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Abstract. Integrated networks of mobile robots, personal smart devices, and
smart spaces can provide for a more accurate data for user assistance than if the
former are used individually. We call this network of personal and smart space
devices and robots “Robots-Assisted Ambient Intelligence” (RAmI). Addition-
ally, with the application of distributed network optimization, not only can we
improve the assistance of an individual user, but we can also minimize conflict
or congestion created when multiple users in large installations use the limited
resources of RAmI that are spatially and temporally constrained. The emphasis
of RAmI is on the efficiency and effectiveness of multiple and simultaneous user
assistance and on the influence of individual robot actions on the desired sys-
tem’s performance. In this paper, we model RAmI as a multi-agent system with
AmI and robot agents. Moreover, we propose a modular three-layer architecture
for each robot agent and discuss its application and communication requirements
with the emphasis on interaction between robots, humans, and AmI agents to fa-
cilitate efficient usage of limited RAmI resources. Our approach is showcased by
means of a case study where we focus on meal and medicine delivery to patients
in large hospitals.

Keywords: Service robotics; ambient intelligence; ambient assisted living; multi-
robot systems; multi-agent systems; patient care

1 Introduction

Ambient Intelligence (AmI) uses multiple sensors fixed in a smart space to assist user’s
activities through recommendation, guidance, and appliance control. However, AmI is
not capable of interacting with a user by physical contact since its user interfaces are
usually tactile, auditive, and/or visual. On the other hand, mobile robots with installed
robot arms are capable of physical user interaction, though with a world view that is
limited to their local sensory and communication capabilities, see, e.g., [3].

The quality of service provided by mobile robot teams (MRT) to simultaneous mul-
tiple users (with the emphasis on patients and elderly with decreased mobility) depends
on the efficiency of the robots’ coordination with one another and with humans. To
keep a good MRT performance in simultaneous multiple tasks, an updated task infor-
mation is required. Even though the MRT quality of service depends on the quality of
the available information that can be facilitated by maintaining the MRT connectivity
[26], MRT task assignment can be performed both in perfect (e.g., [5,9]) and imperfect
robot networks, e.g., [18]. Due to the loss in the information quality, the efficiency of a



MRT in the task execution can fall rapidly, e.g., [18,19]. The strategy to employ to mit-
igate this problem depends also on the environment that can be collaborative, neutral,
or adversarial [18,19]. Providing redundant robots to keep the network’s connectivity
is a possible approach to this problem. However, it is costly and can create conges-
tion in narrow spaces. This is why, in this paper, we propose to network mobile robots,
users’ smart devices, and AmI networks, such that we can use more accurate data for
decision-making than when the former are used individually. Even more, with the ap-
plication of distributed network optimization, not only can we improve the assistance
of an individual user, but we can also ensure that robots’ actions that are geographically
and temporally constrained in the usage of limited resources do not result in conflict or
congestion. We call this network of AmI, personal devices, and robots “Robots-Assisted
Ambient Intelligence (RAmI)”. The emphasis of RAmI is on the quality of service in
simultaneous multiple users’ assistance and the influence of individual robot decisions
on the desired system’s performance. One of the issues of RAmI in large installations
is its computational efficiency. Mobile robot teams are intrinsically decentralized and
should act quickly and efficiently in real-time in large smart spaces, e.g., [8,9]. One of
the main tasks of multi-robot teams in patients’ assistance in large hospitals is meal and
medicine delivery and related task assignment depending on the minimization of the
delivery times and other constraints like the cost of the RAmI resources.

There are various centralized and distributed approaches to the MRT task assign-
ment e.g., [5,18]. To lower the computation time, we should balance between the robots’
communication and computation load, but foremost, we should provide for a self-
reconfigurable robot architecture that assures fast and efficient decision making. The
objective of this paper is to consider requirements for such an architecture and to dis-
cuss interaction constraints that assure efficient and effective task performance in meal
and medicine delivery to patients in large crowded hospitals.

This paper is organized as follows. In Section 2, we describe the State-of-the-Art
related with RAmI. Section 3 describes the proposed three-layer decision-making ar-
chitecture for each robot in RAmI. In Section 4, we formulate the RAmI coordination
problem related with multiple simultaneous patients that require meal/medicine deliv-
ery by a multi-robot team. The principles of the proposed architecture are demonstrated
by means of a case study in Section 5. We draw conclusions in Section 6.

2 Background

With the improvements in service robotics, the same can be used to help people in
some daily activities like vacuum cleaning. The recognition and analysis of the user’s
activities facilitates better user assistance in the performance of these activities [2,14].
For this aim, usually, smart homes are equipped with sensors, actuators and alarms
while users dispose of smart devices for the interaction with the smart home [4].

However, actual scientific achievements in the robotic assistance of a user are still
limited to a set of predefined activities and are, as such, still far away from the realiza-
tion of fully intelligent robots that can substitute human care givers. One of the many
challenges that still has to be resolved, as will be presented in the following, is the



problem of the coordination of a robot with the rest of the robot team when assisting
multiple simultaneous patients in a common space.

By integrating stand-alone robots with web services and ambient intelligence tech-
nologies, we form ubiquitous robots [3,13]. In the focus of ubiquitous robotics is an
individual human user and how this hybrid system can enhance the quality of living
and working of a single person. The objective is the creation of a physical and virtual
companion that can assist a user in his/her daily activities, and the creation of an auto-
nomic guard capable to protect and rescue people. However, there are very few works
concentrating on the coordination among robots and multiple humans in their activities
that share the same resources, related congestion control and the influence of an indi-
vidual (robot or human) action on the system’s performance in such complex systems,
e.g., [33].

Relatedly, a distributed ROS-based AmI architecture DAmIA integrating robotic
and AmI sensors for human tracking has been proposed in [23]. A survey of cloud
robotics that leverages the ad-hoc cloud formed by communicating robots, and an in-
frastructure cloud was presented in [13]. Moreover, in [17], we proposed ORCAS archi-
tecture for manufacturing MRTs that configures and schedules robots based on robots’
and tasks’ semantic descriptions.

In ORCAS [17], we consider a heterogeneous and reconfigurable multi-robot sys-
tem made of multiple robot platforms, grippers, and robotic tools that can be combined
to create new robotic configurations during operation, if necessary. The setting of the
multi-robot system is a shop-floor with the assembly of multiple products. Here, ev-
ery robot is considered a collaborative agent whose architecture is made of three lay-
ers: semantic, scheduling and the execution layer. The aim of the semantic layer is to
find feasible robots’ configurations that can satisfy customer demand based on given
semantic descriptions about factory setting, available resources and product specifica-
tions. The semantic layer generates compatible subsets of resources for the given tasks.
The scheduling layer determines robot-task assignments and sequencing of tasks as-
signed to each robot configuration considering task interrelations and the robot assem-
bly capacities. The objective is to seamlessly optimize robots’ performance by dynamic
reconfiguration and rescheduling in case of contingencies thus minimizing overall as-
sembly costs and off-line times. The solution is found through distributed minimization
of total production time and cost considering resource combinations obtained from the
semantic layer. We apply a modification of dynamic auction-based negotiation [18].
The execution layer monitors the correct execution of the schedule in real-time. In case
of unpredicted contingencies, the objective here is to carry out local actions to minimize
their effects. The schedule’s quality and stability are controlled in real-time, e.g., [12].

The ORCAS architecture was designed for the use on reconfigurable robots work-
ing on a manufacturing shop floor. Therefore, in this paper, we modify the ORCAS
architecture for the case of a team of heterogeneous mobile service robots with a fixed
configuration for assistance of multiple human users in large installations. By the fixed
configuration of a robot, we mean that the configuration cannot be rearranged during
the operation times.



3 RAmI architecture

The architecture used for the distributed coordination of robots in task assignment and
routing is implemented in each one of the robots and is presented in Fig. 1. It con-

Fig. 1. Proposed RAmI architecture implemented in each robot

tains semantic, scheduling and the execution layer. Contrary to ORCAS, in RAmI, we
assume that robot configuration is fixed and that each robot’s delivery capacity is lim-
ited by maximum item’s weight and dimensions. Moreover, all resources and each item
delivery are semantically described by a human operator: e.g., meal/medicine, time of
delivery, weight, dimensions, and type of a meal/medicine. The semantic storage de-
scription contains the information of available items and their hospital locations.

In the semantic layer, a set of compatible robots for each patient demand is found by
using a DL inference engine and SPARQL query language. Scheduling layer contains
the task assignment and route planning module. Based on the semantically described
delivery demand, each robot agent o ∈ O coordinates with other robot agents for the
task assignment through the bi-level task assignment algorithm in [16]. While MRT is
responsible of the MRT task assignment, the AmI network is responsible of updating the
travel times under congestion in the network and distributively optimizing robots’ routes
by using the route finding algorithm in [20]. Robots receive updated routes and travel
times info from the belonging SA. In the execution layer, the individual performance
is monitored in real time and in case of unpredicted events, a robot tries to coordinate
locally with its neighbors to lower their impact. If the local coordination is not sufficient,
the scheduling layer recomputes the robots’ routes. In the case of larger contingencies
that make the schedule infeasible or the addition of robots that can improve the MRT’s
performance, semantic layer updates matchings between the tasks and the MRT.

3.1 RAmI as a multi-agent system

We design RAmI as a multi-agent system made of mobile robot, personal smart device,
and smart space agents. Smart device agents are installed on an app of a smart device
of each user while smart space agents monitor a region within the range of its sensors.



The sensors can be cameras and iBeacons. The signals emitted by iBeacon sensors are
read by smart device agents of the users. These signals, together with cameras serve to
better locate the users and recognize their activities (aided by accelerometers placed on
the smart devices). Smart space agents keep the track of the congestion and the updated
shortest travel times between different origin-destination pairs.

In everyday activities, all these agents must coordinate throughout the day to fa-
cilitate patient assistance. Tasks include: encouraging physical activity, medical super-
vision, offering entertainment, maintaining social ties, item delivery (e.g., meal or a
medicine) and assisting a patient in the case of urgency. These objectives for the agents
can sometimes be antagonistic: for example, proposing physical activity while the car-
diac sensor detects a problem. Sometimes, certain objectives are given priority because
of urgency: the elderly person has fallen to the ground and cannot get up again. The
activities should, therefore, be coordinated based on semantic rules on the priority of
these activities, which is performed in the semantic layer of the proposed architecture.

Coordination must therefore take different user and task requirements into account
to find the best possible sequence of tasks. In the patient assistance context, the best
sequence is the one that brings the best well-being of the patient. To achieve this goal,
we propose a coordination involving two steps. The first step consists in finding all the
suitable and consistent sequences of tasks. Indeed, we can notice that some tasks are
not compatible with each other and cannot be performed at the same time. For example,
simultaneous eating and medical assistance. Following the same idea, some sequences
of activities are not desirable for the patient, for instance: two consecutive heavy physi-
cal activities. All these requirements can be easily integrated by semantic matching and
then a classical constraint programming approach to generate all the possible sequences.

The second step consists in finding the best solution among all the possible se-
quences. Designing a mathematical program related with the well-being of a patient
is a challenging task since it depends on various factors. It is directly related to the
physical condition, mental state, and habits of a patient. The context in which tasks
are performed is also important: time of day, location, etc. These considerations lead
to the inclusion of the patient in the decision-making process preferably by learning
the sequences according to rewards. These rewards could be awarded directly by the
patient depending on the sequence of activities offered. These rewards could also be
obtained through physiological measures. For example, an evening activity sequence
that improves the patient’s sleep would have a high reward.

With this aim, we may use a reinforced learning approach. It consists of learning a
policy (following actions to be carried out) based on an initial state and a set of expected
rewards. In our case, all the actions to be explored through learning would be the result
of first step, i. e. all the possible sequences of tasks.

The figure 2 gives an overview of this two-step coordination mechanism.

3.2 Influence of individual decisions on the system’s performance

Users and (human) robot operators can be considered as sources of relevant knowledge
(Fig. 1). Such knowledge helps in making adaptive and coherent decisions to improve
the AmI performance.



Fig. 2. Overview of the two-step coordination mechanism

To better assist patients and caregivers, robots should reply to patients’ requests
that are declared explicitly and others that might be expressed implicitly. In fact, users
through their reactions and feedback are an important source of information on how to
achieve tasks in an adaptive and personalized way (time to give medicine, entertainment
recommendation, etc.). This implies that feedback should be collected using existing
sensors. This feedback can either be implicit (normal operation of standard devices like
turning off the lights) or explicit through friendly interfaces or by interacting with the
robots.

Relatedly, the CASAS (Center for Advanced Studied in Adaptive Systems) project
including the CASA-U (the CASAS User interface) [24] introduces an adaptive smart
home system that applies machine learning techniques to discover patterns in resident’s
daily activities and to dynamically adapt to the user’s explicit or implicit wishes in daily
routine activities. CASAS can also adapt to the changes in discovered patterns based on
the resident implicit and explicit feedback and can automatically update its model to
reflect the changes.

Moreover, the COBOT chat system proposed in [7] concentrates on adaptive behav-
ior in multi-user environments using reinforcement learning. However, as the authors
argue in their paper, the problem of learning from multiple users’ (not experts) feed-
back implies that the users have different characters and depending on their characters
and the application itself, they tend to react by rewarding with positive actions or only
penalizing with negative actions. Also, a lot of ambiguities in the interactions can result
from human mistakes or missing information in the model. The learning process should
deal with the confusion caused by the lack of feedback from users. A lack of feedback
in some scenarios might represent a satisfaction and in others it might represent an
unsatisfying situation. Also, it is important to deal with the problem of contradictions
in feedback. Analyzing contradictions might help in detecting the need of a more rep-
resentative model of the current environment. Furthermore, in the RAmI architecture,



observations are gathered from several sensors and both smart space agents and robots
can help in handling conflict and ambiguities in gathered data (feedback).

In [10,11], Karami et al. focus on smart homes and companion robots that are
able to adapt to different users by learning the preference of each of them using their
individual implicit and explicit feedback and those of others. They propose global ar-
chitecture that integrates users’ profiles to the learning and decision making processes.
In this work, an attribute is defined as an information representing a part of the state
of the environment (for instance level of brightness, temperature, etc.) or the user pro-
file (age, gender, habits of living, etc.). Some of the user profile attributes are learned
automatically using the activity recognition system. For example, an attribute represent-
ing whether the person has a habit of practicing sport frequently can be learned/updated
from the observations. The goal is to be able to generalize the learned adaptive behavior
to new situations and unknown users and for decreasing the complexity of convergence
to an optimal adaptive policy (decreases the size of needed dataset to reach an accept-
able adaptive behavior).

3.3 Interaction of a robot with its environment

One of the goals of RAmI is to network mobile robots, users’ smart devices, and AmI
networks to empower multiple and simultaneous end-users of RAmI by enabling them
to use and benefit from their surrounding technologies (sensors, actuators, etc.) through
useful services. This ambitious objective is rather general and abstract but it already pin-
points a drawback in current systems: the lack of discoverability, flexibility and dynamic
interactions to really support Robots-Assisted Ambient Intelligence (RAmI). Therefore,
in this section, we focus on the capabilities of a mobile robot in the context of RAmI.

Mobile and autonomous robots are constituted of a network of sensors and actuators
as well as of one or more computing unit. The autonomous property means that a mo-
bile robot can achieve some missions without any human intervention. Therefore, the
control software of such a robot must be able to “take decisions” based on information
coming from its sensors and send commands to its actuators.

In the context of RAmI, the robot’s decisions can be improved using non-local in-
formation coming from ambient sensors (camera, iBeacons, etc.) [27,25] and the robot
capabilities can also be improved by ambient actuators, e.g., automatic doors [28]. Nev-
ertheless, such interactions between the environment and a mobile robot requires to
rethink current control architectures of mobile robots.

We are specifically interested in the dynamic update of the control software of a
robot to deal with it. Indeed, interacting with a new equipment discovered in the en-
vironment requires to change the control software of the robot while it is running.
Obviously, such a change should be applied in safe and atomic way. Previously, we
worked on an architectural solution for robotics applications and propose the MaDcAr
model [6]. More recently, we are working on a general-purpose for dynamic software
update (DSU) [31] in the context of dynamic object-oriented languages. Dynamic Soft-
ware Update (DSU) solutions allow updating applications while they are executing.
Some modifications do not allow one to continue running the application without a
proper migration of its state, as the modified instances and method are used by running
threads.



Moreover, these modifications must be applied all at once (atomicity) and correctly
migrate the application state and the running threads. In our robotics scenario, the use
of such a DSU mechanism eliminates the stop, install and restart cycle. Updating a
running application should preserve its running state and the service provided to the
users. Our solution provides the means to migrate the application’s state in an atomic
manner, guarantee the correct continuation of all the application’s threads and validate
the application constraints after the execution of the update.

We believe that such an infrastructure is crucial for building ambient-aware mobile
robots.

Efficient distributed planning under uncertainty Flexible robot control architec-
ture, with continuous service and multi-agent system (Robot, Smart Environment and
Human) induces the design of specific Artificial Intelligence for control supervision.
All those aspects imply to deal with uncertain events when planning the multi-robot
movements. Markov decision process permits to model such a problem. Unfortunately
optimally-solving decentralized Markov decision processes is impossible for problems
involving more than tree robots in a environment described by few variables [1].

The assumption in RAmI architecture (Fig. 1) is to take advantage of distributed
planning where each robot is responsible for planing its own movements (module ser-
vice route planning). The coordination is devoted to the module distributed task assign-
ment.

Previous work that was done based on this approach gave some interesting results
[15] that were limited to a Multi-Robot fleet working alone in a human free scenario.
The challenge is triple: i) to allow individual decision making process to communi-
cate with the coordination model the data regarding the travel time estimation (ti,j)
congestion of the environment, the demands and the available resources in the smart
environment; ii) efficiently supervising robot control in dynamic configuration (envi-
ronment, control software), and iii) generating new plans in few second to allow on-line
and on-board planning and re-planning in coordination context.

3.4 Robot Navigation

To achieve any useful task (e.g. delivering medicine or food, transporting blood sam-
ples, medicine or a meal), a robot needs to navigate inside a building. Thus, it needs a
map of the building to figure out how to go to target places. To navigate, a robot also
needs to localize itself, i.e. a robot needs to match observations of its surroundings at
any given moment and match it with a point on the map. Relying on a GPS is not an
option, since robots operate inside buildings that block GPS signals emitted by satelites.

Map construction can be performed by robots themselves thanks to Simultaneous
Localization and Mapping (SLAM) algorithms [30]. These algorithms allow robots to
incrementally build a map, and localize within. There exist different families of SLAM
algorithms with different approaches. Some rely on vision, and extract features from
pictures taken by cameras. Other measure distances to objects around a robot using
some range sensor.

Another dimension of SLAM algorithms is the nature and the dimension of the
produced maps. Maps can be 2D or 3D. Map can also be either metric or topological.



Metric maps are quantitative representation of the environment (e.g. lengths, widths).
While topological maps are a qualitative representation of the environment. They al-
low distinguishing different locations of the mapped environment, and how they are
connected. Locations can be identified as high-level entities (e.g. corridor, room), or
low-level sets of extracted features.

The most widely spread SLAM algorithms rely on 2D metric SLAM based, that
often rely on laser range sensors. We use it to illustrate the functionning of SLAM.
Starting from an initial position, distances to surrounding objects measured by a laser
scanner allow building a first parial map. This map is then extended with new sensory
data from regions where the robot moves to. The robot position relative to the initial
point is estimated from different data sources. That can be distances to objects that are
sensed at different times, motion derived from an Inertial Measurement Unit (IMU), or
an odometer. Eventually, this process result into a complete map of all places reachable
by a robot.

Navigation for Map Construction The SLAM algorithms allows building a map
based on data collected from robot sensors. However, a robot performing SLAM has
to “somehow” move around the building. This motion can be conducted manually, by
relying on a human operator to guide the robot. Conversely, the robot can autonomously
roam in the environment to construct the map.

Autonomous map construction is also referred to as exploration. An efficient ex-
plorer robot has to plan its motion in a way to reach quickly unmapped areas. The sem-
inal work of Yamauchi addresses this issue by targetting frontiers between explored
areas, and ones that are still unexplored [32]. A frontier separtes free space, i.e. space
where a robot can go, with areas that have not been sensed yet.

Exploration algorithms define strategies to select frontiers that are (1) reachable to
the robot, and that (2) maximize the acquired knowledge, in a minimum time. A frontier
is reachable to a robot if the passage along the path to go the frontier is always wider
than the robot. The amount of acquired knoweldge refers to the size of the area mapped
once reaching the frontier. A straight forward solution is to select the nearest reachable
frontier.

Machine to Machine Communication for Navigation According to the state of the
art, only wheeled robots can safely operate in an environment along people [29]. How-
ever, hospitals are multi-floor buildings, equipped with elevators. To allow robots reach
any floor, robots need to use the elevators.

Obviously, robots can be adapted to push buttons and call the elevators, as human
do. A more straight-forwad alternative is to enable wireless communication between
robots and elevator. Thus a robot can send a message to call an elevator and the elevator
can notify the robot once available.

This machine to machine communication paves the way for optimal multi-floor path
planning. At the decision level, a robot can query multiple elevators for their state and
use frequency. An idle elevator might be a better choice than one in use.



At the execution level, once a robot can call the elevator before reaching it. The call
would be timed in a way to ensure the elevator is there with the door open when the
robot reaches it.

Multi-Robot Map Construction and Update Map construction can take only few
minutes in a small building. However, since we target hospitals that are often large if
not very large buildings, mapping is likely to require more time. Regardless the size of
the building, having many floors also contributes to slowing down the mapping process.

The problem is that building a first map is not enough. To optimally compute paths
and assign tasks to robots, we need accurate maps that take into account the day to day
changes that may occur. For example, building cleaning, maintenance and repair might
require locking at least partially a corridor, or an elevator for few hours, days or even
longer. Other examples are plants, decorations, or trash cans that might be moved say
upon cleaning.

To both speedup map construction and update, an attractive option is to rely on a
called a multi-robot system [22]. A such system is built by making a group of robots
collaborate to achieve the tasks at hand. In our case, we need to distinguish here between
map construction and map updating. In both cases, robots need to actively coordinate
their actions to draw actual benefits.

During exploration, robots have to communicate in order to assign frontiers or floors
to each of them, and hence explore a different part of the building. The assignment
algorithm should be smart enough to reduce if not minimize overlaps, collisions, and
redundant explorations. The global map is built by merging maps produced by various
robots. This operation is complex because partial maps built by individual robots are
not perfect because of incertitude on the robot position and sensors noises. Merging
should take this into account to ensure a good alignment of partial maps, and correction
of disparities of maps areas that were constructed by different robots exploring the same
areas.

Map updating can be done either by rebuilding the map from scratch or by correct-
ing an existing map. Actually, both options can be combined. On a regular basis (e.g.
once a day), the robotic fleet can rebuild the whole map. Then, this map can be updated
once a robot detects significant changes in a given area.

4 Case study problem formulation

In this section, we showcase the functioning of the RAmI architecture in the problem
of a meal or medicine delivery to multiple patients in a smart hospital.

We represent a smart hospital building layout by an undirected graph G = (N,A),
where N is a set of smart space agent (SA) nodes representing rooms, offices, halls, and,
in general, a relatively small portion of space within a building. Each arc (i, j) ∈ A has
an associated travel time tij , which depends on its length and the relative congestion.
Each SA is responsible of monitoring its surrounding area (by, e.g., iBeacons and cam-
eras) to locate users’ momentary positions and compute space congestion. Moreover,
we assume that each mobile robot agent assumed with a limited communication range
is positioned in one of nodes n ∈ N and it can communicate with the rest of robots



within its communication range and with the belonging SA. Alike, each user is rep-
resented by a user agent u installed on an app of a user’s personal smart device (e.g.,
tablet or a smartphone) containing user-relevant info and able to communicate with the
closest SA and the robots if located within their communication range.

We consider multiple simultaneous item delivery by a MRT to patients in a building.
The most frequent items for delivery to patients are a meal or a medicine. We assume
that there is a set I ⊆ N of item storage locations in the building. Furthermore, let
O ⊆ N and D ⊆ N be the set of all robots and patients at their momentary positions,
respectively. Moreover, we assume that the items are packaged such that only grasping
is required to handle them. Then, the objective is to assign item delivery tasks to robots
in O such that the overall delivery time is minimal considering travel time under con-
gestion from the robots’ momentary locations through item storages in I , and delivering
the items to patients in D.

5 Case study setting

We demonstrate the functionality of the proposed approach by means of a simple case
study example in Figure 3. Given is a simple scenario of a building network with 5

Fig. 3. A simple 5 node smart space network. Arcs’ travel times in parentheses

nodes and 6 arcs. There are two mobile robots positioned at o1 and o2, two patients (at
d1 and d2), and inventory node i. Moreover, given are arcs’ travel times tij in minutes
for each arc (i, j). Patients’ delivery items are ontologically described through RDF.
The objective is to find routes from the robots’ positions o1 and o2 through inventory i
to patients d1 and d2 that minimize the overall patient delivery time.

Let us assume that both robots can deliver the demands of both patients d1 and
d2. Then, in the scheduling layer, the robots get assigned to patients’ demands (tasks)
following steps in the MRTA algorithm [5] based on the updated paths with shortest
travel times given by SAs. The travel time computation is done by the AmI network
where SA nodes compute distributively the routes through [20].

Let us analyze this simple example. Robots start the task assignment through [16].
From o1 to d1 and from o2 to d2, there is only one simple path available passing through
i. The overall cost of this assignment is 16. From o1 to d2 and from o2 to d1, there are
four simple paths available for each one of the patient nodes d1 and d2. The overall cost
of optimal paths (o1, i), (i, d2) and (o2, i), (i, d1) is also 16. Since both assignments
have the same cost, the solution is found lexicographically. In the case of contingen-
cies during the moving from one node to another, the robots try to coordinate among
themselves by locally recomputing their routes by following the algorithm in [16]. If



the solution is unsatisfactory, they recompute routes in the scheduling layer. If one of
them breaks, then the other recomputes its route starting from the semantic layer.

In case of high travel time variations, robots should be able to reroute. This is where
SA agents play a crucial role in observing congestion and updating travel times. The SA
agents compute the routes and inform the robots of the available routes’ arrival times.
MRT performance depends on the navigational maps (i.e. areas where the robots can
safely go) by tracking human trajectories and integrating them within the probabilistic
map which is built directly through the conventional sensory readings (see, e.g., [21]).

6 Conclusions

In this work, we proposed “Robots-Assisted Ambient Intelligence (RAmI)” architec-
ture for robots that should work in multi-robot teams integrated with the networks of
smart spaces (Ambient Intelligence networks) and users’ personal smart devices. We
discussed some open challenges to reach fully intelligent multi-robot teams that can
assist people in various daily activities. Moreover, we showcased the functioning of the
RAmI architecture on a meal or medicine delivery to simultaneous multiple patients
needing assistance.

The focus of RAmI is on the coordination of robot teams and multiple humans that
share the same space resources in their daily activities, related congestion control and
the influence of an individual (robot or human) action on the system’s performance in
such complex systems.

In future work, we intend to analyze in depth the efficiency of our RAmI approach
related with unpredictable scenarios through simulations on building networks of vary-
ing complexity. Related is the issue of scalability. We plan to evaluate real-time respon-
siveness of our approach to varying number of users and a varying size of the evacuation
network.
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