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Abstract

We study the influence of interannual climate variability on the economy of several countries in the Sahel region. In the
agricultural sector, we are able to identify coupled climate-economic modes that are statistically significant on interannual
time scales. In particular, precipitation is a key climatic factor for agriculture in this semi-arid region. Locality and
diversity characterize the Sahel’s climatic and economic system, with the coupled climate-economic patterns exhibiting
substantial differences from country to country. Large-scale atmospheric patterns — like the El Niño–Southern Oscillation
and its quasi-biennial and quasi-quadrennial oscillatory modes — have quite limited influence on the economies, while
more location-specific rainfall patterns play an important role.

Keywords: Advanced spectral methods, Business cycles, Climate cycles, Climate impacts on the economy, Sahel
climate

1. Introduction

The study of climate impacts on the economy is a cru-
cial part of assessing the stakes of ongoing global climate
change. Thus, Stern (2016) called climate scientists for
a closer collaboration with economists to design better
models and impact assessment methods. This endeavor,
though, requires one to better understand the interactions
between two complex chaotic systems: the climatic and
the economic one. To cope with this problem, common
approaches circumvent the very difficult task of describ-
ing the internal dynamics of either system, as well as the
nonlinear interactions between the two. Typically, they
do so either by formulating damage functions that have
little empirical basis or by applying crude regressions to
historical time series.

The present work explores an alternative way based on
advanced spectral decomposition methods. We focus here
on the identification of endogenous dynamics in both the
climatic and economic system, and the detection of cou-
pled climate-economic behavior on interannual time scales.

To identify patterns of spatio-temporal behavior in com-
plex datasets, we rely on multichannel singular spectrum
analysis (M-SSA), which provides an efficient tool to detect
and reconstruct oscillatory modes from short and noisy
time series; see Ghil et al. (2002) and Alessio (2016, chap-
ter 12) for a comprehensive overview of the methodology
and of related spectral methods.
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M-SSA is based on classical Karhunen (1946)-Loève
(1945) theory and was introduced into the analysis of non-
linear dynamical systems by Broomhead and King (1986a,b).
The methodology has found since countless applications
in the geosciences (e.g., Vautard and Ghil, 1989; Ghil and
Vautard, 1991) and beyond. More recently, M-SSA has
been applied to study the dynamics of macroeconomic ac-
tivity in the US (Groth et al., 2015) and the synchroniza-
tion of business cycles, first in a set of three European
countries (Sella et al., 2016) and then in more than 100
countries around the world (Groth and Ghil, 2017).

We combine here the climatic and economic system in
a cross-panel M-SSA analysis to study coupled climate-
economic behavior in the Sahel region. It turns out that,
in this setting, M-SSA greatly helps identifying signals of
interannual climate variability in the economic time series.

The Sahel’s climate is very erratic and repeatedly suf-
fered from severe droughts (Nicholson, 2013); it remains
unclear whether the series of droughts has stopped now
or not (Masih et al., 2014). Precipitation variability is a
key climatic factor for agriculture in semi-arid regions, and
thus climate change entails increased risk in such regions
(Dilley, 1997). This issue, combined with the high demo-
graphic and economic stress on the region, makes it highly
vulnerable and hence even more critical to investigate.

Thus, in addition to confirming the cyclic nature of
climate and the economy, the paper’s aim is to deter-
mine whether climatic oscillations manifest themselves in
macro-economic time series from the Sahel region. To
achieve this aim, we apply M-SSA to a dataset aggregat-
ing economic and climatic time series from the region. To
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the best of our knowledge, such an approach has not been
tried yet in the ecological economics literature, and the
present paper should be read as a proof of concept.

The paper is organized as follows. In Sec. 2, we give a
brief introduction to the M-SSA methodology and present
a novel statistical significance test that is tailored to this
paper’s specific problems. Details about the dataset and
the framework of the study are given in Sec. 3, while gen-
eral characteristics of the time series are briefly presented
in Sec. 4. In Sec. 5, we discuss the spectral properties of
the combined, climatic-and-and economic dataset, while
coupled climate-economic behavior is analyzed in Sec. 6.
The results are discussed in Sec. 7, and the paper concludes
with a summary in Sec. 8.

2. Methodology

In Sec. 2.1, we briefly describe the main steps of the
M-SSA methodology, while in Sec. 2.2, the methodology
for statistical-significance testing is introduced.

2.1. M-SSA

The main aspects of M-SSA are summarized here, and
the reader can refer to Ghil et al. (2002) and Alessio (2016,
chapter 12) for further details. A helpful illustration of the
main mathematical aspects can be found in Groth and
Ghil (2017).

The algorithm involves four main steps: (1) embed-
ding, (2) decomposition, (3) rotation, and (4) reconstruc-
tion; these steps are outlined in the following.

Embedding. Consider a multivariate time series {xd(n) :
n = 1 . . . N ; d = 1 . . . D}, with D channels of length N ;
the first step of M-SSA is to embed each channel into an
M -dimensional space, where M , the window length, is a
parameter. The trajectory matrix is thus generated by
taking successive M -lagged copies from the original series:

XXXd =


xd(1) xd(2) · · · xd(M)
xd(2) xd(3) · · · xd(M + 1)

...
...

xd(N −M + 1) · · · xd(N)

 (1)

Hence each trajectory matrix XXXd is composed of M
columns of reduced lengthN ′ = N−M+1. The augmented
trajectory matrix is then formed by concatenating all D
channels,

XXX =
[
XXX1,XXX2, . . . ,XXXD

]
. (2)

Decomposition. M-SSA then proceeds by performing a Sin-
gular Value Decomposition (SVD) of the augmented tra-
jectory matrix,

XXX = η1/2PPPΣΣΣEEE′, (3)

where (·)′ denotes the transpose of the argument and the
normalization factor η equals max{N ′, DM}. The decom-
position yields a set of κ non-vanishing singular values

{s1, . . . , sκ}, arranged in descending order along the main
diagonal of matrix ΣΣΣ, with κ = min{N ′, DM} being the
rank of XXX. The matrix PPP of left-singular vectors has size
N ′ × κ and provides a set of κ temporal EOFs (T-EOFs).
These T-EOFs of reduced lengthN ′ reflect the correspond-
ing behavior of an oscillation.

The matrix EEE of right-singular vectors has size DM×κ
and provides a set of space-time empirical orthogonal func-
tions (ST-EOFs), arranged as κ columns of length DM ; it
is composed of D consecutive segments EEEd of size M × κ,

EEE′ =
[
EEE′1,EEE

′
2 . . .EEE

′
D

]
, (4)

each of which is associated with a channel XXXd in XXX.
Combining Eqs. (2)–(4), we can easily reformulate Eq. (3)

into a channel-wise notation,

XXXd = η1/2PPPΣΣΣEEE′d. (5)

A helpful discussion and illustration of these mathematical
properties can be found in Groth and Ghil (2017, Sec. III
and Fig. 1).

Rotation. To better separate distinct oscillations, we rely
here on a modified varimax rotation of the ST-EOFs, cf.
Groth and Ghil (2011).

Reconstruction. The dynamical behavior of XXX associated
with a subset K ⊆ {1, . . . , κ} of ST-EOFs can be obtained
from Eq. (3) by

RRRK = η1/2PPPΣΣΣKKKEEE′; (6)

here KKK is a diagonal matrix of size κ × κ, with the k-th
diagonal element equal to one if k ∈ K and zero otherwise.
Averaging along the skew diagonals of RRRK, i.e., over ele-
ments that correspond in Eq. (1) to the same instant in
time, finally yields the reconstructed components (RCs).

Participation index. The squares s2k of the singular values
equal the eigenvalue λk and quantify the variance in XXX
that is captured by the corresponding EOF, i.e. the k-th
column in EEE. The contribution of channel d to this variance
can be measured by the participation index,

πdk = s2k

M∑
m=1

e2dk(m), (7)

where the sum ranges over all the elements of the k-th
column in EEEd. Since the singular vectors have norm one,
we get

D∑
d=1

πdk = s2k, (8)

i.e. the sum of all D participation indices for a given EOF
k yields the corresponding variance λk (Groth and Ghil,
2011).

2



Remark. We have followed here the original trajectory-
matrix approach of Broomhead and King (1986a,b), which
relies on an SVD of XXX in Eq. (3). Alternatively, one could
obtain EEE from the eigendecomposition of the covariance
matrix η−1XXX′XXX = EEEΛΛΛEEE′ (Vautard and Ghil, 1989), with
the eigenvalues ΛΛΛ = ΣΣΣ2. However, in the case of a rank-
deficient covariance matrix, i.e. DM > N ′, it is more effi-
cient to calculate the eigendecomposition from a reduced
covariance matrix, η−1XXXXXX′ = PPPΛΛΛPPP′ (Allen and Robertson,
1996). Irrespective of the chosen algorithm, all approaches
yield the same nonvanishing eigenelements (Groth and Ghil,
2015), and we use the two terms, singular values and eigen-
values, interchangeably here.

Oscillatory modes. M-SSA provides a decomposition of
the dataset into distinct spectral components. The EOFs,
though not purely sinusoidal, tend to have a dominant fre-
quency that can be determined via their Fourier transform
(Vautard and Ghil, 1989). It is therefore common practice
to plot the eigenvalues against their corresponding dom-
inant frequencies to obtain an estimation of the spectral
decomposition of the time series.

Like the sine-cosine pairs in a Fourier analysis, the
EOFs tend to pair up into oscillatory pairs (Vautard and
Ghil, 1989). The two EOFs in such a pair are in phase
quadrature and they capture the symmetric and antisym-
metric parts of the oscillation: hence, they also have nearly
equal dominant frequencies and variance levels.

The varimax rotation introduced by Groth and Ghil
(2011) greatly improves the pairing of EOFs and the sep-
aration between EOFs of distinct dominant frequencies.
In the absence of rotation, M-SSA is subject to a degener-
acy problem and can generate spurious coupled oscillations
(Feliks et al., 2013). A careful varimax-rotated M-SSA
analysis will be used here in the search for coupled oscilla-
tory modes in the climatic and economic series. Still, EOF
pairing is a necessary but not sufficient criterion to deter-
mine whether or not an oscillatory component is present
in the time series. Several methods have been proposed
to test the statistical significance of oscillations, and the
most solidly established one as yet is Monte Carlo SSA.

2.2. Significance test

Monte Carlo SSA (MC-SSA). The idea of MC-SSA is to
test the statistical significance of the variance level of each
eigenvalue using a Monte Carlo–type technique. The al-
gorithm starts by fitting an autoregressive (AR) process
of order 1 to each input channel of the dataset. The pa-
rameters are chosen such that this process has the same
lag-0 and lag-1 covariance as the time series. An ensemble
of surrogate realizations for the time series is next gener-
ated from the AR(1) process, which is then projected onto
the data EOFs to derive a null-hypothesis distribution of
variance levels for the significance test of the eigenvalues.

For a more complete exposition of MC-SSA see Allen
and Smith (1996) and Allen and Robertson (1996), while
Groth and Ghil (2015) provide a recent review of different

MC-SSA techniques. A detailed application to the study
of economic cycles can be found in Groth et al. (2015).

Significance test of participation index. In the original for-
mulation of the single-channel MC-SSA significance test,
the eigenvalue of a given EOF is tested against the null
hypothesis of a single AR(1) process (Allen and Smith,
1996). In the multichannel case, though, a principal com-
ponent analysis (PCA) is performed on the dataset prior
to M-SSA, and MC-SSA is then carried out on the prin-
cipal components (PCs), cf. Allen and Robertson (1996).
The latter step is intended to avoid any weakening of the
test against the null hypothesis of D independent AR(1)
processes, due to correlations in the dataset.

The prior PCA analysis does not hinder the study of
the spectral properties of the dataset, i.e. the M-SSA
eigenvalues are invariant with respect to the PCA, yet the
results are more abstract and harder to interpret in the
PC space. The multichannel MC-SSA test will only assess
whether the variance λk for a given EOF captured in all
channels together is statistically significant.

In the present context, though, where mixed datasets
of economic and climatic time series are analyzed, a mod-
ification is required as we wish to assess whether the vari-
ance of any of these channels is individually significant.
A novel version of the MC-SSA methodology is therefore
presented here that allows us to test the significance of the
participation index πdk instead.

Without any prior PCA, the algorithm starts to fit
independent AR(1) processes to each of the D input chan-
nels. In the next step, an ensemble of surrogate realiza-
tions is generated, as in the standard MC-SSA test. For
each surrogate realization, we form the channel-wise aug-
mented trajectory matrix XXXR,d for each input channel d as
in Eq. (1) and, finally, the overall augmented trajectory
matrix XXXR = [XXXR,1, · · · ,XXXR,D], following Eq. (2).

In the classical version, due to Allen and Robertson
(1996), of a multichannel MC-SSA test, the next step is
to project the reduced covariance matrix XXXRXXX′R onto the
matrix of left-singular vectors PPP,

ΛΛΛR = η−1PPP′XXXRXXX′RPPP, (9)

to derive the significance level for the eigenvalues, ΛΛΛ =
η−1PPP′XXXXXX′PPP, from the statistics of the diagonal elements
of ΛΛΛR. In the terminology of Groth and Ghil (2015), this
technique is referred to as unscaled target rotation onto
the temporal EOFs (T-EOFs).

To understand the modifications of the significance test
for the participation index, we remember that, following
Eq. (2), the reduced covariance matrix of the multichannel
dataset XXXXXX′ is simply the sum of D univariate covariance
matrices XXXdXXX

′
d,

XXXXXX′ =

D∑
d=1

XXXdXXX
′
d. (10)

Note that, projecting the univariate covariance matri-
ces onto PPP and substituting XXX′dPPP = η−1/2EEEdΣΣΣ according to
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Eq. (5), we obtain

η−1PPP′XXXdXXX
′
dPPP = ΣΣΣEEE′dEEEdΣΣΣ = ΠΠΠd, (11)

a diagonal matrix ΠΠΠd of size κ× κ with the k-th diagonal
element equal to πdk. The latter follows from the definition
of πdk in Eq. (7).

The modified significance test therefore proceeds, by
analogy with Eq. (9), by projecting the univariate covari-
ance matrices of the surrogate realizations onto PPP,

η−1PPP′XXXR,dXXX
′
R,dPPP = ΠΠΠR,d, (12)

to derive the significance level for the participation indices
ΠΠΠd from the statistics of the diagonal elements of ΠΠΠR,d.

Recall that this test on a common oscillatory mode
differs from that of multiple univariate MC-SSA tests, in
which the different EOF solutions are initially not linked.
The observation of EOFs with similar dominant frequen-
cies in different input channels, though, is only a necessary
but not sufficient condition for the presence of coupled os-
cillations. It is the refined varimax M-SSA solution with
the novel MC test presented herein that allows a more de-
tailed analysis of shared mechanisms and of each channel’s
individual contribution to it.

Moreover, if we wish to exclude a certain part of the
time series, such as the dominant trend in the economic
time series, from the significance test, we follow the ap-
proach of an M-SSA composite null hypothesis (Groth and
Ghil, 2015). The essential idea is to fit an AR(1) process
to the RCs, as defined in Eq. (6), in which the diagonal
elements of KKK equal 1 if we wish to test the corresponding
EOFs and 0 otherwise.

It is important to point out that, in contrast to the
common idea of first detrending the dataset prior to any
spectral analysis, our single-step M-SSA analysis with its
composite technique is not subject to the problem of spu-
rious oscillations due merely to the detrending procedure
itself (Nelson and Kang, 1981; Harvey and Jaeger, 1993;
Cogley and Nason, 1995). Instead, our single-step M-SSA
analysis provides us with a more consistent separation into
a permanent trend component and transitory fluctuations
that are orthogonal to it (Groth and Ghil, 2017).

3. Experimental setting

Time boundaries. In the choice of the time interval for
the analysis, the limiting factor is the availability of the
economic data: while climate data are available for the
whole 20th century, the economic dataset chosen here is
only available starting in 1960. Therefore, the time inter-
val analyzed herein extends from 1960 to 2015. Though
quite limited, this interval does have a satisfactory length
for the spectral analysis of interannual variability.

The sampling interval chosen for the present study is
one sample per year, which suffices to resolve periodicities

of 2 years and longer. The aggregated economic series an-
alyzed here are already provided in this form, and the cli-
mate series, though available every month, were converted
into yearly time series as well. In doing so, the monthly
series were first low-pass filtered with a Chebyshev type I
filter to remove periodicities shorter than 2 years and then
annually sub-sampled by simply taking all July values; see
(Feliks et al., 2013, and the appendix therein).

Space boundaries. The Sahel represents a transitional zone,
between the Sahara desert to the North and the subtrop-
ical Savannah grasslands to the South, and it thus has
a semi-arid climate. When studied in a purely climatic
context, the Sahel is defined as the region in which the
rainfall is generally limited to the boreal summer months,
with maximum rainfall occurring in August (Nicholson,
2013).

Figure 1 shows the average rainfall level in the region in
January and August, corresponding to the dry and rainy
season, respectively. Following Nicholson (2013), the Sahel
covers the region between the latitudes of roughly 14◦N
and 18◦N, and ranges from Sudan in the East to Senegal in
the West. It includes the countries of Burkina Faso, Chad,
Mali, Mauritania, Niger, Nigeria, Senegal, and Sudan1.
The two countries Mali and Nigeria were excluded from
the present study, due to a significant part of the economic
data missing for the two.

Datasets. Four indicators were chosen to reflect the evo-
lution of the economic and climatic systems of the Sahel.
The gross domestic product (GDP) and agriculture value
added (AVA) for the economy, and the temperature (T)
and rainfall (RF) for climate. The GDP was chosen as
a common aggregated measurement of economic activity,
while AVA was added to study these countries’ economies
strong dependence on their agricultural sector. Further-
more, as agriculture in the Sahel is still mostly rainfed with
little development of irrigation techniques, cf. (Rockström
et al., 2009, Fig. 2.3), one can expect to see climate effects
more directly in AVA than in GDP.

The two economic indicators were taken from the World
Development Indicators Database2 and the two climate
indicators from the Climate Change Knowledge Portal3.
The GDP and AVA series are both expressed in constant
2010 US$. Prior to M-SSA, the different indicators were
all centered and normalized to have unit variance. Note
that no prior detrending of the time series was performed
to avoid problems of spurious oscillations, as already dis-
cussed in Sec. 2.2.

1Sudan here denotes both the recently separated countries of Su-
dan and South Sudan.

2data.worldbank.org/data-catalog/world-development-indicators
3sdwebx.worldbank.org/climateportal
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Figure 1: Average monthly rainfall in (a) January and (b) August. The average is calculated over the interval 1942–2012 from the National
Oceanic and Atmospheric Administration (NOAA) PRECipitation REConstruction over Land (PREC/L) dataset (Chen et al., 2002), as
given at www.esrl.noaa.gov/psd.

4. General characteristics

4.1. Climatic indicators

The climate time series are shown in Fig. 2. In the Sa-
hel, though, rain falls during only a few summer months, so
that the August peak value in Fig. 1(b), given in mm/month,
is much higher than the annual value in Fig. 2(a), given
in mm/year. A simple linear regression between the an-
nual values and the peak values shows that the latter are
roughly 4–6 times larger, depending on the length of the
rainy season in these countries.

In the rainfall time series in Fig. 2(a), a pronounced
downward trend is apparent, especially for the high rainfall
rates in Burkina Faso and Senegal, from 1960 to the mid-
1980s. This downward trend correlates well with the de-
crease in the overall Sahel precipitation index for the area
(20–10◦N, 20◦W–10◦E) (Janowiak, 1988; Becker et al.,
2013), as archived at the Joint Institute for the Study of
the Atmosphere and Ocean4. A milder increase in this in-
dex, and in the country-wise rainfall rates in our Fig. 2(a),
follows from that point on to 2015.

High-amplitude year-to-year variability is superimposed
on these trends, and accounts for the intense, occasionally
multiannual droughts that have occurred most recently
in 2010 and 2012. The droughts do not appear clearly,
though, in the temperature time series that are plotted in
Fig. 2(b), which mainly shows a warming trend of around
1◦C over the whole time interval.

While the Sahel is often treated as one entity in the cli-
mate context, Nicholson (2013) already pointed out that
notable contrasts across the region do exist. This com-
plexity is also reflected in Fig. 2, in which the rainfall and

4doi:10.6069/H5MW2F2Q

(a) Rainfall (mm/year)

(b) Temperature (◦C)

Figure 2: Climate time series of the six Sahel countries analyzed
herein; see text in Sec. 3 for details of the annual sub-sampling of
the monthly raw time series used here to get the plotted data.
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temperature levels do show common traits but also sub-
stantial differences.

As a consequence of the strong seasonality in the rain-
belt position, we observe roughly three types of rainfall
profiles in Fig. 2(a), as one crosses the Sahel from North
to South:

• Low rainfall exposure: Countries furthest north, with
only little of their territory exposed to a low level
of rainfall during the rainy season. Mauritania and
Niger fall into this category and have the lowest rain-
fall levels.

• Intermediate rainfall exposure: Countries extending
further south, such as Chad and Sudan, with around
half of their territory exposed to intermediate rainfall
during the rainy season, have higher overall rainfall
levels.

• High rainfall exposure: Countries with a significant
part of their territory exposed to high intensity rain-
fall during the rainy season. Of the six countries con-
sidered here, Burkina Faso and Senegal fall into this
category and have therefore the highest annual rain-
fall levels. Still, the rainfall in Senegal is more vari-
able from year to year than in Burkina Faso. This
difference is mainly due to Senegal’s being closer to
the northern limit of the rainbelt, whereas Burkina
Faso is closer to the core. The latter is therefore less
exposed to small year-to-year shifts in the rainbelt
position.

4.2. Economic indicators

All six countries follow a pattern of a more or less per-
sistent growth in GDP, with very little year-to-year varia-
tions and only a minor drop associated with the big reces-
sion of 2008 (not shown).

This GDP behavior is totally different from what we
observe in the six AVA time series, shown in Fig. 3. Al-
though persistently increasing in most of the countries,
AVA is much less regular and subject to substantial vari-
ability overall, with behavior that also differs quite strik-
ingly from country to country. Some countries, like Burk-
ina Faso and Chad, have a more persistent trend and lit-
tle year-to-year variation, while others — like Mauritania,
Niger, and Senegal — have both an erratic trend and in-
tense year-to-year fluctuations.

Generally speaking, the trend residuals of AVA capture
up to 20% of the variance, while in GDP the residual vari-
ance does not exceed 2% (not shown). This pronounced
variability is consistent with the lack of agricultural tech-
nologies such as irrigation in the Sahel, insofar as such
technologies would tend to stabilize agricultural produc-
tion (Rockström et al., 2009). Moreover, the strong year-
to-year variability in AVA raises the question of potential
links to climate variability on interannual time scales.

Table 1 lists the share of AVA in GDP for each of the six
countries, in 1960 and 2015, respectively. In 1960, almost

Table 1: Share of AVA in GDP (in %)

Country 1960 2015
Burkina Faso 38 32
Chad 40 51
Mauritania 76 18
Niger 75 37
Senegal 24 13
Sudan 51 32

all economies were strongly dependent on the agricultural
sector, which accounts for more than a third of GDP in the
six countries, except for Senegal. In 2015, the dependency
is still quite strong for most of the countries, while only
Senegal and Mauritania seem to be on the way to a more
industrialized economy.

5. Spectral characteristics

We start in this section by applying M-SSA to identify
oscillatory behavior in each of the two systems, climatic
and economic, separately.

5.1. Economic indicators

A first set of tests was carried out on each of the two
economic indicators, GDP and AVA, separately. For each
of the two indicators, the six countries were combined in
a single M-SSA analysis to identify cross-country relation-
ships in the Sahel region.

The M-SSA analysis of the six AVA time series in Fig. 4
shows a rather diverse picture of distinct significant modes
in each of the countries. Such diversity in the M-SSA spec-
tra is consistent with the strong diversity already seen in
the time series of Fig. 3. The diversity in the spectral
characteristics apparent in Fig. 4 clearly indicates that the
economic dynamics in the Sahel is less coherent than the
climate dynamics and so the Sahel cannot really be con-
sidered as a single entity in the economic context. Yet,
a number of significant oscillatory modes can be found in
several countries.

A common oscillatory mode with a 2.4-year period is
found in Burkina Faso, Chad and maybe Niger. Note that
this mode is not found to be phase locked with a similar
2.4-year mode in Senegal. Moreover, a common 4.8-year
mode is found in Chad, Niger, Senegal, and Sudan. Other
modes appear to be more country specific, with a 4-year
mode in Niger and a 3-year mode in Burkina Faso. In
Mauritania, we are not able to identify any mode as sta-
tistically significant.

An equivalent M-SSA analysis was carried out on the
six GDP time series (not shown), and it found similar but
less numerous modes. Some of the modes we have identi-
fied in AVA are also present in the GDP spectra, a result
that is consistent with the important role of the agriculture
in the economy of these countries, cf. Table 1.
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Figure 3: AVA time series (black) and estimated trend component (bold red). The trend for each country is estimated from low-frequency
RCs with periods longer than 10 years, cf. Fig. 4 for additional details. The variance it captures in the AVA of each country is given in the
legend of the corresponding panel (in %). Note the different scales on the y-axis.
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Figure 4: Cross-country M-SSA analysis of the six AVA time series from Fig. 3. The M-SSA analysis here uses a window length of M = 18
years; the subsequent varimax rotation uses ST-EOFs 3–40. (a–f) For each country, the variance π in each mode is shown as filled black
circles, plotted as a function of the corresponding dominant frequency. Lower and upper ticks on the error bars correspond to the 2.5%
and 97.5% quantiles from a Monte Carlo test of the participation index π; the test ensembles have 2500 members. In the composite null
hypothesis, the low-frequency EOFs (target dots) with a period longer than 10 years are excluded from the test and the remaining EOFs are
tested against AR(1) noise.
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Figure 5: Cross-country M-SSA analysis of the six rainfall and six temperature time series in Fig. 2, and of the SOI index. In each mode,
we plot the sum π of the of variances for (a) the six rainfall time series, and (b) the six temperature time series is shown; the significance
levels are derived from a Monte Carlo test against the sum of surrogate participation indices. (c) Corresponding variance π of the SOI index.
M-SSA and MC test parameters as in Fig. 4.

The variety of spectral patterns found here in the anal-
ysis of the economic indicators for the Sahel contrasts with
the more synchronized behavior obtained when analyzing
the economic series of developed countries within a given
geographic region, such as Europe, cf. Sella et al. (2016).
This finding suggests a higher diversity in the structure
of the economies of developing countries within a given
geographic region.

We have furthermore analyzed the possibility of cou-
pled modes shared with several major economies. To do
so, we have added the GDP time series of the US and
France5 to our M-SSA analysis, but were not able to find
any of the above modes as being statistically significant in
either of the two developed countries, nor were we able to
find additional coupled modes at other periods.

5.2. Climatic indicators

In the spectral analysis of the climatic indicators, we
have chosen to combine the rainfall and temperature time
series of all six countries in a single M-SSA analysis. To in-
clude effects of other large-scale phenomena such as the El
Niño–Southern Oscillation (ENSO) on the Sahel — which
is known to influence the West African monsoon (Janicot
et al., 1996) we have furthermore chosen to add the time
series of the Southern Oscillation Index (SOI) 6 to our M-
SSA analysis. The analysis presented here is only meant
to give a brief idea of interannual variability in this region;
a comprehensive review can be found in Nicholson (2013).

The M-SSA spectrum for the rainfall, temperature, and
SOI time series is plotted in Fig. 5. In this preliminary
analysis of the climate indicators, we provide only aggre-
gated spectral properties for each of the indicators, while
we leave the detailed, country-specific analysis for Sec. 6.
Figures 5(a) and 5(b) thus provide only the sum of π over
all rainfall and temperature time series, respectively, in
each of the modes.

5Note that four of the six countries under consideration are sub-
ject to France’s economic influence via the African Financial Com-
munity (CFA) zone.

6http://www.bom.gov.au/climate/current/soihtm1.shtml

Comparing the spectral properties of rainfall and tem-
perature, we observe quite a few distinct oscillations at pe-
riods similar to those in Fig. 4, while only very few modes
seem to be present in both temperature and rainfall dy-
namics. In the spectrum of the SOI in Fig. 5(c), on the
other hand, we are able to identify two modes with periods
of 3.6 years and 2.4 years, respectively. These two modes
agree well in their period lengths with the well-known
quasi-quadrennial and quasi-biennial oscillations present
in many ENSO spectra (Rasmusson and Carpenter, 1982;
Jiang et al., 1995; Ghil et al., 2002), which seem therewith
to affect the Sahel’s rainfall and temperature fields.

6. Coupled climate-economy modes

Preliminary tests of a grand M-SSA, in which all four
indicators of all six countries were combined, gave only in-
conclusive results (not shown). Given the diversity of spec-
tral properties apparent in both the climate and the eco-
nomic datasets, this finding is not surprising, and this ap-
proach was, therefore, discarded. A more specific, country-
based analysis is adopted here instead.

After having confirmed the presence of oscillatory be-
havior in each indicator individually in Sec. 5, we now eval-
uate connections between the climate and economic indica-
tors for each country separately. Country-based datasets
were formed with the four indicators concatenated in a sin-
gle M-SSA analysis, and applying the MC test procedure of
Sec. 2.2 enables us to evaluate the statistical significance of
each indicator’s participation in coupled oscillatory modes.

The diversity of spectral characteristics that were found
in each of the indicators in Sec. 5 is also reflected here in
the results of the country-based analysis, and in the way
the climate and economic system interact in each country.
Table 2 summarizes the oscillatory modes that are signifi-
cant in the country-based analysis of Burkina Faso, Niger,
Senegal, and Sudan. We focus on interannual modes with
periods of 2–10 years. The window length chosen here is
M = 18 years and EOFs with periods longer than 10 years
are considered to be part of the long-term trend and ex-
cluded from the significance test. Note that the results for
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Table 2: Oscillatory modes found significant in country-based M-SSA
analyses. Coupled climate-economic modes in bold.

Period (in years) GDP AVA RF T
Burkina Faso

4.8 ***
3.6 ***
3.3 ** ***
2.8 ** **
2.4 *** *** ** **

Niger
4.1 *** **
3.6 ***
2.8 *** **
2.2 **

Senegal
4.8 *** ***
3.6 ***
3.0 **
2.4 ***
2.3 **

Sudan
5.0 *** *** **
4.0 ** **
3.6 *** **
3.0 **
2.7 **

*** at 99% and ** at 97.5% significance level; RF = rain-
fall; T = temperature.

Chad and Mauritania are not included in the table, since
no highly significant coupled modes were detected.

The majority of the modes are significant either in
the climatic or in the economic domain, but not in both.
In temperature, for example, we see a pervasive 3.6-year
mode in all four countries. This mode was already de-
tected in Fig. 5(b) and it is likely to be linked to the
quasi-quadrennial ENSO oscillation, cf. Fig. 5(c); it is
apparently not coupled, though, to any of the oscillatory
modes of the economic time series in Table 2.

A few purely economic modes are highly significant as
well. In Table 2, we see that Burkina Faso and Sudan both
present oscillatory modes involving AVA and GDP, which
have periods of 3.3 and 4.0 years, respectively. The rig-
orous application of the MC significance test shows that
these modes are not merely due to the detrending of ran-
dom economic fluctuations and that endogenous, deter-
ministically generated variability has to be involved (Groth
et al., 2015).

To which extent each of these endogenous modes can
be attributed to adjustment delays and information lags in
the market, as theorized by Kitchin (1923), is beyond the
scope of the present paper. Be that as it may, both periods
are consistent with the 3–4-year period of Kitchin (1923)
cycles, as reviewed in extenso by Burns and Mitchell (1946).
It appears, therefore, that some form of excitation of en-
dogenous business cycles by a quasi-periodic climatic forc-

ing might be at work in both countries.
Aside from the uncoupled modes in either the climatic

or the economic system, we are able to identify four cou-
pled climate-economic modes with high statistical signifi-
cance, one in each country. These four are highlighted in
bold in Table 2. The agricultural sector is involved in all
four modes, but no other common feature can be found in
all four. The details and specificities of each country are
discussed in the following subsections.

Before exploring these common modes further, it is in-
teresting to dwell on the lack thereof for two of the coun-
tries. In the case of Mauritania, this absence is consistent
with the absence of significant AVA modes in Fig. 4(c).
Chad, though, did exhibit two oscillatory AVA modes in
Fig. 4(b); still, no evidence of climate coupling could be
found here.

In neighboring Sudan, on the other hand, we do ob-
serve a 4.8-year mode in AVA, cf. Fig. 4(f); this mode is
similar to the one in Chad, yet only in Sudan is a coupled
oscillatory mode between AVA and temperature highly sig-
nificant, as indicated in bold in Table 2.

These country-to-country discrepancies can have vari-
ous causes, including the differences in their agricultural-
vs.-industrial development, as per Table 1. The strong
geographic diversity in the Sahel’s local terrain and veg-
etation (Georganos et al., 2017) could also have played
a role. However that may be, the example of neighbor-
ing Chad vs. Sudan shows that the occurrence of coupled
climate-economic modes can be fairly localized. To which
extent trade between these two countries may have led to
the presence of this 4.8-year mode in Chad’s AVA has to
be left for future studies.

6.1. Rainfall modes in Senegal and Niger

Niger and Senegal both present a coupled mode be-
tween rainfall and agriculture, cf. Table 2, with a 4–5-year
period. Figures 6(a,b) show the corresponding spectral de-
compositions of AVA and rainfall, respectively, from the
M-SSA analysis of the four indicators for Senegal. The
AVA spectrum in Fig. 6(a) is consistent with the one we
have already seen in the cross-country analysis of AVA, as
shown in Fig. 4(e). For Senegal, however, only the 4.8-year
AVA mode is significantly coupled with rainfall, while the
country’s 2.4-year AVA mode is not significantly coupled
with a similar but distinct 2.4-year mode in rainfall.

The reconstruction of AVA and rainfall with the RCs
of the 4.8-year mode is shown in Figs. 6(c,d), respectively,
together with the trend residuals; the latter are obtained
by subtracting the low-frequency trend components from
the raw data. In Senegal’s AVA, Fig. 6(c), the 4.8-year
mode captures about one third of the variance in the trend
residuals and it provides a remarkably good fit to its up-
and-down swings.

In Senegal’s rainfall, Fig. 6(d), the 4.8-year mode cap-
tures about one quarter of the variance and it still provides
a remarkably good fit to the residuals. Higher-frequency
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Figure 6: M-SSA analysis of the four indicators for Senegal. (a,b)
Variance π of (a) AVA and (b) rainfall. (c, d) Reconstruction of the
trend residuals (light black) with the RCs (heavy red) corresponding
to the coupled 4.8-year mode in (c) AVA and (d) rainfall; the variance
captured (in %) and the maximum values (max) are given in the
legend. M-SSA and MC test parameters as in Fig. 4.

variations that correspond to the 2.4-year modes in AVA
and rainfall, respectively, become also apparent in the
trend residuals. In AVA, though, the 2.4-year mode is
active during the first half of the interval only, while the
4.8-year mode begins to dominate after 1990. Although
similar in their period length, M-SSA identifies the two 2.4-
year modes in Figs. 6(a,b) as separate uncoupled modes,
due to their different evolution in time (not shown).

The spectral decompositions of AVA and rainfall by the
M-SSA analysis of the Niger dataset is shown in Figs. 7(a,b),
respectively. In the composite test, we have furthermore
excluded two pairs of EOFs with a period of 2.8 years
and 2.2 years; these two pairs correspond to pure climate
oscillations, cf. Table 2. In doing so, it turns out that
we are able to identify again a coupled mode in AVA and
rainfall, although with a slightly different 4.1-year period.
Recall that we found both a 4.8-year and a 4.1-year mode
in Niger in the cross-country analysis of AVA, as seen in
Fig. 4(d); of these two, only the 4.1-year mode appears
now as a coupled climate-economic mode in Fig. 7(a).

The reconstruction of AVA and rainfall with the corre-
sponding RCs is shown in Figs. 7(c) and 7(d), respectively;
the fit to the trend residuals is, once more, remarkably
good in periodicity and phase, but not in amplitude: in-
deed, Fig. 7(b) shows that the 4.1-year mode captures only
about 16% of the trend residuals’ variance in rainfall, due
to the presence of other significant oscillatory modes.

In both countries, the RCs of AVA and rainfall clearly
suggest direct effects of rainfall variability on the AVA dy-
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Figure 7: Same as Fig. 6, but for Niger. The reconstruction of the
trend residuals (light black) in panels (c,d) uses here the RCs (heavy
red) that correspond to the coupled 4.1-year mode in (c) AVA and (d)
rainfall. M-SSA and MC test parameters as in Figs. 4 and 6, except
two other EOF pairs, with a period of 2.8 years and 2.2 years, are
excluded from the composite null hypothesis as well; see target dots
in panel (a).

namics, while the amplitude ratio of the RCs gives an
estimate of the impact. For Senegal, an approximate 6
mm/year variation in rainfall corresponds to 170 million
US$ variations in AVA, cf. Figs. 6(c,d), while for Niger, an
approximate 1.5 mm/year variation in rainfall corresponds
to 250 million US$ variations in AVA, cf. Figs. 7(c,d). This
lower sensitivity to rainfall variability in Senegal may re-
sult from differences in the exposure to rainfall, as seen in
Fig. 2(a). As already discussed in Sec. 4, Senegal benefits
from higher rainfall rates and it lies closer to the rain-
belt core than Niger, so that small year-to-year changes in
rainfall levels are more critical for Niger.

6.2. Temperature mode in Sudan

In contrast to the two rainfall-related modes found in
Senegal and in Niger, Table 2 shows that our M-SSA anal-
ysis does not identify in Sudan a coupled climate-economic
mode involving rainfall. Instead, we find a 5.0-year tem-
perature mode, coupled to both AVA and GDP; the cor-
responding RCs are shown in Fig. 8. This 5.0-year mode
provides a remarkably good fit to the trend residuals of
AVA in Fig. 8(b), as well as to the GDP ones in Fig. 8(a).
The latter fit is especially good after 1980, when the RCs
reach their maximum amplitude.

Note that the RCs in temperature are anti-correlated
with those of AVA and GDP, i.e. an increase in temper-
ature has a negative effect on the economy. The ampli-
tude ratio of the RCs suggests that an increase of approxi-
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Figure 8: Trend residuals (light black) and reconstruction with the
RCs (heavy red) corresponding to the coupled 5.0-year mode in Su-
dan; for (a) GDP, (b) AVA, and (c) temperature.

mately 0.4◦C in temperature is associated with a decrease
of roughly 570 million US$ in AVA and 880 million US$
in GDP.

The absence of any coupled climate-economic modes
involving rainfall, though, does not necessarily mean that
rainfall has no effect on Sudan’s agriculture at all. We have
focused here on interannual variability with 2–10-year pe-
riods, while agriculture in Sudan could be influenced by
longer-term variations in rainfall, which are captured by
the lowest-frequency EOFs. These low-frequency EOFs,
though, have been excluded from the composite null hy-
pothesis.

6.3. A pervasive quasi-biennial mode in Burkina Faso

In Burkina Faso, the M-SSA analysis finds a quasi-
biennial 2.4-year mode to be significant in all four indica-
tors, cf. again Table 2. The corresponding RCs are shown
in Fig. 9. In AVA, this mode provides a good fit to the
trend residuals and it captures 18% of the residuals’ vari-
ance. In GDP, however, this mode plays only a minor role
and captures no more than 3% of the variance. The RCs in
the two climate indicators are anti-correlated, with higher
rainfall levels and lower temperatures having a positive
effect on the economy.

The amplitude ratio of the RCs suggests that an ap-
proximate 2 mm/year increase in rainfall and 0.2◦C de-
crease in temperature correspond to an increase of roughly
110 million US$ in AVA, but only about 50 million US$
in GDP. This finding shows that Burkina Faso is less sen-
sitive to rainfall variations in the 2.4-year coupled mode
than Niger is in its 4.1-year mode, cf. Fig 7. Such a
lesser sensitivity could be, once more, a result of Burk-
ina Faso’s being closer to the core of the rainbelt, so that
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Figure 9: Trend residuals (light black) and reconstruction with the
RCs (heavy red) corresponding to the coupled 2.4-year mode in Burk-
ina Faso; for (a) GDP, (b) AVA, (c) rainfall, and (d) temperature.

year-to-year shifts are less critical for Burkina Faso than
for Niger. Lastly, the higher value obtained in AVA com-
pared to GDP is consistent with the greater volatility of
agriculture observed in section 4.2.

7. Discussion

In the present study, we applied the advanced spectral
M-SSA method to study the influence of climate variability
on the economy, in particular the agricultural sector. Our
dataset covers several economies in the Sahel region in
which we are able to identify coupled climate-economic
modes on interannual time scales that have high statistical
significance of 97.5%–99%.

Berry and Okulicz-Kozaryn (2008) used a higher-order
AR model to look for ENSO signals in the short-term fluc-
tuations of the US economy. These authors, however, were
not able to identify any co-cyclicality between ENSO and
US macroeconomic indicators. Their negative result may
be due to a number of causes, such as the size and complex-
ity of the US, in which locally important climatic effects
vanish; the fact that the agricultural sector accounts for as
little as 1% of the US GDP in 2015; or to the lesser ability
of their methodology to identify small but relatively regu-
lar effects in a sea of noisy fluctuations. On the other hand,
ENSO variability has been linked to agricultural fluctua-
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tions and crop yields in Mexico (Dilley, 1997), Indonesia
(Naylor et al., 2001), and China (Deng et al., 2010).

In the case of the developing countries at hand, it seems
that the important share of the agricultural sector, along
with a low development of modern agricultural practices
such as irrigation, enhances the sensitivity to climate sig-
nals in the economy. In Sec. 6, the AVA index was always
involved in the coupled climate-economic modes we found
to have high statistical significance. For Sudan and Burk-
ina Faso, this climate signal was visible in GDP as well.

In the present study, we have focused on climate vari-
ability on interannual time scales, with a period of 2–10
years. Although the Sahel region is often considered as one
entity, we found considerable diversity in both the Sahel’s
climate and economic system. It therefore happens that
the coupled climate-economic modes strongly differ from
country to country in their characteristics, even between
neighboring countries.

We have seen, in particular, that ENSO’s quasi-biennial
and quasi-quadrennial oscillatory modes (Rasmusson and
Carpenter, 1982; Jiang et al., 1995; Ghil et al., 2002) had
only very little influence on the region’s economies as a
whole; see again Fig. 5(c). For Burkina Faso, though, we
did identify a persistent 2.4-year mode, which could be
linked to this country’s geographical location and to the
well-known impact of ENSO on the West African monsoon
(Nicholson, 2013). For the other countries, however, a di-
rect link to ENSO could not demonstrated by the present
analysis, while large-scale climate phenomena on longer
time scales might still play a role (Chang et al., 2015).

Overall, the RCs of the coupled climate-economic modes
have been shown to provide a rather good reconstruc-
tion of the temporal evolution of the AVA trend residuals.
The number of distinct oscillatory modes in the climate,
as well as the economic system, does suggest, however,
that studying climate impacts on the region’s agriculture
should eventually go beyond a simple linear regression.

While several climate modes were identified on inter-
annual time scales, only a few of them appear to be cou-
pled to the Sahel’s economies. On the other hand, a few
purely economic modes where identified as well and raise
the question of endogenous economic dynamics and other
factors outside the scope of this study.

In the present M-SSA analysis, we focused on the con-
ceptually simplest hypothesis of a one-to-one coupling with
similar periods between the climate and economic system.
This restriction was chosen for the sake of simplicity, and
not because the methodology is limited to the analysis of
linear systems alone. Thus, for instance, Groth and Ghil
(2011, 2017) found M-SSA helpful in the synchronization
analysis of coupled chaotic oscillators, both in the climate
and in the macroeconomics realm. Proceeding in this di-
rection, though, will require considerable work, especially
given the shortness of the available datasets.

The coupling of the two systems through a few weak os-
cillatory modes is interesting insofar as it is consistent with
theoretical predictions about weakly coupled chaotic sys-

tems (e.g., Boccaletti et al., 2002, and references therein).
In the latter, the complex behavior in each of the systems
can lead to a complex synchronization process, in which
weaker oscillatory modes get synchronized first (Groth and
Ghil, 2011).

Finally, with respect to the assessment of climate im-
pacts, the analysis provides some helpful insights into the
sensitivity as well. The amplitude ratio in the coupled
modes between the rainfall RCs and the AVA ones, for in-
stance, provides a quantitative estimate of this sensitivity
that is consistent with the country’s exposure to rainfall
variability. This ratio shows that Burkina Faso and Sene-
gal, both closer to the core of the rainbelt, are less sus-
ceptible to rainfall variations, while Niger’s being closer to
the rainbelt’s northern edge makes it more susceptible; see
again Fig. 1. Although not capturing the complete, possi-
bly nonlinear effects of rainfall on agriculture, the present
analysis provides a first-order approximation of the influ-
ence of year-to-year variations in rainfall on the economy.

8. Summary

Since its introduction into the analysis of nonlinear and
complex systems (Broomhead and King, 1986a,b), M-SSA
has found numerous applications in the climate sciences
(Ghil et al., 2002, and references therein). Recently, M-
SSA has also been applied to study macroeconomic activ-
ity and global synchronization of business cycles (Groth
et al., 2015; Sella et al., 2016; Groth and Ghil, 2017).

The present work goes a step further and applies the
M-SSA methodology to study coupled climate-economic
behavior; it also provides a novel significance test to assess
whether signals of interannual climate variability can be
identified in regional economic behavior. We focused on
the Sahel region, including the six countries of Burkina
Faso, Chad, Mauritania, Niger, Senegal, and Sudan, for
which economic, as well as climatic data were available
since 1960; see Secs. 1–3.

The Sahel is characterized by large variations in rainfall
levels that are due to strong seasonality in the rainbelt po-
sition. The rainfall is generally limited to the boreal sum-
mer months, while small year-to-year shifts in the rainbelt
position can have drastic consequences on the agricultural
sector, cf. Sec. 4.

Although often considered as a single geographic entity,
our results show considerable diversity in the Sahel’s cli-
matic and economic dynamics. This diversity is reflected
in a number of significant oscillatory modes in each of the
two systems, cf. Sec. 5.

We have chosen, therefore, to study coupled climate-
economic behavior in each country individually, cf. Sec. 6.
In the present analysis, we are able to identify four coupled
climate-economic modes with high statistical significance,
from 97.5% to 99%; see Table 2.

These four modes are present in Burkina Faso, Niger,
Senegal and Sudan, and capture the temporal evolution of
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the agricultural sector in these countries quite well. In
Chad and Mauritania, on the other hand, the present,
rather short dataset did not allow us to identify coupled
climate-economic behavior. The short dataset obliged us
to limit ourselves to study interannual variability with pe-
riods of 2–10 years, while longer-term climate variations
(Chang et al., 2015) could still play a role.

Despite the number of distinct climate modes we found
to be statistically significant in the Sahel region, it turned
out that only a few of them manifest themselves as cou-
pled climate-economic modes. In Burkina Faso, we observe
a possible influence of ENSO’s quasi-biennial oscillatory
mode, possibly because of this country’s high exposure to
the West African monsoon. For the other countries, how-
ever, a direct link to ENSO is less clear from the present
analysis, while connections to other large-scale climatic
phenomena have to be left for future studies.

Finally, we have shown that the M-SSA analysis pro-
vides helpful insights into the sensitivity analysis of the
agricultural sector with respect to year-to-year variations
in rainfall, cf. Sec. 6. We showed, for example, that in
Niger the sensitivity to variations in annual rainfall lev-
els is around three times higher than in Burkina Faso and
Senegal. This difference is sensitivity is likely to be due
to differences in the countries’ exposure to rainfall during
the boreal summer months.

The wealth and variety of the present results suggests
the need for refining further the application of advanced
spectral methods like M-SSA to study the complex inter-
actions between the climate and economic system. Doing
so should thus help answer N. Sterns call for better meth-
ods to help the world take the road of a sounder future
(Stern, 2016).
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