and that |ξ(r(w1, t))− ζ(w1)| . 1 by Lemma S-17 leads to

Eθ0V`(w1) ≤ 3(n− σ0)ζ(w1)−1r(w1, t)g(ξ(r(w1, t))).

Lemma S-17 then implies g(ξ(r(w1, t))) ≤ 2g(ζ(w1)) (say), for n large enough.
Using w1/C ≤ w2 ≤ w1, and (S-24) in Lemma S-19, we have

(1/2)g(ζ(w1)) ≤ g(ζ(w1/C)) ≤ g(ζ(w2)).

Next using the relation ζκ−1g(ζ) � m̃(w) from Lemma S-24, one obtains g(ξ(r(w1, t))) .
ζ(w2)1−κm̃(w2) . ζ(w1)1−κm̃(w2), so that

Eθ0V`(w1) ≤ Ct(n− σ0)w1m̃(w2)ζ(w1)−κ

≤ c∗t(n− σ0)w2m̃(w2)ζ(w1)−κ,

for a constant c∗ = c∗(υ, g) > 0. On the other hand, by definition of S`, one can
write

Eθ0S`(w2) =
∑

i:θ0,i 6=0

Φ (ξ(r(w2, t))− θ0,i) + Φ (ξ(r(w2, t)) + θ0,i) .
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Lemma S-18 now enables to bound from below the two terms in the previous
display in terms of ζ(w2), and further restricting the sum to the set of indices
C0(w2,K1) defined by (69) with the same choice of K1 leads to

Eθ0S`(w2) ≥ Ct
∑

i∈C0(w2,K1)

Φ (ζ(w2)− |θ0,i|) .

Appart from the Ct term in factor, it is the same bound as for q-values, see (70).
Hence, using the bound obtained above, for n large enough and c∗ = c∗(υ, g) >
0,

Eθ0S`(w2) ≥ c∗t(n− σ0)w2m̃(w2).

Combining the previous bounds leads to

Eθ0

[
V`(ŵ)

V`(ŵ) + S`(ŵ) ∨ 1
1{w2 ≤ ŵ ≤ w1}

]
≤ e−c∗t(n−σ0)w2m̃(w2) + 12

c∗

c∗

1

ζ(w1)κ
.

As in (71), we have (n − σ0)w2m̃(w2) ≥ C ′(n − σ0)w0m̃(w0) ≥ C ′M . One
concludes that, in Case 2, for some constants d1 = d1(υ, g), d2 = d2(υ, g) > 0
and taking ν = 1, setting ζ(w1) = ζ1,

FDR(θ0, ϕ
`-val(t; ŵ, g)) ≤ d2ζ

−κ
1 t+ e−C

′Mc∗t + 2e−CM

≤ d2ζ
−κ
1 t+ 3e−d1Mt. (74)

7.3.3. Combining cases 1 and 2

For q-values, for ν = 1 and t ≤ 3/4, we get by combining (66) and (73)

FDR(θ0, ϕ
q-val(t; ŵ, g)) ≤ max

{
10Mt+ e−C0M , c2t+ 3e−c1M

}
Taking M = (C0 ∧ c1)−1 log(1/t) gives the upper bound

FDR(θ0, ϕ
q-val(t; ŵ, g)) ≤ max{C ′t log(1/t) + e− log(1/t), c2t+ 3e− log 1/t},

which is smaller than Ct log(1/t), giving the result for q-values.
In the `-values case, with ζ1 ≤ ζ0 and setting ν = 1, we get by combining

(65) and (74)

FDR(θ0, ϕ
`-val(t; ŵ, g)) ≤ max

{
CMζ−κ0 t+ e−C0M , d2ζ

−κ
1 t+ 3e−d1tM

}
≤ d3{(M + 1)ζ−κ1 t+ e−d4tM}.

The announced bound is obtained upon setting M = t−1d−1
4 log(ζκ1 ) and noting

that ζ2
1 . log(1/w1) . log n and ζ2

1 & log(1/w1) & log n by using Lemmas S-1,
S-2 to bound w1 and Lemma S-15 to bound ζ(w1). This concludes the proof of
Theorem 1 for `-values and Theorem 2 for q–values.
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7.3.4. Proof for EBayesq.0

First notice that

FDR(θ0, ϕ
q-val.0(t; ŵ, g)) = Eθ0

[∑n
i=1 1{θ0,i = 0}ϕq-val.0(t; ŵ, g)

1 ∨
∑n
i=1 ϕ

q-val.0(t; ŵ, g)

]
= Eθ0

[∑n
i=1 1{θ0,i = 0}ϕq-val(t; ŵ, g)

1 ∨
∑n
i=1 ϕ

q-val(t; ŵ, g)
1{ŵ > ωn}

]
,

(75)

by definition of algorithm EBayesq.0 . The strategy of proof is similar to the
q-value case. Let us take M in the definition (60) of w0 equal to Ln from the
statement of Theorem 2, see (32), and suppose Ln ∈ [1, log n]. Let us show for
n large enough,

ωn ≥ w0. (76)

As ζ(w0) ≤ ζ(1/n) ≤
√

2.1 log n for n large enough by Lemmas S-1, S-15,

ωn =
Ln

nG(
√

2.1 log n)
≥ Ln

nG(ζ(1/n))
≥ Ln

nG(ζ(w0))
.

Now, by using Lemma S-24, for n large enough,

Ln

nG(ζ(w0))
≥ 0.9

2Ln
nm̃(w0)

≥ Ln
nm̃(w0)

= w0,

leading to (76). Next, on the one hand, in Case 1, the FDR is bounded by

FDR(θ0, ϕ
q-val.0(t; ŵ, g)) ≤ Pθ0(ŵ > ωn) ≤ Pθ0(ŵ > w0).

By using (63), the last display is at most e−C0ν
2Ln . On the other hand, in Case

2, we simply use that by (75),

FDR(θ0, ϕ
q-val.0(t; ŵ, g)) ≤ FDR(θ0, ϕ

q-val(t; ŵ, g)) ≤ c2t+ 3e−c1Ln ,

which concludes the proof.
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