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Abstract

A vortex method with penalization is proposed in order to simulate three-
dimensional incompressible bluff body flows. This approach combines the
robustness of vortex methods and the flexibility of penalization methods to
impose boundary conditions on the obstacle. Far field boundary conditions
are handled in a FFT-based Poisson solver. A validation of the proposed
numerical method is carried out in the context of flow past a sphere and
further simulations are performed in the more challenging case of flow past
a hemisphere.

Keywords: flow past a sphere, flow past a hemisphere, vortex methods,
particle methods, penalization method, semi-Lagrangian methods.

1. Introduction

Vortex methods are Lagrangian methods consisting in discretizing the
vorticity on particles which move with the flow and carry local vorticity
values. They approximate the vorticity formulation of the Navier-Stokes
equations (Vorticity Transport Equation) focusing the computational task
on the vortical zones, thus allowing to reduce the simulation time. They
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are ideal for vortex-dominated flow simulations, like flows past bluff-bodies,
airfoils, propellers, turbine profiles as well as complex internal configurations,
thanks to a lower numerical diffusion and the dynamic adaptivity of the
particles to the support of the vorticity. Moreover, continuity and far-field
boundary conditions are satisfied by construction.

Vortex methods have been widely used to study wakes and more generally
advection dominated flows and several works have provided these methods a
solid mathematical framework to understand their convergence[1].

For external flows, vortex methods often rely on the use of Fast Multipole
Methods (FMM). This technique, introduced by [2], allows to reduce the al-
gorithm complexity of the computation of the velocity of the vortex elements
from O(N2), obtained with a classical resolution of the Biot-Savart law, to
O(N log(N)) . This has been widely used in the context of vortex methods
[3, 4, 5, 6, 7]. Alternatively, vortex methods can rely on grid-based Poisson
solver to compute velocity fields [8]. In that case vorticity values have to
be interpolated to the grid and velocity values have to be interpolated back
to particles. In particular [9] indicates comparisons of CPU times between
FMM and methods based on Poisson solvers which indicate that, except if
the support of vorticity has very small dimension compared to the compu-
tational box, Poisson-based vortex methods are more economical in 3D than
FMM-based vortex methods, by several order of magnitudes. However [7]
shows that, when implemented on GPU with very large numbers of parti-
cles, FMM-based methods can close the gap with vortex methods based on
Poisson solvers.

Vortex methods, and more generally particle methods, also face accu-
racy issues related to particle distortions. One popular method to handle
this issue is to remesh frequently - in general at each time-step - particles
on regular grids. This method was used in [3] to obtain reference results
for flows past a 2D circular cylinder. With this technique, particle meth-
ods become semi-Lagrangian methods and their accuracy can be rigorously
analyzed in terms of the interpolation kernels used to remesh particles [10]
under stability conditions on the time-step which do not rely on the inter-
particle spacing. In remeshed vortex methods, vorticity grid values obtained
after particle remeshing can be readily used to obtain the velocity through a
grid-based Poisson solver. Alternative methods allow to adapt velocity and
diffusion kernels to the distribution of particles [11, 12] or to adapt the par-
ticle distribution to the boundaries [13] (see also [1] for earlier references on
this issue) . However, to our knowledge, this type of methods has not been
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implemented yet in 3D flows.
A third issue faced by vortex methods, and more generally by all methods

based on the vorticity formulation of the Navier-Stokes equations, is related
to boundary conditions. The no-slip condition can be turned into a vorticity
flux boundary condition that can be handled together with the vorticity dif-
fusion by integral equations [14, 15]. This method has been used with success
in a number of two and three-dimensional simulations using vortex particles
[3, 4, 9]. These simulations use body-fitted particle distributions. Alternative
methods, primarily defined and used in the context of grid-based Eulerian
methods [16, 17], consist in viewing obstacles as immersed boundaries which
appear as a forcing term in the Navier-Stokes equations. Immersed bound-
ary methods can easily be implemented on a non-conforming grid or particle
distribution, albeit at the expense of a lower accuracy near the boundary.
The Brinkman penalization method is a particular case of immersed bound-
ary methods where the velocity is penalized inside the obstacle. Penalization
methods can be interpreted as originally formulated in velocity-pressure for-
mulation and can be extended to vorticity formulations [18] and to vortex
methods [19].

Vortex methods using a penalization method to enforce the no-slip con-
dition have been developed and used in the context of fluid-structure inter-
action problems [19, 20]. In [21] the algorithmic simplicity of the penaliza-
tion method was utilized to enable an efficient GPU implementation of the
method for 2D bluff-body flows. In [22, 23] the method was in particular
used to model flows around turbines or to optimize porous layers for passive
control to reduce drag behind a semi-circular cylinder.

In the present method we study flows past a sphere and an hemisphere
and we specifically focus on two new aspects of the method which significantly
reduce the computational cost of the method: we propose a simple method
relying on FFT-based Poisson solvers to approximate the far field boundary
conditions and we extend the directional remeshing technique introduced in
[24, 10] to the three-dimensional Navier-Stokes equation.

This paper is organized as follows. In the first three sections we recall the
governing equations, we indicate how the body forces are computed in such
a model and we detail our treatment of the far-field boundary conditions.
In section 5 we detail the algorithm and the numerical schemes to discretize
the problem. Section 6 is devoted to the numerical results. We perform
a validation and a convergence study of the proposed method for three-
dimensional flows past a sphere. We then present similar investigations in
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the context of flows around a hemisphere. In this section we also discuss
the computational cost and parallel scalability of the method. Finally, some
conclusions and perspectives related to the present work are outlined in the
last section.

2. Governing equations

This study is based on the vorticity formulation of the incompressible
Navier-Stokes equations in a domain D, which read:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u =

1

Re
∆ω in D. (1)

In this equation ω, u and Re respectively denote the vorticity, the velocity
and the Reynolds number. This equation has to be coupled to the system
giving the velocity in terms of the vorticity. Using the incompressibility
condition, the velocity may be directly linked to the vorticity through the
following Poisson equation:

∆u = −∇× ω. (2)

The system (1)-(2) has to be complemented by appropriate boundary condi-
tions, both at solid boundaries and, if necessary, at artificial boundaries. This
latter issue will be addressed in detail in section 4. The modeling of incom-
pressible flow around an obstacle is realized in this work using the Brinkman
penalization method [25, 16]. This technique relies on the simple following
idea: the fluid in which the flow evolves is assumed to be a porous medium of
infinite permeability while, on the other hand, the solid obstacles immersed
in the fluid are considered as media with zero permeability. A flow evolving
in such media may be modeled by the Brinkman-Navier-Stokes equations,
which stands for the whole domain and which contains an additional term
in the Navier-Stokes equations, acting as a forcing term. The latter, called
the penalization term, directly comes from the Darcy equations that govern
flows in porous media. In this work, the penalization term is expressed using
vorticity formulation. One therefore obtains the non-dimensional penalized
Vorticity-Transport-Equations (or Brinkman-Navier-Stokes equations), orig-
inally proposed by [18]:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = ∇×

(
λ χb(ub − u)

)
+

1

Re
∆ω in D, (3)

∆u = −∇× ω in D, (4)
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where χb denotes the characteristic function that yields 0 in the fluid and 1 in
the solid body, ub indicates the rigid body velocity and λ = µΦH/ρku∞ is the
non-dimensional penalization parameter, with k the intrinsic permeability, µ
the viscosity, Φ the porosity of the porous material, H the height of the
obstacle, ρ the fluid density and u∞ the main uniform fluid flow velocity.

The main advantage of this method is that it needs neither the mesh to
fit the boundaries nor to specify no-slip boundary conditions. Moreover, the
penalized Vorticity-Transport-Equation (3) appears to be very convenient to
model the flow in the whole domain thanks to the dimensionless penalization
factor λ, whose value allows to distinguish between the different materials.
In this study we set H = ρ = u∞ = 1 and we recall that the porosity Φ
is close to 1 as imposed by the Brinkman equation [26]. Therefore λ es-
sentially depends, in the inverse proportion, on the intrinsic permeability k
of the medium. Varying the value of λ thus directly defines the different
media. Indeed, in the fluid, the intrinsic permeability coefficient k goes to
infinity, thus the fluid can be considered numerically as a porous media with
a very high permeability. We set λ = 0 in this region. As a consequence,
the penalization term vanishes in equation (3), and we naturally recover the
dimensionless Vorticity Transport Equation (1). On the contrary, the solid
has a permeability coefficient k close to zero, it can be consequently mod-
eled by fixing the penalization parameter λ to a very high value. In this
study λ is set to 108 in the solid. It was proved in [16] that solving equation
(3) with such a value of λ was equivalent to solve Darcy’s law in the solid.
As a conclusion, at a given flow regime, the variation of λ corresponds to
the variation of k and specifies the intrinsic porous material permeability.
Figure 1 gives a schematic representation of the overall physical represen-
tation and the associated numerical settings. The physical description (left
picture) involves the physical quantities H, u∞, Φ, k and ν = µ/ρ. The as-
sociated numerical setting (right picture) involves the characteristic function
χb enabling to geometrically define the solid body as well as the penalization
term λ = νΦH/ku∞ obtained from the adimensionalization of the penalized
Navier-Stokes equations and allowing to numerically specify the permeability
of the considered medium. For further details about the derivation of the
penalized Vorticity-Transport-Equations from the Brinkman equation, the
reader is referred to the work [23].
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Figure 1: Schematic representation of the physical description (left) and its numerical
parametrization (right) for flow past a solid body using the penalization method frame-
work.

3. Forces evaluation

The accurate computation of the unsteady aerodynamic force exerted by
the fluid on an immersed body is important in the framework of this study.
Indeed, the force provides a reliable diagnostic to validate the ability of the
proposed method to model the problem correctly. The method adopted in
this work to compute the aerodynamic force in three-dimensions is the nu-
merical approach introduced by [27] under the name of change of momentum.
It is based on the fact that the time dependent force exerted by a fluid on a
body B of constant mass is directly proportional to the body acceleration.
For unit density one has:

F = − d

dt

∫
B

u dx. (5)

If we think in terms of numerical iterative process, we can consider that,
at each time step, the fluid is allowed to enter inside the rigid body before the
penalization term enforces the velocity u to be equal to uλ inside the body.
Therefore, the obstacle experiences the following change of momentum ∆q:

∆q =

∫
B

(u− uλ) dx, (6)

and the force is finally obtained by the formula:
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F =
d

dt

∫
B

(u− uλ) dx. (7)

The drag and lift coefficients are then defined by:

CD =
Fx
Q×A

, CL =
Fy
Q×A

, CS =
Fz
Q×A

, (8)

where the lift coefficient is decomposed into CL (vertical lift) and CS (side
lift), Q = 1

2
ρu2
∞ denotes the dynamic pressure and A is the reference area.

As this force calculation method is inherently based on the penalization
technique, that is to say on the continuous velocity enforcement inside the
body, it appears as a natural choice in the framework of the present numerical
method. However, it may show some limits when high Reynolds numbers are
considered, due to the grid refinements needed to accurately take into account
the obstacle boundaries. In this case, other formulations may be used, like
for instance the one proposed by [28] where the forces are evaluated on a
control volume that includes the solid body.

4. Far-field boundary conditions

In the present study we consider flows past obstacles in a domain with
a prescribed inlet normal velocity and periodic boundary conditions in the
transverse directions. To obtain optimal computational efficiency we will use
periodic boundary conditions in all directions, which will allow to rely on
simple FFT to obtain the velocity from the vorticity. This however requires
appropriate corrections to account for the inflow and outflow boundary con-
ditions.

4.1. Solenoidal eddies absorption

A first consequence of periodic boundary conditions is the emergence,
in the upstream region, of eddies coming periodically from the outlet (we
suppose in this study that the domain has a sufficient size in the y and z
directions so that the wake do not reach the concerned boundaries). In order
to discard these arising vortices, one needs to apply a specific treatment on
the vorticity field. This treatment consists in an absorption, in the flow
direction, of the vorticity within a band located at the outlet of the domain.
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More precisely we proceed as follows. Given a periodic vorticity field ωperiodic

and its associated velocity field uperiodic we first define:

ũ = f(x) uperiodic + (1− f(x)) u∞, (9)

where f is the following one-dimensional smoothing function defined in the
flow direction [29]:

f(x) =


1 if x < xb
tanh(α(x− xc))− tanh(α(xe − xc))
tanh(α(xb − xc))− tanh(α(xe − xc))

if xb ≤ x ≤ xe

0 if x > xe.

(10)

In the above expression xb, xc and xe respectively refer to the beginning, the
center and the end of the absorption band at the outlet (see Figure 2). The
parameter α allows to adjust the steepness of the absorption function f .

in
le

t

ou
tl

et

smooth filter function

absorption band

xb xexc

Figure 2: Schematic representation of the smooth vorticity absorption performed at the
outlet.

One then obtains a corrected vorticity field:

ω̃ = ∇× ũ (11)

= f(x) ωperiodic + [∇f(x)× uperiodic] +∇[1− f(x)]× u∞ (12)

=

ωx f(x)
ωy f(x)
ωz f(x)

+

 0
−f ′(x)uz
f ′(x)uy

+

 0
f ′(x)uz∞
−f ′(x)uy∞

 . (13)

Note that the above absorption guarantees the solenoidal condition div ω =
0, a property which would not be satisfied if the absorption mechanism (9)
was applied directly to the vorticity.
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4.2. Velocity correction

Our choice of periodic boundary conditions in the Poisson solver to com-
pute the velocity from the vorticity requires to adjust the correct flux through
the computational box. Moreover, periodic boundary conditions also imply
a zero circulation, i.e.

∫
D
ω = 0. This condition is not satisfied as soon as

eddies leave the computational box and a correction is needed to account for
the non-zero circulation. In the sequel x denotes the direction along which
the inlet velocity is prescribed and y and z the transverse directions where
periodic boundary conditions are assumed.

To derive the correction enforced on the velocity calculations we introduce
the following notation:

u = ũ + u. (14)

In this relation, ũ denotes the output velocity field obtained from the FFT-
evaluations performed in the Fast Poisson Solver and u represents the space-
average velocity, that we aim to correct. The x-axis of the Cartesian system
corresponds to flow direction and the velocity is initialized setting u(t = 0) =
(ux∞, uy∞, uz∞).

Since ux is a spatially constant flux, then
∂ux
∂x

=
∂ux
∂y

=
∂ux
∂z

= 0 and the

mean vorticity is given by:

ωx =
∂uz
∂y
− ∂uy

∂z
, ωy = −∂uz

∂x
, ωz =

∂uy
∂x

. (15)

First of all, a correction of the streamwise component of the velocity ux is
necessary in order to impose the correct flux at the inlet. This correction is
determined as follows.

4.2.1. Correction for the streamwise velocity ux
Let I be the inlet rectangular surface of the parallelepipedic computa-

tional box, normal to the flow direction, of area LyLz. Ly and Lz respec-
tively denote the lengths of the computational box in the y and z directions.
According to the decomposition u = ũ+u and knowing that ux is a constant
and that the desired flow rate at the inlet is equal to ux∞LyLz, one has:∫∫

I

ux dydz︸ ︷︷ ︸
desired flow rate

=

∫∫
I

ũx dydz︸ ︷︷ ︸
calculated flow rate

+

∫∫
I

ux dydz, (16)
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so

ux = ux∞ −

∫∫
I

ũx dydz

LyLz
, (17)

and finally:

ux = ux∞ + ũx −

∫∫
I

ũx dydz

LyLz
. (18)

Next we need to correct the transverse velocities uy and uz in order to recover
a non-zero circulation.

4.2.2. Correction for the spanwise velocity uy
According to relations (15) one has uy = ωzx + c1, with c1 a constant

value that we aim to evaluate and ωz =
1

LxLyLz

∫
D

ωz dx, with LxLyLz

corresponding to the volume of the computational domain D. From the
decomposition u = ũ + u, one therefore concludes that uy = ũy + ωzx + c1.
Thus: ∫∫

I

uy dydz =

∫∫
I

ũy dydz +

∫∫
I

ωzx dydz +

∫∫
I

c1 dydz. (19)

Since the flow rate is desired to be uy∞LyLz, then:

c1 = uy∞ −

∫∫
I

ũy dydz

LyLz
− ωzx0, (20)

and finally the corrected y-component of the velocity fields stands as:

uy = uy∞ + ũy + ωz(x− x0)−

∫∫
I

ũy dydz

LyLz
, (21)

where x0 corresponds to the x-coordinate of the inlet surface I in the Carte-
sian system.

4.2.3. Correction for the transverse velocity uz
Following the same principle, and according to the relations (15) one

obtains uz = −ωyx + c2 with c2 a constant value. From the decomposition
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u = ũ + u, one gets uz = ũz − ωyx+ c2. Finally, mimicking the process used
for uy, one gets:

uz = uz∞ + ũz − ωy(x− x0)−

∫∫
I

ũz dydz

LyLz
. (22)

In order to validate the use of periodic boundary conditions combined
with the above corrections, we consider the flow past a 3D sphere at Re = 300
in a bounded domain D = [−2, 8.24] × [−2.56, 2.56] × [−2.56, 2.56]. The
target free stream velocity is uniform at the inlet, with u∞ = (1, 0, 0). Figure
3 shows upstream isocontours of ux at the end of the simulation (T = 75) in
the inlet YZ plane (x = x0 = −2) for two different cases.

0.0 1.0 2.0-1.0-2.0

-2.0

-1.0

0.0

1.0

2.0

z

y

z
y

Figure 3: Flow past a 3D sphere: isocontours of the inlet streamwise velocity ux in the
YZ plane when imposing periodic boundary conditions coupled with adapted corrections.
(Left picture) The width of the absorption band equals 1. (Right picture) The width of
the absorption band equals 2.

In Figure 3 we have plotted the values of the streamwise velocity ob-
tained at the inlet. In the first case (left picture), the absorption band lies
from xb = 7.24 to xe = 8.24 and α = 10 in the definition of f (eq. 10). In this
case the values of ux lie between 0.973 and 1.009. In the second case (right
picture), the absorption band is twice thicker (xb = 6.24, xe = 8.24) and
ux inlet ∈ [0.977, 1.007]. The actual inlet streamwise velocity thus only shows
a maximum relative error of respectively 2.7% and 2.3% for the first and the
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second case compared to the target uniform free stream flow (ux∞ = 1). Let
us also notice the symmetrical patterns of the velocity isocontours. This sym-
metry is explained by the periodic boundary conditions. Simulations were
also performed with a domain twice longer in the x-direction, i.e. xb = 17.48,
xe = 18.48 and very similar results were obtained (ux inlet ∈ [0.975, 1.004]).
Finally, a simulation was carried out in the original domain D with a higher
Reynolds number, Re = 1000, setting xb = 7.24, xe = 8.24 and compa-
rable results were achieved (ux inlet ∈ [0.977, 1.004]). From this study one
can conclude that, in view of the speed up obtained by this method, the pro-
posed treatment of the inlet and outlet boundary conditions give satisfactory
results.

5. The vortex penalization method

5.1. Numerical discretization

In this section we present the vortex penalization method used to dis-
cretize the 3D penalized Vorticity-Transport-Equations (3)-(4). In this study,
we will only consider the case of fixed obstacles, which means ub = 0. The
method can be extended to the case of moving bodies along the lines of
[19, 20]. Equations (3)-(4) are discretized on a parallelepipedic computa-
tional box. The domain is meshed with a uniform Cartesian grid and periodic
boundary conditions are prescribed on the walls as described in section 4.
These equations are discretized through a viscous splitting algorithm, con-
sisting in solving successively the different operators within the same time
iteration [30]. Concerning the main steps of this splitting algorithm, the
advection is performed in a semi-Lagrangian way through a vortex method
with particle remeshing at each time step to avoid the distortion effects [3].
The penalization equation, the stretching and the diffusion terms as well as
the Poisson equation are solved on the underlying grid. Algorithm 1 gives
the successive discretization steps.

In this work, the Poisson equation (step (27) in algorithm 1) is solved
on the grid using Fast Fourier Transforms (FFT) and periodic boundary
conditions. Following section 4, the discretization of this equation is preceded
by a vorticity absorption (step (26)) and followed by a velocity correction
(step (28)). The diffusion equation (step (32)) is also discretized using FFT-
based evaluations. In the following, we will focus on the specific features that
contribute to the efficiency of this method for 3D bluff body flows.
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Algorithm 1

Initialization

Preliminary velocity field (on grid) u0 = u∞ = (1, 0, 0) (23)

Preliminary vorticity field (on grid) ω0 = (0, 0, 0) (24)

Vorticity penalization (on grid) ω0
λ = ω0 +∇×

(
−λχ∆tu0

1 + λχ∆t

)
(25)

Marching

Vorticity absorption (on grid) ωn = ∇× [fun + (1− f)u∞] (26)

Poisson problem (on grid) ∆un = −∇× ωn (27)

Velocity correction (on grid) un+1 = ũn + un (28)

Force computation (on grid) F =
d

dt

∫
B

(un+1 − un+1
λ ) dx (29)

Vorticity penalization (on grid) ωn
λ = ωn +∇×

(
−λχ∆tun+1

1 + λχ∆t

)
(30)

Stretching (on grid)
∂ωn

∂t
= div(ωn : un+1) (31)

Diffusion (on grid)
∂ωn

∂t
=

1

Re
∆ωn (32)

Advection (on particles)
∂ωn+1

∂t
+ (un+1 · ∇)ωn+1 = 0 (33)

Evaluation of ∆tadapt (on grid) ∆tn+1
adapt =

LCFL

‖∇u‖n+1
∞

(34)

Force computation (step (29))

As explained in section 3, the aerodynamic force is evaluated in 3D using
the change of momentum equation (7). For this purpose, equation (5) is
discretized using a 1st Euler scheme:

F = − 1

∆t

∑
B

(
un+1 − un

)
h3, (35)
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and un+1 is forced to be equal to the velocity inside the body through an
implicit penalization scheme (cf equation (41) in next subsection):

F =
1

∆t

∑
B

(
un − un

1 + λ∆t

)
h3 =

∑
B

(
λun

1 + λ∆t

)
h3, (36)

where un corresponds to the non-penalized velocity and h denotes the uni-
form grid space. This force expression is evaluated on the grid with a mid-
point rule. We note that the above equation is consistent with the formu-
lation (7): since in our calculations we have λ = 108 and ∆t ≥ 10−3, then
λ∆t� 1 and (36) gives:

F =
∑
B

un

∆t
h3. (37)

This is a 1st order discretization of the change of momentum equation (7)
where uλ = 0.
Let us also notice that, if ∆t→ 0, then one would have:

F =
∑
B

λun h3, (38)

which corresponds to the discretized formulation of the force expression pro-
posed in [25] and obtained by integrating the penalization term on the volume
of the body:

F =
1

Re

∫
B

∆u dx−
∫
B

∇p dx ≈
∫
D

λχbu dx. (39)

In the present work one chooses equation (37). The force evaluation
is performed immediately before the penalization step in algorithm 1 (step
(29)).

Penalization (step (30))

In its velocity-vorticity formulation, the continuous penalization equation
reads :

∂ω

∂t
= −∇× (λ χbu). (40)

In order to discretize equation (40), we first discretize the penalization equa-
tion for the velocity, ∂tu = −λχbu. Following [19] this is done using an
implicit 1st order Euler scheme:

un+1 =
un

1 + λχb∆t
. (41)
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This yieds the penalized velocity field that we denote by uλ. We can rewrite
the above equation as:

un+1 = un −
(
λχb∆t un

1 + λχb∆t

)
, (42)

which gives the following conservative expression for the penalized vorticity:

ωn+1 = ωn −∇×
(
λχb∆t un

1 + λχb∆t

)
. (43)

A 4th order centered finite-differences scheme is used for the discretization of
the curl operator. We notice that the velocity field is not directly penalized
in this algorithm. The velocity penalization is implicitly realized through the
resolution of the Poisson problem in step (27) of algorithm 1.

Stretching (step (31))

Several formulations may be used to compute the stretching term [1]. In
this study we choose the following conservative formulation:

∂ω

∂t
= div(ω : u), (44)

where the notation ω : u stands for the tensor of component ωjui. The time
integration scheme chosen here to discretize this equation is the commonly
used 3rd order Runge-Kutta TVD (Total Variation Diminishing, i.e. non
extra oscillations) scheme [31]. With this time discretization, the velocity
field involved in the divergence operator is not modified. The divergence
operator is discretized through a 4th order centered finite-differences scheme
on the grid.

Particle advection and remeshing procedure (step (33))

The semi-Lagrangian advection in the 3D case is performed using a 1st

order directional splitting approach [24, 10]. This technique consists in solv-
ing the convection/remeshing problem direction by direction. In other words
one has to solve here three different mono-dimensional problems.

First, one solves the following differential equations to update the new
positions of particles at time tn+1 from the grid positions xni and the first
component u1 of velocity field un at time tn:

dxp
dt

= u1(xp), t ∈ [tn, tn+1]

xnp = xn.
(45)
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A 2nd order Runge-Kutta scheme is used for the resolution of this equation.
Once all the particles have been pushed in the same direction, they are
remeshed on the grid, in this direction. Then one proceeds to the advection-
remeshing in the second and third direction. The kernel chosen here is Λ4,2

[32, 10]. Its 1D support includes 6 points, it satisfies 4 moment conditions
and is twice differentiable. It yields a second order approximation to the
advection equation. It is defined by the following formulas:
Λ4,2(x) =

1− 5

4
|x|2 − 35

12
|x|3 +

21

4
|x|4 − 25

12
|x|5 0 ≤ |x| < 1

− 4 +
75

4
|x| − 245

8
|x|2 +

545

24
|x|3 − 63

8
|x|4 +

25

24
|x|5 1 ≤ |x| < 2

18− 153

4
|x|+ 255

8
|x|2 − 313

24
|x|3 +

21

8
|x|4 − 5

24
|x|5 2 ≤ |x| < 3

0 |x| ≥ 3

where |x| denotes the distance between the particle and a given grid point.
From this formula, one can evaluate direction-by-direction the weights col-
lected by each grid point involved in the kernel support. In each direction,
the remeshing scheme yields :

ωn+1
i =

∑
p

ωnpΛ4,2

(
xn+1
p − xi
h

)
. (46)

This particle convection/remeshing algorithm allows a significant reduction
of the computational efforts compared to the more traditional remeshing
based on tensor product formulas.

Adaptive time step (step (34))

In particle methods, the non-linear stability of the convection scheme is
ensured under the following condition on the time step:

∆tadv ≤
LCFL

‖∇u‖∞
, (47)

where the Lagrangian CFL must satisfy LCFL ≤ 1. As rigorously analyzed in
the convergence proof [10], this Lagrangian CFL is the appropriate condition
under which consistency and stability of the remeshed particle method can
be guaranteed. This Lagrangian stability condition imposes that particles
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trajectories do not cross. One can notice here that the time step in not
constrained by the grid size or the distance between the particles but only by
the flow strain, which often provides larger time steps compared to Eulerian
grid-based schemes. In the present study, the time-step is updated at each
iteration using the condition (47) with LCFL = 1/8. Except at the initial
stage of the simulations, when strong vorticity layers develop around the
obstacle, we observed that the time-step rapidly settles at a roughly constant
value.

5.2. Implementation and library description

The vortex penalization method is implemented in a library which uses
object oriented programming techniques in order to reach a high level of
modularity, with a strong focus on usability and flexibility. Our goal is to
enable the user to launch indifferently sequential or parallel (MPI) simula-
tions. We use Python as an abstraction framework and the high level of
abstraction provided by this language allows to conceal from the user the
parallel paradigms and the low level implementations of the numerical algo-
rithms. Concretely, the user only needs to describe his problem with high
level components, mathematical operators, problem variables and physical
domain description, and then has to choose the available numerical methods
and algorithms, or develop his own modules, according to his needs. This
abstraction framework enables us to develop a library that is portable to
various kinds of modern computer architectures. More information about
this library can be found in [10], where a special attention is made on the
capability of the presented software to perform hybrid CPU-GPU numerical
simulations. In the following, the computations are only CPU-based.

6. Numerical results for bluff body flows

In this section we present the numerical results obtained with the present
method. Its convergence and accuracy are numerically analyzed for three-
dimensional bluff body flows. The numerical results presented in this section
are based on DNS simulations. Laminar and transitional flows are considered
for two distinct obstacles, namely the sphere and the hemisphere. In the
hemisphere case, the bluff-surface faces the upstream flow and the flat one is
oriented downstream. In both cases the non-dimensional diameter d of the
obstacle and the free stream velocity are set equal to 1. The obstacles are
centered at the origin of the computational box.
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6.1. Numerical setup

In all our simulations the size of the computational box was chosen large
enough so that the presence of the artificial boundaries was found to be
negligible. A careful convergence study with respect to the domain size
has been performed in [9] for flow past a 2D circular cylinder using vortex
methods. It demonstrates that a domain extending to about 6 cylinder di-
ameters downstream is sufficient to provide reliable flow diagnostics. In the
present work, the additional zone used for the absorbing boundary condition
accounts only for about 10% of the total size (and thus of the total compu-
tational cost). In the subsequent simulations, the size of the domain is set to
D = [−2, 8.24]× [−2.56, 2.56]× [−2.56, 2.56]. The computational domain
D and the geometrical setup are shown in Figure 4 for both obstacles. The
whole domain is discretized with a uniform Cartesian grid.
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(a) Flow past a sphere
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(b) Flow past a hemisphere

Figure 4: Computational domain D.

For each of the different flows considered in this section, a convergence
study will be carried out and comparisons of our results with respect to
numerical and experimental references will be given.

6.2. Flow past a 3D sphere

Flow past a sphere is a common benchmark to validate the accuracy of
a numerical method and to prove its capability to correctly model 3D bluff
body flows.

6.2.1. Grid convergence study

A grid convergence study is performed in the context of flow past a 3D
sphere at Re = 300. It involves four mesh sizes: h = 0.08, h = 0.04, h = 0.02
and h = 0.01, which correspond to a number of grid points ranging from
128 × 64 × 64 to 1024 × 512 × 512 in the domain D. Convergence orders
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are determined by computing the L1, L2 and L∞ norms of the error of two
different flow quantities, namely the enstrophy Z =

∫
D
|ω|2 dx and the drag

coefficient CD, with respect to the best resolved case (h = 0.01):

e(t) = || qbest resolved(t)− q(t) ||, (48)

where the quantity q either denotes the drag coefficient CD or the enstrophy
Z. In the particular context of this grid-convergence study, the time-step
had to decrease proportionally to the grid size. Instead of (47), we used the
following criterion to evaluate it:

∆tnadapt =
CFL · h
max
1≤i≤3

|ui|
, with CFL = 0.5. (49)

Figure 5 indicates that the method exhibits around second order convergence
regarding drag coefficient (1.95 for L1, 2.46 for L2 and 1.98 for L∞) and
between first and second order convergence for the enstrophy (0.93 for L1,
1.35 for L2 and 1.06 for L∞).

The asymptotic mean values of the drag coefficient and the enstrophy are
given by Table 1 for each mesh size. Based on Table 1, one can consider that
the grid convergence is roughly achieved for h ≤ 0.04.

Re = 300
Grid c̄D Z̄
h = 0.08 0.732 64.8
h = 0.04 0.679 66.5
h = 0.02 0.673 67.7
h = 0.01 0.676 68.9

Table 1: Convergence study for flow past a sphere at Re = 300. C̄D and Z̄ respectively
denote the mean values of drag coefficient and enstrophy.

The next simulations of incompressible flows past a 3D sphere atRe = 300
will be performed with a mesh size set to 0.02 in order to better capture the
boundary layer.

6.2.2. Flow analysis and validations

Flow past a 3D sphere has been widely studied numerically and exper-
imentally which allowed to precisely determine the different flow regimes.
Following the studies of [33] and the description given in [4], we recall the
regimes related to Reynolds numbers ranging from 0 to a few thousands:
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Figure 5: Grid-convergence study for flow past a sphere at Re = 300. The errors eL1

(black), eL2 (red) and eL∞ (blue) are plotted against the grid step. (a) Convergence of
the drag coefficient (b) Convergence of the enstrophy.

• Re < 210 - 212: the flow is steady and axisymmetric.
An axisymmetric separation bubble exists at the back of the sphere
with zero lift force.

• 210 - 212 < Re < 270 - 290: the flow is steady and planar-symmetric.
A pair of planar-symmetric vortical structures appears in the wake.

• 270 - 290 < Re < 350 - 375: the flow is unsteady, time periodic and
planar-symmetric. The wake is characterized by a cyclic shedding of
ring vortices, with planar-symmetry.

• 350 - 375 < Re < 800: the flow is unsteady, non-periodic and fully
asymmetric.

• Re > 800: the flow is unsteady, non-periodic, asymmetric and a Kelvin-
Helmholtz instability occurs in the shear layer, propagating in the wake.
The latter becomes fully turbulent, characterized by the emergence of
small scales.

In the sequel, we propose validation studies for two Reynolds numbers
corresponding to clearly distinct regimes: Re = 300 and Re = 1000.
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Flow past a sphere at Re = 300

We first present the results obtained at Re = 300. The simulation setup
is the following: the 3D computational box D = [−2, 8.24]× [−2.56, 2.56]×
[−2.56, 2.56] is meshed by an uniform 512×256×256 Cartesian grid (corre-
sponding to h = 0.02). As in [4], a perturbation is addressed to the uniform
upstream flow between the non-dimensional time T = 3 and T = 4, in order
to trigger the instability. This perturbation is applied on the y component
of the velocity and stands as uy∞ = sin(π(T − 3)). The time step is defined
according to equation (47). It is approximately equal to 0.011 all along the
simulation. The penalization parameter λ is set to 108.

Table 2 compares the values of the drag and vertical lift coefficients as
well as the Strouhal number obtained using the present method with results
in literature.

Re = 300
Authors c̄D c̄L St
Roos & Willmarth ? [34] 0.629 - -
Johnson & Patel [33] 0.656 -0.069 0.137
Tomboulides & Orszag [35] 0.671 - 0.136
Constantinescu & Squires [36] 0.655 -0.065 0.136
Kim & Choi [37] 0.657 -0.067 0.134
Ploumhans et al. [4] 0.683 -0.061 0.135
Present work 0.673 -0.066 0.133

Table 2: Comparison of drag and lift coefficients and Strouhal number for flow past a
sphere at Re = 300. Star notation (?) refers to experimental results.

As the table shows, our results coincide well with these references. Figure
6 depicts the ωz and ωx isocontours for every quarter period of a shedding
cycle. The contours of the streamwise (ωx) and spanwise (ωz) components
of the vorticity obtained with the present method are compared with those
published by [4]. As can be observed on the figure, the vortical features are in
very good agreement with the reference results. Moreover, one can notice that
a true periodic regime is attained (the snapshots in Figures 6a and 6b depict
the vorticity field at five equispaced times within one shedding period) and
that the wake is perfectly symmetric in the XZ plane (see the ωx isocontours
in the XZ plane in Figure 6b). These observations confirm the description
of the flow regime corresponding to Reynolds 300 thoroughly investigated by
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(a) Isocontours of ωz in the XY plane (b) Isocontours of ωx in the XZ plane

Figure 6: Vorticity isocontours for flow past a sphere at Re = 300 for every quarter period
of a shedding cycle. Comparison between [4] (left columns) and present results (right
columns).

[33, 35] and given at the beginning of this section. Finally, Figure 7 depicts
3D views of the vorticity norm |ω| resulting from simulations performed in a
longer computational domain, D = [−2, 18.48]×[−2.56, 2.56]×[−2.56, 2.56].
One can notice in particular that, at Re = 300, the vortex shedding from a
sphere does not symmetrically alternate along the flow direction (XY plane),
where the top eddies are much stronger than the bottom ones (Figure 7a).
This observation confirms the one made by [37] and corresponds to the fact
that the vertical lift coefficient C̄L is non-zero (see Table 2).

(a) XY plane (b) XZ plane

Figure 7: 3D instantaneous vorticity norm |ω| at T = 72 for flow past a sphere at Re = 300.

Flow past a sphere at Re = 1000

The flow analysis at Re = 1000 is now considered. The simulation is
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performed on an uniform 1024× 512× 512 Cartesian grid (corresponding to
h = 0.01). A perturbation is applied between T = 3 and T = 4 on the y
component of the velocity, defined by uy∞ = 0.1 sin(π(T −3)). The adaptive
time step returns a value roughly equal to ∆t = 0.005, which corresponds to
a CFL number equal to 0.6. The penalization parameter λ is fixed to 108.

A plot of the time average streamwise velocity ux along the centerline
is given in Figure 8a. The results obtained with the present method are
compared to those of [35] together with the experimental data of [38] at
Re = 960. It can be seen that the length of the recirculation zone, charac-
terized by negative ux values, obtained in the present case (1.5 diameters) is
similar to the one obtained in [35] (approximately 1.7 diameters). Further-
more, the ux values for x/d ≥ 2 are in a very good agreement with other
numerical and experimental studies ([35] and [38]) and show the accuracy
of the present method. The three experimental and numerical results are
however slightly different for smaller x/d values. As the number of points
in the boundary layer are almost the same for both numerical methods (3.3
points in the present case and 3.5 in [35]) these discrepencies may be due to
the interpolation errors in the boundary layer that contains very high veloc-
ity gradients. Moreover, some experimental errors at x/d < 2 also could be
induced during the measurements.

Concerning the time evolution of force coefficients, Figure 8b shows that
the time evolution of the drag coefficient CD and the vertical lift coeffi-
cient CL coincide with the one found by [4]. As emphasized in [4], although
the prescribed perturbation is symmetric, the flow quickly looses its plane
symmetry. This is confirmed by Figure 9, giving the evolution of the force
coefficients for a larger time range. The side lift force coefficient CS is non-
zero and shows significant variations which are actually in the same order
of magnitude as CL. Concerning the drag coefficient CD, the mean value
obtained in the present study is 0.485, which agrees well with the numerical
values reported by [39] and [40], respectively equal to 0.46 and 0.478. Isocon-
tours of |ω| in the near wake are depicted in the XY and XZ plane for early
times, respectively in Figure 10a and 10b. They are compared to those of [4].
These figures, which show a good agreement, reveal that the flow is initially
symmetric in the XZ plane. However, as highlighted by Figure 11, the near
wake becomes asymmetric at T = 18. The same value of T is reported by
[4]. This loss in planar-symmetry increases in time and is perfectly clear at
T = 40 (see Figures 11 and 12). These observations on the wake symmetry
are directly related to the CS time evolution given in Figure 9 where, from
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Figure 8: Flow past a sphere at Re = 1000: (a) Average streamwise velocity ux along the
x-axis: comparison of the present results (red curve) with numerical results [35] (green
curve) and experimental data [38] at Re = 960 (black circles). (b) CD (solid lines) and
CL (dashed lines) time evolution: comparison of the present results (red curves) with [4]
(black curves).
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Figure 9: CD (solid line), CL (dashed line) and CS (dotted line) time evolution for flow
past a sphere at Re = 1000.

T ' 18, CS is shown to be non-zero.
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(a) in the XY plane (b) in the XZ plane

Figure 10: Isocontours of |ω| for flow past a sphere at Re = 1000. Comparison between
[4] (left columns) and present results (right columns) at T = 6, 8, 10, 12.

T=16 T=18

T=20 T=40

Figure 11: Isocontours of |ω| in the XZ plane for flow past a sphere at Re = 1000. The
near wake becomes asymmetric from T = 18.
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(a) XY plane (b) XZ plane

Figure 12: 3D instantaneous vorticity norm |ω| at T = 40 for flow past a sphere at
Re = 1000.

6.3. Flow past a 3D hemisphere

Hemispherical bodies correspond to configurations that may be used in
several engineering applications. In a previous work [22], this geometry was
used to investigate drag reduction around the side view mirror of a ground
vehicle. Due to the presence of a flat back wall with sharp edges, the flow
past a hemisphere is a steeper problem compared to the flow past a sphere
and is therefore challenging from a numerical point of view. Vortex methods
adapted to geometry singularities have been proposed in two dimensions
in [13]. The purpose of the present work is in particular to measure to
which extent penalization methods can handle this type of singularity in three
dimensions, at low and moderate Reynolds numbers. The refinement study
proposed in the following section proves that the accuracy of the penalization
method for sharp eddy geometries is the same as the one obtained for smooth
bluff bodies.

6.3.1. Grid convergence study

A grid convergence study is performed for flow past a 3D hemisphere at
Re = 300. As for the sphere, four different mesh sizes are considered for this
convergence study and the time step is defined according to equation (49).
The order of convergence for the drag coefficient is found to be 1.80 for L1,
2.23 for L2, 1.48 for L∞ (Figure 13a) and 0.95 for L1, 1.49 for L2, 1.23 for
L∞ concerning the enstrophy (Figure 13b). These convergence orders are
very similar to those found for the sphere in the previous section. They are
complemented by Table 3, giving the converged mean values of the two flow
quantities at Re = 300. Here again, on the basis of these results one may
consider that the grid convergence is roughly obtained by setting h = 0.04.
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Figure 13: Grid-convergence study for flow past a hemisphere at Re = 300. The errors
eL1 (black), eL2 (red) and eL∞ (blue) are plotted against the grid step. (a) Convergence
of the drag coefficient. (b) Convergence of the enstrophy.

Re = 300
Grid c̄D Z̄
h = 0.08 0.787 73.4
h = 0.04 0.725 73.0
h = 0.02 0.721 73.3
h = 0.01 0.725 74.0

Table 3: Convergence study for flow past a hemisphere at Re = 300. C̄D and Z̄ respectively
denote the mean values of drag coefficient and enstrophy.

6.3.2. Flow analysis and validations

To our knowledge there are only few experimental and numerical results
devoted to the problem of flow past a 3D hemisphere. This section is based
on the study carried out by Kim & Choi [41], who investigated in details the
behavior of flows past a hemisphere at different Reynolds numbers, ranging
from 100 to 300. In their study, the authors report the following flow regimes:

• Re = 100, 130, 150, 170: the flow is steady and axisymmetric.

• Re = 180, 190: the flow is steady and planar-symmetric.

• Re = 200, 210: the flow is unsteady, time periodic and asymmetric.
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• Re = 220, 250, 270: the flow is unsteady, time periodic and planar-
symmetric.

• Re = 280, 300: the flow is unsteady, non-periodic and asymmetric.

Let us first draw some comparisons between these flow regimes and the
ones of the sphere, listed in the previous section. One can notice that steady
flows over a hemisphere are very similar to those over a sphere, even if the
transitions between the different flow regimes occur at lower Reynolds num-
bers in the hemisphere case. Indeed, as explained in [41], the steady axisym-
metric flow is characterized by an axisymmetric recirculation zone behind the
hemisphere, while for the steady planar-symmetric flow two streamwise vor-
tical structures are formed in the wake. However, according to the authors,
an important difference exists between the unsteady flows past a hemisphere
and those past a sphere. We indeed notice that when 220 ≤ Re ≤ 270, the
flow past a hemisphere recovers planar-symmetry while for lower Reynolds
number (Re = 200, 210), it was totally asymmetric. This behavior is not
observed in the case of the sphere.

Flow past a hemisphere at low Reynolds numbers

In this validation study we will focus on three values of the Reynolds
number, corresponding to different unsteady flow behaviors: Re = 200, 250,
and 300. These Reynolds numbers are also studied in details in [41]. For each
simulation, we consider a 512×256×256 Cartesian grid (corresponding to h =
0.02). As for the sphere, the flow instability is triggered by a perturbation
imposed between T = 3 and T = 4.

The flow at Re = 200 is first considered. Figure 14a shows the time evo-
lution of the drag and lift coefficients, which are compared to those obtained
by [41]. First, one can notice a very good agreement between the different
results, which is confirmed by the first lines of Table 4 giving the mean values
of the force coefficients at Re = 200. Concerning the Strouhal number, one
can see in our case and in the reference results that the Strouhal based on the
lift is half the one based on the drag. Finally, we focus on the side lift coeffi-
cient CS. At Re = 200 the time average of this coefficient is not zero, which
corroborates the fact that the flow does not maintain the planar-symmetry.
This statement is confirmed by Figure 14b depicting the vorticity norm |ω|
at two different times, where one can see that the wake is not symmetric in
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Re = 200 c̄D c̄L c̄S Stlift Stdrag

Kim & Choi [41] 0.790 0.0 ± 0.024 0.049 0.128 0.256
Present 0.805 0.003 ± 0.025 0.043 0.129 0.257

Re = 250 c̄D c̄L c̄S Stlift Stdrag

Kim & Choi [41] 0.742 0.0 ± 0.05 0.0 0.127 0.254
Present 0.757 0.0 ± 0.05 0.0 0.128 0.256

Re = 300 c̄D c̄L c̄S Stlift Stdrag1 Stdrag2

Kim & Choi [41] 0.715 0.0 ± 0.062 0.0 0.135 0.04 0.270
Present 0.729 -0.002 ± 0.063 -0.0016 0.134 0.04 0.270

Table 4: Comparison of mean drag and lift coefficients as well as Strouhal numbers for
flow past a hemisphere at Re = 200, 250 and 300.

the plane XZ at this Reynolds number.

Let us now focus on flow past a hemisphere at Re = 250. Figure 15a
and Table 4 show that the present outcomes coincide well with the reference
results. As for the flow at Re = 200, the shedding frequency is equal to
the frequency of the lift (Stlift = 0.128) and half the frequency of the drag
(Stdrag = 0.256). Finally, Figure 15b confirms that the flow at Re = 250
recovers the symmetry in the XZ plane. This observation explains the zero
time average side lift coefficient (C̄S = 0) read in Table 4.

At Re = 300, according to Figure 16a the flow has a more complex be-
havior, showing drag and lift coefficients with complicated variations in time.
The vorticity norm reported in Figure 16b also highlights the absence of any
planar-symmetry, as expected. On the other hand, Table 4 reveals that, at
this regime, there co-exist two distinct values of the Strouhal number based
on the power spectrum of the drag. The lower frequency (Stdrag1 = 0.04)
is due to the large-scale instability of the wake, while the higher frequency
(Stdrag2 = 0.270) is attributed to the small-scale instabilities caused by the
separation of the shear layer. The Stdrag2 value is still approximately equal to
twice the dominant frequency of the lift (Stlift = 0.138). One can also remark
in Table 4 that the time average lift coefficient C̄L is zero (like for Re = 200
and Re = 250), which is not the case for flow past a sphere at Re = 300
(see C̄L in Table 2). This difference can be explained by the discrepancy in
the process of vortex shedding. Indeed, as can be seen in Figure 16b, in the
case of a hemisphere the vortices shed alternatively with the same strength
in the flow direction (XY plane), leading to C̄L = 0. On the contrary, at
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(a) Comparison of the time evolution of the force coefficients with the numerical
results of [41].

XY plane

XZ plane
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(b) Instantaneous 3D vortical structures with isocontour |ω| = 0.8.

Figure 14: Flow past a hemisphere at Re = 200.

the same Reynolds number, we shown in the previous section that the vor-
tex shedding from a sphere was not alternating symmetrically (see Figure 7a).

Flow past a hemisphere at Re = 1000

Our last investigation is performed at Re = 1000. To to our knowledge,
no study has been carried out experimentally or numerically at such regime,
and more generally at a Reynolds number larger than Re = 300. On the
basis of the grid refinement study presented in section 6.3.1 we have chosen
for this case a grid-step value h = 0.01. All the other numerical parameters
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(a) Comparison of the time evolution of the force coefficients with the numerical
results of [41].
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(b) Instantaneous 3D vortical structures with isocontour |ω| = 0.8.

Figure 15: Flow past a hemisphere at Re = 250.

used for this simulation are the same as the one chosen for the sphere at the
same Reynolds number (see section 6.2.2). The results presented in Figure 17
indicate that the characteristics of the flow past a hemisphere at Re = 1000
are similar to the one observed in the case of the sphere at the same regime,
in the sense that it is unsteady, non-periodic and asymmetric. Figure 17a
shows the streamwise velocity ux along the centerline, averaged on the time
range T = [60, 100]. Although this mean velocity profile is evaluated on
a later time range, one can nevertheless notice that it is comparable to the
one of the sphere (see Figure 8a), with in particular a recirculation zone
extending from the rear back of the obstacle to x ' 2. The time history of
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results of [41].
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(b) Instantaneous 3D vortical structures with isocontour |ω| = 0.8.

Figure 16: Flow past a hemisphere at Re = 300.

the force coefficients is reported in Figure 17b. It shows that from T ' 55
the wake becomes chaotic and is characterized by important and non-periodic
variations of the side lift coefficient CS. Three-dimensional representations
of the turbulent wake are given in Figure 17c at T = 60 and T = 100. Figure
17c also reports the time averages of the vorticity magnitude between T = 70
and T = 110 in the XY and XZ plane, highlighting the chaotic feature of the
wake. In particular, we remark in both planar section on the right pictures
of Figure 17c that a large recirculation area with low vorticity values exists
behind the hemisphere, followed by an important zone characterized by high
vorticity values.
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We note here that, under the same initial conditions and identical nu-
merical parameters, the wake of the hemisphere looses its symmetry in the
XZ plane much later than the one of the sphere (T ' 18, see Figure 11).
Figure 18 depicts the isocontours of the streamwise vorticity past a hemi-
sphere in the XZ plane at different times. One can verify in particular that,
as suggested by the evolution of the side lift coefficient CS (see Figure 17b),
the wake looses its symmetry between T = 40 and T = 60. The retarded
asymmetric behavior can be explained by the flat back wall of the hemisphere
and seems triggered by the insight of secondary instabilities in the shedding
shear areas.

7. Computational resources

The simulations presented in this paper were performed on a cluster made
of bi-Xeon Sandy-Bridge cores. Table 5 gives the numerical setup, the re-
sources and the CPU time-to-solution for different bluff body flows analyzed
in this work. The simulations presented in this paper were realized in the
domain D = [2, 8.24]×[−2.56, 2.56]×[−2.56, 2.56]. The different tend values
reported in the table and corresponding to the non-dimensional final time of
the simulations were chosen according to the reference test-cases we wanted
to compare with. ∆tadapt denotes the mean of the non-dimensional adap-
tative time step. This mean value is calculated on the time range [t̃, tend],
where t̃ denotes the time from which the flow regime is established.
For simulations performed at Re = 300, the allocated memory was less than
2.7 Gbytes and for simulations carried out at Re = 1000, it did not exceed 21
Gbytes. The CPU time-to-solution shown in this table correspond to a CPU
time of about 40 seconds per time step on 64 cores for the high resolution
cases with N = 1024 × 5122, and of about 8 seconds per time step on 32
cores for the lower resolution cases with N = 512 × 2562. This indicates a
weak scalability in this range of resolutions around 80%.
Figure 19 gives the percentage of the different stages implied in the resolution
of the 3D penalized Vorticity-Transport-Equations (3)-(4), in one simulation
time step for the execution on 1 core. In particular, one can notice that the
FFT grid-based Poisson solver only represents 5% of the total CPU cost of
one time step.
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Figure 17: Flow past a hemisphere at Re = 1000. (a) Average streamwise velocity ux

along the x-axis. (b) Time evolution of the force coefficients. (c) Instantaneous vortical
structures at T = 60 and T = 100 and time average of vorticity magnitude between T = 70
and T = 110 in the XY and XZ plane.

8. Conclusion

In this work, a vortex penalization technique has been employed to simu-
late three-dimensional bluff body flows. The method combines the simplicity
of the penalization technique and the robustness of remeshed particle meth-
ods. The penalization approach allows the use of simple Cartesian grids and
associated fast Poisson solvers to compute velocity fields. For this particular
case of flows where the boundary conditions are either periodic or prescribed
through upstream flows and free downstream flow, we showed that it is pos-
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Figure 18: Isocontours of ωx in the XZ plane for flow past a hemisphere at Re = 1000.
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Sphere
Re = 300

Hemisphere
Re = 300

Sphere
Re = 1000

Hemisphere
Re = 1000

Resolution 512 × 2562

(∼ 33M pts)
512 × 2562

(∼ 33M pts)
1024 × 5122

(∼ 268M pts)
1024 × 5122

(∼ 268M pts)

tend 75 450 57 112
N time steps 6844 42590 11397 22352

∆tadapt (mean) 1.1 10−2 1.0 10−2 5.0 10−3 5.0 10−3

N cores 32 32 64 64
CPU time 16 hours 4 days 5 days 10 days

Table 5: Parameter settings and CPU time costs for simulations of incompressible flows
past a 3D sphere and hemisphere at Re = 300 and Re = 1000.

Figure 19: Percentage of the different stages implied in the resolution of the 3D penalized
Vorticity-Transport-Equations (3)-(4), in one simulation time step for the execution on 1
core.

sible to rely on simple and efficient FFT based Poisson solvers for the evalua-
tion of the velocity. Another original feature presented in this work concerns
the remeshing process. The particle redistribution is indeed performed di-
rection by direction, which allows significant computational savings in 3D
compared to classical tensorial approaches.

The validation studies reported in the second part of this paper were first
carried out in the case of flow past a 3D sphere. Grid-refinement studies en-
abled us to identify a global 2nd order of convergence for the method. Careful
comparisons with several numerical and experimental reference works in the
literature showed satisfactory agreements. Similar studies were then per-
formed considering a 3D hemisphere. Validations were supplied for Reynolds
numbers between 200 and 300. The simulation of flow past a hemisphere
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at Re = 1000 was finally performed. The numerical results reported in this
work prove the ability of the present method to correctly account for the
expected behavior of the flow at transitional or highly transitional regimes
and to accurately handle geometries showing sharp edges. A study of the
computational cost of the method and of its scalability on parallel comput-
ers confirms that the method provides a versatile tool to analyze bluff-body
flows.

However, when increasing the Reynolds number it can easily be foreseen
that using uniform Cartesian grid would quickly require prohibitive mesh
sizes in order to correctly capture the thin boundary layer in DNS. Domain
decomposition techniques and/or adaptive particle methods, in the spirit of
[42, 32, 43], are appealing extensions of remeshed particle methods which
will become mandatory in these regimes. The challenge will then be to reach
a high degree of adaptivity while keeping the simplicity and associated good
scalability of the penalized remeshed particle methods. Another, comple-
mentarity direction that we plan to investigate is the implementation in the
context of vortex methods of second order penalization methods [44].
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