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This paper considers nonparametric density estimation with directional data. A new rule is proposed for bandwidth selection for kernel density estimation. The procedure is automatic, fully data-driven, and adaptive to the degree of smoothness of the density. An oracle inequality and optimal rates of convergence for the L 2 error are derived. These theoretical results are illustrated with simulations.

Introduction

Directional data arise in many fields such as wind direction for the circular case, and astrophysics, paleomagnetism, geology for the spherical case. Many efforts have been made to devise statistical methods to tackle the density estimation problem. We refer to [START_REF] Mardia | Directional Statistics[END_REF] and more recently to [START_REF] Ley | Modern Directional Statistics[END_REF] for a comprehensive review. Nonparametric procedures have been well developed.

In this article we focus on kernel density estimation. Various works [START_REF] Baldi | Adaptive density estimation for directional data using needlets[END_REF][START_REF] Kerkyacharian | Localized spherical deconvolution[END_REF] have used projection methods on localized bases adapted to the sphere. Classical references for kernel density estimation with directional data include the seminal papers [START_REF] Bai | Kernel estimators of density function of directional data[END_REF][START_REF] Hall | Kernel density estimation with spherical data[END_REF]. It is well known that the choice of the bandwidth is a key and intricate issue when using kernel methods. In practice, various techniques for selecting the bandwidth have been suggested since the popular cross-validation rule in [START_REF] Hall | Kernel density estimation with spherical data[END_REF]. Let us mention the plug-in and refined cross-validatory methods in [START_REF] Oliveira | A plug-in rule for bandwidth selection in circular density estimation[END_REF][START_REF] Taylor | Automatic bandwidth selection for circular density estimation[END_REF] for the circular case, and [START_REF] Di Marzio | Kernel density estimation on the torus[END_REF] on the torus.

Recently, García-Portugués [START_REF] García-Portugués | Exact risk improvement of bandwidth selectors for kernel density estimation with directional data[END_REF] devised an equivalent of the rule-of-thumb of [START_REF] Silverman | Density Estimation for Statistics and Data Analysis[END_REF] for directional data, and Amiri et al. [START_REF] Amiri | On the estimation of the density of a directional data stream[END_REF] explored computational problems with recursive kernel estimators based on the cross-validation procedure of [START_REF] Hall | Kernel density estimation with spherical data[END_REF]. To the best of our knowledge, however, the various rules that have been proposed so far for selecting the bandwidth in practice have not been assessed from a theoretical point of view. In particular, there are no results proving that cross-validation is adaptively rate-optimal, even in the linear case. From a theoretical point of view, Klemelä [START_REF] Klemelä | Estimation of densities and derivatives of densities with directional data[END_REF] studied convergence rates for L 2 error over some regularity classes. Unfortunately, the asymptotically optimal bandwidth in [START_REF] Klemelä | Estimation of densities and derivatives of densities with directional data[END_REF] depends on the density and its degree of smoothness, which is infeasible in practice.

In the linear case, kernel bandwidth selection rules have been proposed, leading to adaptive estimators which attain optimal rates of convergence. By adaptive we mean that the estimator is adaptive to the degree of smoothness of the underlying density: the method does not require the specification of the regularity of the density. In this regard, we may cite the remarkable series of papers [START_REF] Goldenshluger | Universal pointwise selection rule in multivariate function estimation[END_REF][START_REF] Lepskiȋ | A problem of adaptive estimation in Gaussian white noise[END_REF][START_REF] Lepskiȋ | Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates[END_REF] and the recent work of Lacour et al. [START_REF] Lacour | Estimator selection: A new method with applications to kernel density estimation[END_REF]. The drawback of the methods in [START_REF] Goldenshluger | Universal pointwise selection rule in multivariate function estimation[END_REF][START_REF] Lepskiȋ | A problem of adaptive estimation in Gaussian white noise[END_REF][START_REF] Lepskiȋ | Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates[END_REF] is that they involve tuning parameters. It is well known that in nonparametric statistics, minimax and oracle theoretical results rarely give optimal choices for tuning parameters from a practical point of view with very conservative choices. The major interest of the procedure in [START_REF] Lacour | Estimator selection: A new method with applications to kernel density estimation[END_REF] is that it is free of tuning parameters, which constitutes a great advantage in practice. The approach in [START_REF] Lacour | Estimator selection: A new method with applications to kernel density estimation[END_REF] called PCO (Penalized Comparison of Overfitting) is based on concentration inequalities for U-statistics.

In the present paper, we aim at filling the gap between theory and practice in the directional kernel density estimation literature. Our goal is to construct a fully data-driven bandwidth selection rule providing an adaptive estimator which reaches minimax rates of convergence for L 2 risk over some regularity classes. This motivates our choice to adapt the method of Lacour et al. [START_REF] Lacour | Estimator selection: A new method with applications to kernel density estimation[END_REF] to the directional setting. Our procedure is simple to implement and in examples based on simulations, it shows quite good performances in a reasonable computation time.

This paper is organized as follows. In Section 2, we present our estimation procedure. In Section 3 we provide an oracle inequality and rates of convergences of our estimator for the MISE (Mean Integrated Squared Error). Section 4 gives some numerical illustrations. Section 5 gives the proofs of theorems. Finally, the Appendix gathers technical propositions and lemmas.

The following notation is used throughout. For two integers a, b, we denote a∧b = min(a, b) and a∨b = max(a, b). For arbitrary y ∈ R, y denotes the integer part of y. Depending on the context, • denotes the classical L 2 norm on R or S d-1 . For any integer d ≥ 2, we denote the unit sphere of

R d by S d-1 = {x ∈ R d : x 2 1 + • • • + x 2 d = 1}
and the associated scalar product by •, • . For a vector x ∈ R d , x stands for the Euclidean norm on R d while • ∞ is the usual L ∞ -norm on S d-1 . Finally, the scalar product of two vectors x and y, is denoted by x y, where is the transpose operator.

Estimation procedure

We are given n mutually independent and identically distributed observations X 1 , . . . , X n on S d-1 for some integer d ≥ 2. The X i s are absolutely continuous with respect to the Lebesgue measure ω d on S d-1 with common density f . Therefore, a directional density f satisfies

S d-1 f (x)ω d (dx) = 1.
We aim at constructing an adaptive kernel estimator of the density f with a fully data-driven choice of bandwidth.

Directional approximation kernel

We present some classical conditions that are required for the kernel.

Assumption 1. The kernel K : [0, ∞) → [0, ∞) is a bounded and Riemann integrable function such that 0 < ∞ 0 x (d-3)/2 K(x)dx < ∞.
Assumption 1 is usual in kernel density estimation with directional data; see, e.g., Assumptions D1-D3 in [START_REF] García-Portugués | Kernel density estimation for directional-linear data[END_REF] and Assumption A1 in [START_REF] Amiri | On the estimation of the density of a directional data stream[END_REF]. An example of kernel which satisfies Assumption 1 is the popular von Mises kernel K(x) = e -x .

Family of directional kernel estimators

We consider the following standard directional kernel density estimator

K h (x, y) = K (1 -x y)/h . For all x ∈ S d-1 , fh (x) = c 0 (h) n n i=1 K 1 -x X i h 2 = c 0 (h) n
Remark 1. Note that c 0 (h) does not depend on x. The "tangent-normal" decomposition (see [START_REF] Mardia | Directional Statistics[END_REF]) says that if y is a vector and x a fixed element of S d-1 , then denoting t = x y their scalar product, we may always write y = tx + (1t 2 ) 1/2 ξ, where ξ is a unit vector orthogonal to x. Further, the area element on S d-1 can be written as

ω d (dx) = (1 -t 2 ) (d-3)/2 dt ω d-1 (dξ).
Thus, using these conventions, one obtains

c -1 0 (h) = S d-1 K 1 -x y h 2 ω d (dy) = S d-2 1 -1 K 1 -x {tx + (1 -t 2 ) 1/2 ξ} h 2 (1 -t 2 ) (d-3)/2 dt ω d-1 (dξ) = S d-2 ω d-1 (dξ) 1 -1 K 1 -tx x h 2 (1 -t 2 ) (d-3)/2 dt = σ d-2 1 -1 K 1 -t h 2 (1 -t 2 ) (d-3)/2 dt,
where

σ d-1 = ω d (S d-1
) denotes the area of S d-1 . We recall that σ d-1 = (2π d/2 )/Γ(d/2) with Γ the Gamma function.

Bandwidth selection

In kernel density estimation, a delicate step consists in selecting the proper bandwidth h for fh . We present our data-driven choice of bandwidth ĥ inspired from [START_REF] Lacour | Estimator selection: A new method with applications to kernel density estimation[END_REF]. We name our procedure SPCO (Spherical Penalized Comparison to Overfitting). Consider a set H of bandwidths defined by

H =        h : K ∞ n 1 R 0 (K) 1/(d-1)
≤ h ≤ 1, and 1/h is an integer

       , (1) 
with

R 0 (K) = 2 (d-3)/2 σ d-2 ∞ 0 x (d-3)/2 K(x)dx.
We obtain the selected bandwidth by setting, for λ ∈ R,

ĥ = argmin h∈H { fh -fh min 2 + pen λ (h)}, (2) 
where h min = min H and the penalty term pen λ (h) is defined, for h ∈ H, as

pen λ (h) = λc 2 0 (h)c 2 (h) n - 1 n S d-1 {c 0 (h min )K h 2 min (x, y) -c 0 (h)K h 2 (x, y)} 2 ω d (dy), (3) 
with c 2 (h) = S d-1 K 2 h 2 (x, y)ω d (dy).
Our SPCO estimator of f is fĥ . The procedure SPCO involves a real parameter λ. In Section 3, we study how to choose the optimal value of λ leading to a fully data-driven procedure.

Remark 2. Let us give some explanations about the terms involved in the expression of the selection rule [START_REF] Bai | Kernel estimators of density function of directional data[END_REF]. One can decompose the risk E f -fh 2 with the classical bias-variance decomposition. Hence, heuristically, the idea is to find the best bandwidth h minimizing an estimate of the bias-variance decomposition of the risk. Developing the quantity fhfh min 2 -

1 n S d-1 {c 0 (h min )K h 2 min (x, y) -c 0 (h)K h 2 (x, y)} 2 ω d (dy),
one realizes that it is in fact an estimator of the bias. Since the variance is bounded by c 2 0 (h)c 2 (h)/n, the term λc 2 0 (h)c 2 (h)/n acts as an estimator of the variance term. For more details, see Section 3.1 in [START_REF] Lacour | Estimator selection: A new method with applications to kernel density estimation[END_REF].

3

Note that again c 2 (h) and pen λ (h) do not depend on x using Remark 1. Indeed, similar computations lead to

c 2 (h) = σ d-2 1 -1 K 2 1 -t h 2 (1 -t 2 ) (d-3)/2 dt, and 
pen λ (h) = λc 2 0 (h)c 2 (h) n - σ d-2 n 1 -1        c 0 (h min )K       1 -t h 2 min       -c 0 (h)K 1 -t h 2        2 (1 -t 2 ) (d-3)/2 dt.
3. Rates of convergence

Oracle inequality

First, we state an oracle-type inequality which highlights the bias-variance decomposition of the L 2 risk when λ > 0. In what follows, |H| denotes the cardinality of the set H. We denote f h = E( fh ).

Theorem 1. Assume that the kernel K satisfies Assumption 1 and f ∞ < ∞. Let x ≥ 1 and ε ∈ (0, 1). Then there exists n 0 independent of f such that, for n ≥ n 0 , with probability larger than

1 -C 1 |H|e -x , fĥ -f 2 ≤ C 0 (ε, λ) min h∈H fh -f 2 + C 2 (ε, λ) f h min -f 2 + C 3 (ε, K, λ){ f ∞ x 2 /n + c 0 (h min )x 3 /n 2 }, (4) 
where C 1 is an absolute constant and C 0 (ε,

λ) = λ + ε if λ ≥ 1, C 0 (ε) = 1/λ + ε if 0 < λ < 1. The constant C 2 (ε, λ)
only depends on ε and λ and C 3 (ε, K, λ) only depends on ε, K and λ.

This oracle inequality bounds the quadratic risk of SPCO estimator by the infimum over H of the tradeoff between the approximation term f h minf 2 and the variance term fhf 2 provided that λ > 0. In fact, we need that λ > 0 to use concentration inequalities to prove the oracle inequality. The terms C 3 (ε, K, λ){ f ∞ x 2 /n + c 0 (h min )x 3 /n 2 } are remainder terms. Hence, this oracle inequality justifies our selection rule. For further details about oracle inequalities and model selection see [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF].

Nonetheless one could wonder what would happen if λ < 0. The next theorem shows that we cannot choose λ too small (λ < 0) as it would lead to select a bandwidth close to h min with high probability. One would obtain an overfitting estimator. To this purpose, we suppose

f -f h min 2 n c 2 0 (h min )c 2 (h min ) = o(1). (5) 
Let us focus on Assumption [START_REF] Di Marzio | Kernel density estimation on the torus[END_REF]. For h ∈ H, the bias of fh is equal to ff h 2 . As f h min is the best approximation of f among the grid H, the smallest bias for fh , h ∈ H is equal to ff h min 2 . Since the variance of fh is of order c 2 0 (h)c 2 (h)/n, this assumption means that the smallest bias ff h min 2 is negligible with respect to the corresponding integrated variance. Thus this assumption is mild.

Theorem 2. Assume that the kernel K satisfies Assumption 1 and f ∞ < ∞. Assume also [START_REF] Di Marzio | Kernel density estimation on the torus[END_REF] and, for β > 0,

K ∞ /{nR 0 (K)} ≤ h d-1 min ≤ (ln n) β /n.
Then if we consider pen λ (h) defined in (3) with λ < 0, we have for n large enough, with probability larger than

1 -C 1 |H|e -(n/ ln n) 1/3 , ĥ ≤ C(λ)h min ≤ C(λ){(ln n) β /n} 1/(d-1) ,
where C 1 is an absolute constant and C(λ 1) .

) = {1.23 (2.1 -1/λ)} 1/(d-
Remark 3. Theorem 2 invites us to discard λ < 0. Indeed, setting λ to negative values leads the procedure to select with large probability a bandwidth ĥ close to h min . As a result, we would obtain an overfitting estimator which behaves very poorly. Now considering oracle inequality (4), λ = 1 yields the minimal value of the leading constant C 0 (ε, λ) = λ + ε. Thus, the theory urges us to take the optimal value λ = 1 in the SPCO procedure. Actually, we will see in the numerical section that the choice λ = 1 is quite efficient.

Free of tuning parameters estimator and rates of convergence

Results of Section 3.1 about the optimality of λ = 1 enable us to devise our estimator free of tuning parameters. We call it fȟ with bandwidth ȟ defined as in (2) with λ = 1.

We now compute rates of convergence for the MISE of our estimator fȟ over some smoothness classes. In [START_REF] Klemelä | Estimation of densities and derivatives of densities with directional data[END_REF], suitable smoothness classes are defined for the study of the MISE. In particular, these regularity classes involve a concept of an "average" of directional derivatives which was first defined in [START_REF] Hall | Kernel density estimation with spherical data[END_REF]. Let us recall the definition of these smoothness classes in [START_REF] Klemelä | Estimation of densities and derivatives of densities with directional data[END_REF].

Let η ∈ S d-1 and

T η = {ξ ∈ S d-1 : ξ ⊥ η}. Let φ η : S d-1 \ {η, -η} → T η × (0, π) be a parameterization of S d-1 defined by φ -1 η (ξ, θ) = η cos(θ) + ξ sin(θ).
When g : R d → R and x, ξ ∈ R d , define the derivative of g at x in the direction of ξ to be

D ξ g(x) = lim h→0 h -1 {g(x+ hξ) -g(x)} and D s ξ g = D ξ D s-1
ξ g, for some integer s ≥ 2. We will now define the derivative of order s.

Definition 1. Let f : S d-1 → R and define f : R d → R by f (x) = f (x/ x ). The derivative of order s is D s f : S d-1 → R defined by D s f (x) = 1 σ d-1 T x D s ξ f (x)ω d (dξ),
where

T x = {ξ ∈ S d-1 : ξ ⊥ x}. Definition 2. When f : S d-1 → R, define Ds f : S d-1 × R → R by Ds f (x, θ) = 1 σ d-1 T x D s φ -1 x (ξ,θ+ π 2 ) f {φ -1 x (ξ, θ)}ω d (dξ).
We are now able to define the smoothness class F 2 (s); see [START_REF] Klemelä | Estimation of densities and derivatives of densities with directional data[END_REF].

Definition 3. Let s ≥ 2 be even and p ∈ [1, ∞]. Let F 2 (s) be the set of functions f : S d-1 → R such that (i) D i f < ∞ for all i ∈ {0, . . . , s}; (ii) for all x ∈ S d-1 and all ξ ∈ T x , ∂ s f {φ -1 x (ξ, θ)}/∂θ s is continuous as a function of θ ∈ R; (iii) Ds f (•, θ) is bounded for θ ∈ [0, π] and (iv) lim θ→0 Ds f (•, θ) -D s f = 0.
To achieve optimal rates of convergence over the class F 2 (s), we need supplementary conditions on the kernel to deal with the bias term. The idea of reducing the bias in the Euclidean case using a class s kernel dates back to [START_REF] Bartlett | Statistical estimation of density functions[END_REF][START_REF] Parzen | On estimation of a probability density function and mode[END_REF]. In the directional case, this has been early pointed out in [START_REF] Hall | Kernel density estimation with spherical data[END_REF]. Following [START_REF] Klemelä | Estimation of densities and derivatives of densities with directional data[END_REF], we will define what is called a kernel of class s. For all i ∈ N, let

α i (K) = ∞ 0 x (i+d-3)/2 K(x)dx. Assumption 2 Let s ≥ 0 be even. The kernel K is of class s, i.e., it is a measurable function K : [0, ∞) → R which satisfies: (i) α i (K) < ∞ for i ∈ {0, s}; (ii) α 0 (K) 0; (iii) h -2 0 x (2i+d-3)/2 K(x)dx = o(h s-2i ) for i ∈ {1, . . . , s/2 -1}, when h → 0.
In Assumption 2, s must be even because D s f (x) = 0 for all x ∈ S d-1 when s ≥ 1 is odd; see Chapter 2 in [START_REF] Klemelä | Estimation of densities and functionals of densities with spherical data[END_REF]. Furthermore, note that von Mises kernel is of order 2. Now, a direct application of the oracle inequality in Theorem 1 allows us to derive rates of convergence for the MISE of fȟ .

Theorem 3. Consider a kernel K satisfying Assumptions 1 and 2. For B > 0, denote F2 (s, B) the set of densities bounded by B and belonging to F 2 (s). Then we have 1) , with C(s, K, d, B) a constant depending on s, K, d and B.

sup f ∈ F(s,B) E( fȟ -f 2 ) ≤ C(s, K, d, B)n -2s/(2s+d-
Theorem 3 shows that the estimator fȟ achieves the optimal rate of convergence for estimating a density on S d-1 with an s order smoothness; matching lower bounds are proved in Chapter 6 of [START_REF] Klemelä | Estimation of densities and functionals of densities with spherical data[END_REF] and in [START_REF] Baldi | Adaptive density estimation for directional data using needlets[END_REF]. Hence estimating on the d-dimensional sphere appears to be analogous to inference in (d -1)-dimensional space. Furthermore, our statistical procedure is adaptive to the smoothness s. It means that it does not require the specification of s.

Numerical results

We investigate the numerical performances of our fully data-driven estimator fȟ defined in Section 3.2. We compare fȟ with the widely used cross-validation estimator and with an "oracle" to be defined later on. We focus on the unit sphere S 2 , i.e., the case d = 3.

We consider various densities. The first one is the von Mises-Fisher density

f 1,vM = κ 2π(e κ -e -κ )
e κx µ , with κ = 2 and µ = (1, 0, 0) ; see Figure 1. We recall that κ is the concentration parameter and µ the directional mean. Note that the smaller the concentration parameter is, the closer to the uniform density the von Mises-Fisher density is. We also estimate the mixture of two von Mises-Fisher densities, viz.

f 2,vM = 4 5 × κ 2π(e κ -e -κ ) e κx µ + 1 5 × κ 2π(e κ -e -κ )
e κ x µ , with κ = 0.7 and µ = (-1, 0, 0) . Note that f 1,vM is rotationally symmetric and f 2,vM also since µ and µ are antipodal. Finally, let us consider a non rotationally symmetric density

f 3,vM = 4 5 × κ 2π(e κ -e -κ ) e κx µ + 1 5 × κ 2π(e κ -e -κ ) e κ x µ , with µ = (0, 1/ √ 2, 1/ √ 2)
. Now let us define what the "oracle" fh oracle is. The bandwidth h oracle is defined as

h oracle = argmin h∈H fh -f 2 .
This bandwidth can be viewed as the "ideal" one since it uses the specification of the density of interest f which is here f 1,vM , f 2,vM or f 3,vM . Hence, the performances of fh oracle are used as a benchmark.

In the sequel we present detailed results for f 1,vM , namely risk curves and graphic reconstructions and we compute MISE for f 1,vM , f 2,vM or f 3,vM . We use the von Mises kernel

K(x) = e -x .
Before presenting the performances of the various procedures, we shall remind that theoretical results of Section 3.1 have shown that setting λ = 1 in the SPCO algorithm is optimal. We would like to show how simulations actually support this conclusion. Indeed, Figure 2 displays the empirical L 2 risk of fĥ to estimate f 1,vM in function of parameter λ for n = 100 and 100 Monte Carlo replications. Figure 2 (a) shows a "dimension jump" and that the minimal risk is reached in a stable zone around λ = 1: negative values of λ lead to an overfitting estimator ( ĥ is chosen close to h min as shown in Theorem 2) with poor performances whereas large values of λ make the risk increase again; see a zoom on Figure 2 (b). Next, considering the MISE computations, we will see that λ = 1 yields quite good results. In Lemma D of the Appendix, we develop the expression (2) to be minimized to implement our estimator fȟ . We now recall the cross-validation criterion of [START_REF] Hall | Kernel density estimation with spherical data[END_REF]. Let

fh,i (x) = c 0 (h) n -1 n j i e -(1-x X j )/h 2 .
Then

CV 2 (h) = fh 2 - 2 n n i=1 fh,i (x).
Note that CV 2 (h) + f 2 is an unbiased estimate of the MISE of fh . The cross-validation procedure to select the bandwidth h consists in minimizing CV 2 with respect to h. We call this selected value h CV 2 .

In the rest of this section, SPCO will denote the estimation procedure related to fȟ . In Figure 3, for n = 500 we plot as a function of h: R oracle = fhf 1,vM 2f 1,vM 2 for the oracle, R S PCO = fhfh min 2 + pen λ=1 (h) for SPCO and CV 2 (h) for cross-validation. We point out on each plot the value of h that minimizes each quantity. In Figure 4, we plot in spherical coordinates, for n = 500, density reconstructions of f 1,vM for the oracle, SPCO and cross-validation. Eventually, in Tables 1, 2 and 3, we compute MISE of the oracle, SPCO and cross-validation to estimate f 1,vM , f 2,vM and f 3,vM for n ∈ {50, 100, 500} over 100 Monte Carlo runs. When analyzing the results, SPCO performs nicely. In particular, inspection of Tables 1, 2 and 3 shows that SPCO is close to the oracle and is always slightly better than cross-validation for all densities. 

Proofs of theorems

In the sequel, Ξ denotes an absolute constant which may change from line to line. The following proofs of theorems rely on technical propositions and lemmas which are gathered for sake of clarity in the Appendix. More specifically, proofs of Theorems 1 and 2 use Lemma A, Propositions A and B, and proof of Theorem 3 uses Proposition C.

Proof of Theorem 1. We set τ = λ -1. Let ε ∈ (0, 1) and θ ∈ (0, 1) depending on ε to be specified later. Developing the expression of pen λ (h) given in (3), we have

pen λ (h) = λc 2 0 (h)c 2 (h)/n -c 2 0 (h min )c 2 (h min )/n -c 2 0 (h)c 2 (h)/n + 2 c 0 (h)K h 2 , c 0 (h min )K h 2 min /n = τc 2 0 (h)c 2 (h)/n -c 2 0 (h min )c 2 (h min )/n + 2 c 0 (h)K h 2 , c 0 (h min )K h 2 min /n.
Using Proposition B and the expression of pen λ (h) given above, we obtain with probability greater than 1 -Ξ |H| exp(-x), for any h ∈ H,

(1 -θ) fĥ -f 2 + τc 2 0 ( ĥ)c 2 ( ĥ)/n ≤ (1 + θ) fh -f 2 + τc 2 0 (h)c 2 (h)/n + C 2 /θ f h min -f 2 + C(K){ f ∞ x 2 /n + c 0 (h min )x 3 /n 2 }/θ, (6) 
with C 2 an absolute constant and C(K) a constant only depending on K. We first consider the case τ ≥ 0. Using (A.5) of Proposition A, with probability 1 -Ξ |H|e -x one has

τc 2 0 (h)c 2 (h)/n ≤ τ(1 + θ) f -fh 2 + τC (K) f ∞ x 2 /(θ 3 n),
where C (K) is a constant only depending on the kernel K. As τc 2 0 ( ĥ)c 2 ( ĥ)/n ≥ 0, thus ( 6) becomes

(1 -θ) fĥ -f 2 ≤ {1 + θ + τ(1 + θ)} fh -f 2 + C 2 f h min -f 2 /θ + C(K){ f ∞ x 2 /n + c 0 (h min )x 3 /n 2 }/θ + τC (K) f ∞ x 2 /(θ 3 n). With θ = ε/(ε + 2 + 2τ), we obtain fĥ -f 2 ≤ (1 + τ + ε) fh -f 2 + C 2 (ε + 2 + 2τ) 2 (2 + 2τ)ε f h min -f 2 + C (K, ε, τ){ f ∞ x 2 /n + c 0 (h min )x 3 /n 2 },
with C (K, ε, τ) a constant depending only on K, ε, τ.

Let's now study the case τ ∈ (-1, 0]. Using (A.5) of Proposition A with h = ĥ, we have with probability 1 -Ξ |H|e -x , τc 2 0 ( ĥ)c 2 ( ĥ)/n ≥ τ(1

+ θ) f -fĥ 2 + τC (K) f ∞ x 2 /(θ 3 n).
Consequently, as τc 2 0 (h)c 2 (h)/n ≤ 0, (6) becomes

{1 -θ + τ(1 + θ)} fĥ -f 2 ≤ (1 + θ) fh -f 2 + C 2 f h min -f 2 /θ + C(K){ f ∞ x 2 /n + c 0 (h min )x 3 /n 2 }/θ -τC (K) f ∞ x 2 /(θ 3 n). With θ = ε(τ + 1) 2 /{2 + ε(1 -τ 2 )} < 1, we obtain with probability 1 -Ξ |H|e -x , fĥ -f 2 ≤ 1 1 + τ + ε fh -f 2 + C (ε, τ) f h min -f 2 + C (K, ε, τ){ f ∞ x 2 /n + c 0 (h min )x 3 /n 2 },
with C (ε, τ) a constant depending on ε and τ and C (K, ε, τ) a constant depending on K, ε and τ. This completes the proof of Theorem 1.

Proof of Theorem 2. We still set τ = λ -1. We set θ ∈ (0, 1) such that θ < -(1 + τ)/5. We consider inequality [START_REF] García-Portugués | Exact risk improvement of bandwidth selectors for kernel density estimation with directional data[END_REF] written with h = h min . One obtains

(1 -θ) fĥ -f 2 + τc 2 0 ( ĥ)c 2 ( ĥ)/n ≤ (1 + θ) fh min -f 2 + τc 2 0 (h min )c 2 (h min )/n + C 2 f h min -f 2 /θ + C(K){ f ∞ x 2 /n + c 0 (h min )x 3 /n 2 }/θ.

Now consider Eq. (A.4) with h = h min , one gets

f -fh min ≤ (1 + θ){ f -f h min 2 + c 2 0 (h min )c 2 (h min )/n} + C (K) f ∞ x 2 /(θ 3 n). 10 
Combining the two inequalities above, we have

(1 -θ) fĥ -f 2 + τc 2 0 ( ĥ)c 2 ( ĥ)/n ≤ {(1 + θ) 2 + C 2 /θ} f -f h min 2 + {τ + (1 + θ) 2 }c 2 0 (h min )c 2 (h min )/n + C(K){ f ∞ x 2 /n + c 0 (h min )x 3 /n 2 }/θ + (1 + θ)C (K) f ∞ x 2 /(θ 3 n).
Now let us define u n = f h minf 2 /{c 2 0 (h min )c 2 (h min )/n}. We have by Assumption (5) that u n → 0 when n → ∞. Then we get (1 -θ) fĥf 2 + τc 2 0 ( ĥ)c 2 ( ĥ

)/n ≤ [{(1 + θ) 2 + C 2 /θ}u n + τ + (1 + θ) 2 ]c 2 0 (h min )c 2 (h min )/n + C(K, θ){ f ∞ x 2 /n + x 3 c 0 (h min )/n 2 }. ( 7 
)
Now we consider using Eq. (A.5) from Proposition A with h = ĥ and η = 1, we get c 0 ( ĥ)c 2 ( ĥ

)/n ≤ 2 f -fĥ + C (K) f ∞ x 2 /n.
Then f -fĥ ≥ c 0 ( ĥ)c 2 ( ĥ)/(2n) -C (K f ∞ x 2 /n and hence [START_REF] García-Portugués | Kernel density estimation for directional-linear data[END_REF] becomes

{(1 -θ)/2 + τ}c 2 0 ( ĥ)c 2 ( ĥ)/n ≤ [{(1 + θ) 2 + C 2 /θ}u n + τ + (1 + θ) 2 ]c 2 0 (h min )c 2 (h min )/n + C (K, θ){ f ∞ x 2 /n + x 3 c 0 (h min )/n 2 }.
However, we assumed that u n = o(1). Thus for n large enough, {(1 + θ) 2 + C 2 /θ}u n ≤ θ. We are now going to bound the remainder terms

C (K, θ){ f ∞ x 2 /n + c 0 (h min )x 3 /n 2 }. We have C (K, θ){ f ∞ x 2 /n + c 0 (h min )x 3 /n 2 } n c 2 0 (h min )c 2 (h min ) = C (K, θ, f ∞ ) x 2 c 2 0 (h min )c 2 (h min ) + x 3 nc 0 (h min )c 2 (h min ) ≤ C (K, θ, f ∞ )(x 2 h d-1
min + x 3 /n), for n large enough using (A.1) and (A.2) from Lemma A. But h d-1 min ≤ (ln n) β /n and setting x = (n/ln n) 1/3 , we get

C (K, θ, f ∞ )(x 2 h d-1 min + x 3 /n) ≤ C (K, θ, f ∞ ){(ln n) β-2/3 /n 1/3 + 1/ ln n} = o(1) ≤ θ,
for n large enough. Consequently there exists N such that for n ≥ N, with probability larger than 1 -Ξ |H|e -(n/ ln n) 1/3 , {(1 -θ)/2 + τ}c 2 0 ( ĥ)c 2 ( ĥ)/n ≤ {θ + τ + (1 + θ) 2 + θ}c 2 0 (h min )c 2 (h min )/n ≤ (1 + τ + 5θ)c 2 0 (h min )c 2 (h min )/n. Using (A.3) of Lemma A, we have, for n large enough, 0.9

h 1-d R(K) ≤ c 2 0 (h)c 2 (h) ≤ 1.1 h 1-d R(K). Thus we finally get, for n large enough, 0.9{(1 -θ)/2 + τ} ĥ1-d ≤ 1.1(1 + τ + 5θ)h 1-d min ⇔ {(1 -θ)/2 + τ} ĥ1-d ≤ 1.23(1 + τ + 5θ)h 1-d min .
But (1 -θ)/2 + τ < 1 + τ < 0, and because we have chosen θ such that 1 + τ + 5θ < 0 (for instance θ = -(τ + 1)/10)), one gets ĥ ≤ 1.23(1

+ τ + 5θ) (1 -θ)/2 + τ 1/(d-1)
h min .

With θ = -(τ + 1)/10, the inequality above becomes for n large enough ĥ ≤ {1.23 (2.1 -1/λ)} 1/(d-1) h min , which completes the proof of Theorem 2.

Proof of Theorem 3. Let f ∈ F2 (s, B) and E the event corresponding to the intersection of events in Theorem 1 and Proposition A. Let E denotes the complementary of E. For any A > 0, by taking x proportional to ln n, Pr(E) ≥ 1-n -A .

We have

E( fȟ -f 2 ) ≤ E( fȟ -f 2 1 E ) + E( fȟ -f 2 1 E ).
Let us deal with the second term of the right-hand side. We have fhf 2 ≤ 2( fh 2 + f 2 ). However,

fh 2 = c 2 0 (h) n 2 i, j S d-1 K h 2 (x, X i )K h 2 (x, X j )ω d (dx) ≤ c 0 (h) n 2 K ∞ i, j c 0 (h) S d-1 K h 2 (x, X j )ω d (dx) ≤ c 0 (h) K ∞ ≤ 2n,
since c 0 (h) ≤ 2n/ K ∞ , using (A.1) and ( 1) for n large enough. Thus fhf 2 ≤ 2n + 2 f 2 , which gives the result on E . Now on E, for n ≥ n 0 (n 0 not depending on f ) Proposition A and Proposition C yield that

min h∈H fh -f 2 ≤ (1 + η) min h∈H { f -f h 2 + c 2 0 (h)c 2 (h)/n} + Ξ Υ(ln n) 2 /(η 3 n) ≤ C min h∈H (h 2s + h 1-d /n) + Ξ Υ(ln n) 2 /(η 3 n).
Minimizing in h the right-hand side of the last inequality gives the result on E.

Proof of Proposition A. To prove Proposition A, we need to verify Assumptions ( 11)-( 16) of [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF]. We recall that

f h = E( fh ) = c 0 (h) y∈S d-1 f (y)K h 2 (x, y)ω d (dy).
Let us check Assumption [START_REF] Kerkyacharian | Localized spherical deconvolution[END_REF] of [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF]. This one amounts to prove that, for some Γ and Υ,

Γ(1 + f ∞ ) ∨ sup h∈H f h 2 ≤ Υ.
We have

f h 2 ≤ f ∞ x y c 0 (h)K h 2 (x, y)ω d (dy) =1 y f (y)c 0 (h)K h 2 (x, y)ω d (dy) ω d (dx) ≤ f ∞ y f (y) x c 0 (h)K h 2 (x, y)ω d (dx)ω d (dy) ≤ f ∞ .
Therefore, Assumption [START_REF] Kerkyacharian | Localized spherical deconvolution[END_REF] in [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF] holds with Γ = 1 and

Υ ≥ 1 + f ∞ .
Let us check Assumption ( 12) of [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF]. We have to prove that

c 2 0 (h)K 2 h 2 (x, x)ω d (dx) ≤ Υn c 2 0 (h)K 2 h 2 (x, y)ω d (dx) f (y)ω d (dy).
Given that

c 2 0 (h)K 2 h 2 (x, y)ω d (dx) f (y)ω d (dy) = c 2 0 (h)c 2 (h) f (y)ω d (dy) = c 2 0 (h)c 2 (h),
and

c 2 0 (h)K 2 h 2 (x, x)ω d (dx) = 4πc 2 0 (h)K 2 (0),
Assumption [START_REF] Klemelä | Estimation of densities and derivatives of densities with directional data[END_REF] amounts to check that

4πc 2 0 (h)K 2 (0) ≤ Υnc 2 0 (h)c 2 (h) ⇔ Υ ≥ 4πK 2 (0)/{nc 2 (h)}.
But using (A.2), we have 12) in [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF]. Assumption [START_REF] Klemelä | Estimation of densities and functionals of densities with spherical data[END_REF] in [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF] consists to prove that

c 2 (h) = R 1 (K)h d-1 + o(1), when h → 0 uniformly in h. Thus there exist n 1 , n 1 independent of f such that, for n ≥ n 1 , c 2 (h) ≥ R 1 (K)h d-1 /2. Now using that h d-1 ≥ K ∞ /{R 0 (K)n} and K(0) ≤ K ∞ , it is sufficient to have Υ ≥ 8π K ∞ R 0 (K)/R 1 (K) to ensure Assumption (
f h -f h ∞ ≤ Υ ∨ √ Υn f h -f h 2 .
For any h ∈ H and any x ∈ S d-1 , we have f h ∞ ≤ f ∞ . Therefore, Assumption (13) in [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF] holds for Υ ≥ 2 f ∞ . Assumptions ( 14) and ( 15) of [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF] consist in proving respectively that

E c 2 0 (h) K h 2 (X, z)K h 2 (z, Y)ω d (dz) 2 ≤ Υc 2 0 (h)c 2 (h) and sup x∈S d-1 E c 2 0 (h) K h 2 (X, z)K h 2 (z, x)ω d (dz) 2 ≤ Υn.
We have

c 2 0 (h) K h 2 (x, z)K h 2 (z, y)ω d (dz) ≤ c 2 0 (h)c 2 (h) ∧ c 0 (h) K ∞ . Indeed if y = z, then K h 2 (x, z)K h 2 (z, y)ω d (dz) = K 2 h 2 (x, z)ω d (dz) = c 2 (h). Otherwise, c 2 0 (h) K h 2 (x, z)K h 2 (z, y)ω d (dz) ≤ c 0 (h) K ∞ c 0 (h) K h 2 (x, z)ω d (dz) =1 = c 0 (h) K ∞ .
Furthermore, (A.1) entails that there exists n 2 independent of f such that, for n ≥ n 2 , c -1 0 (h) ≥ R 0 (K)h d-1 /2 and consequently c 0 (h) ≤ 2n/ K ∞ , using [START_REF] Amiri | On the estimation of the density of a directional data stream[END_REF]. Thus, for n ≥ n 2 ,

c 2 0 (h) K h 2 (x, z)K h 2 (z, y)ω d (dz) ≤ c 2 0 (h)c 2 (h) ∧ 2n. (A.6)
We have

E c 2 0 (h) z K h 2 (X, z)K h 2 (z, x)ω d (dz) = c 2 0 (h) z y K h 2 (y, z) f (y)ω d (dy) K h 2 (z, x)ω d (dz) ≤ f ∞ c 0 (h) z c 0 (h) y K h 2 (y, z)ω d (dy)K h 2 (z, x)ω d (dz) ≤ f ∞ . (A.7) Therefore, for n ≥ n 2 , sup x∈S d-1 E c 2 0 (h) K h 2 (X, z)K h 2 (z, x)ω d (dz) 2 ≤ sup (x,y) 
c 2 0 (h) K h 2 (x, z)K h 2 (z, y)ω d (dz) × sup x E c 2 0 (h) K h 2 (X, z)K h 2 (z, x)ω d (dz) ≤ {c 2 0 (h)c 2 (h) ∧ 2n} f ∞ ,
using (A.6) and (A.7). Moreover, we have

E c 2 0 (h) K h 2 (X, z)K h 2 (z, Y)ω d (dz) 2 ≤ sup x E c 2 0 (h) K h 2 (X, z)K h 2 (z, x)ω d (dz) 2 ≤ {c 2 0 (h)c 2 (h) ∧ 2n} f ∞ using (A.6
) and (A.7). Hence Assumption ( 14) and ( 15) in [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF] 

hold for Υ ≥ 2 f ∞ . Let t ∈ B c 0 (h)K h 2 is the set of functions t such that t(x) = a(z)c 0 (h)K h 2 (z, x)ω d (dz) for some a ∈ L 2 (S d-1
) with a ≤ 1. Now let a ∈ L 2 (S d-1 ) be such that a = 1 and t(y) = a(x)c 0 (h)K h 2 (x, y)ω d (dx) for all y ∈ S d-1 . To verify Assumption [START_REF] Lepskiȋ | Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates[END_REF] in [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF] we have to prove that sup

t∈B c 0 (h)K h 2 t(x) f (x)ω d (dx) ≤ Υ ∨ Υc 2 0 (h)c 2 (h).
Using the Cauchy-Schwarz inequality, one gets

t(y) ≤ S d-1 a 2 (x)ω d (dx) c 2 0 (h) S d-1 K 2 h 2 (x, y)ω d (dx) ≤ c 2 0 (h)c 2 (h). Thus for any t ∈ B c 0 (h)K h 2 t 2 (x) f (x)ω d (dx) ≤ t ∞ |t|, f ≤ c 2 0 (h)c 2 (h) f × t ,
but using the Cauchy-Schwarz inequality and Fubini, one gets

t = x y a(y)c 0 (h)K h 2 (x, y)ω d (dy) 2 ω d (dx) ≤ x y a 2 (y)c 0 (h)K h 2 (x, y)ω d (dy) y c 0 (h)K h 2 (x, y)ω d (dy) ω d (dx) = x y a 2 (y)c 0 (h)K h 2 (x, y)ω d (dy)ω d (dx) = y a 2 (y) x c 0 (h)K h 2 (x, y)ω d (dx) ω d (dy) = 1.
Furthermore,

t 2 (x) f (x)ω d (dx) ≤ f c 2 0 (h)c 2 (h) ≤ f ∞ c 2 0 (h)c 2 (h) ≤ Υc 2 0 (h)c 2 (h)
, and hence Assumption ( 16) in [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF] is verified.

Finally, Assumptions ( 11)-( 16) from [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF] hold in the spherical setting, for n ≥ n 0 = max(n 1 , n 2 ) and if Γ = 1 and

Υ ≥ (1 + 2 f ∞ ) ∨ 8π K ∞ R 0 (K)/R 1 (K).
This enables us to use Proposition 4.1 of [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF] which gives Proposition A.

The next proposition gives a general result on the estimator fĥ .

Proposition B. Assume that the kernel K satisfies Assumption 1 and f ∞ < ∞. Let x ≥ 1 and θ ∈ (0, 1). With probability larger than 1 -C 1 |H|e -x , with C 1 an absolute constant, for any h ∈ H,

(1 -θ) fĥ -f 2 ≤ (1 + θ) fh -f 2 + {pen λ (h) -2 c 0 (h)K h 2 , c 0 (h min )K h 2 min /n} -{pen λ ( ĥ) -2 c 0 ( ĥ)K ĥ2 , c 0 (h min )K h 2 min /n} + C 2 f h min -f 2 /θ + C(K){ f ∞ x 2 /n + x 3 c 0 (h min )/n 2 }/θ,
where C 1 and C 2 are absolute constants and C(K) only depends on K.

In order to avoid any confusion, we recall that K h 2 = K h 2 (•, •) and

c 0 (h)K h 2 , c 0 (h min )K h 2 min = S d-1
c 0 (h)K h 2 (x, y)c 0 (h min )K h 2 min (x, y)ω d (dy). Once again, we would like to draw the attention to the fact that the quantity S d-1 c 0 (h)K h 2 (x, y)c 0 (h min )K h 2 min (x, y)ω d (dy) does not depend on x. Indeed, we have, using Remark 1

S d-1 K h 2 (x, y)K h 2 min (x, y)ω d (dy) = S d-1 K 1 -x y h 2 K       1 -x y h 2 min       ω d (dy) = σ d-2 1 -1 K 1 -t h 2 K       1 -t h 2 min       (1 -t 2 ) (d-3)/2 dt.
Proof of Proposition B. The proof follows the proof of Theorem 9 in [START_REF] Lacour | Estimator selection: A new method with applications to kernel density estimation[END_REF] adapted to S d-1 . Let θ ∈ (0, 1) be fixed and chosen later. Using the definition of ĥ, we can write, for any h ∈ H fĥf 2 + pen λ ( ĥ) = fĥfh min 2 + pen λ ( ĥ) + fh minf 2 + 2 fĥfh min , fh minf ≤ fhfh min 2 + pen λ (h) + fh minf 2 + 2 fĥfh min , fh minf

≤ fh -f 2 + 2 f -fh min 2 + 2 fh -f, f -fh min
+ pen λ (h) + 2 fĥfh min , fh minf .

We have

A = G h,h min + G h min ,h ∞ ≤ G h,h min ∞ + G h min ,h ∞ = 2 G h,h min ∞ , because G h min ,h = G h,h min . We have G h,h min ∞ = sup s,t S d-1 {c 0 (h)K h 2 (u, s) -f h (u)} {c 0 (h min )K h 2 min (u, t) -f h min (u)}ω d (du) ≤ sup u,t |c 0 (h min )K h 2 min (u, t) -f h min (u)| sup s |c 0 (h)K h 2 (u, s) -f h (u)|ω d (du) ≤ c 0 (h min ) K ∞ + f h min ∞ sup s c 0 (h) K h 2 (u, s)ω d (du) + c 0 (h) K h 2 (u, y) f (y)ω d (dy)ω d (du) ≤ 2c 0 (h min ) K ∞ 1 + f (y)c 0 (h) K h 2 (u, y)ω d (du)ω d (dy) ≤ 4c 0 (h min ) K ∞ .
Consequently we have that A ≤ 8c 0 (h min ) K ∞ and Ax 2 /n 2 ≤ 8x 2 c 0 (h min ) K ∞ /n 2 . We define

B 2 = (n -1) sup t E[{G h,h min (t, X 2 ) + G h min ,h (t, X 2 )} 2 ].
For any t, we have

E[G 2 h,h min (t, X 2 )] = E {c 0 (h)K h 2 (u, t) -f h (u)}[c 0 (h min )K h 2 min (u, X 2 ) -E{c 0 (h min )K h 2 min (u, X 2 )}]ω d (du) 2 ≤ E {c 0 (h)K h 2 (u, t) -f h (u)} 2 ω d (du) [c 0 (h min )K h 2 min (u, X 2 ) -E{c 0 (h min )K h 2 min (u, X 2 )}] 2 ω d (du) ≤ 2 c 2 0 (h)K 2 h 2 (u, t)ω d (du) + f 2 h (u)ω d (du) × E c 0 (h min )K h 2 min (u, X 2 ) -E{c 0 (h min )K h 2 min (u, X 2 )} 2 ω d (du) ≤ 2 c 2 0 (h)K 2 h 2 (u, t)ω d (du) + u c 0 (h) y K h 2 (u, y) f (y)ω d (dy) 2 ω d (du) × E{c 2 0 (h min )K 2 h min (u, X 2 )}ω d (du) ≤ 4c 2 0 (h)c 2 (h)c 2 0 (h min )c 2 (h min ). Therefore B 2 ≤ 8(n -1)c 2 0 (h)c 2 (h)c 2 0 (h min )c 2 (h min ) and B 2 x 3 /n 4 ≤ 8c 2 0 (h)c 2 (h)c 2 0 (h min )c 2 (h min )x 3 /n 3 . Now using √ ab ≤ θa/2 + θ -1 b/2, we obtain Bx 3/2 /n 2 ≤ θ c 2 0 (h)c 2 (h)/(3n) + 6c 2 0 (h min )c 2 (h min )x 3 /θ n 2 .

Now we have

C 2 = n i=2 i-1 j=1 E[{G h,h min )(X i , X j ) + G h min ,h (X i , X j )} 2 ] ≤ Ξ n 2 E{G 2 h,h min (X 1 , X 2 )} = Ξ n 2 E        {c 0 (h)K h 2 (u, X 1 ) -f h (u)}{c 0 (h min )K h 2 min (u, X 2 ) -f h min (u)}ω d (du) 2        = Ξ n 2 E c 0 (h)K h 2 (u, X 1 )c 0 (h min )K h 2 min (u, X 2 )ω d (du) -c 0 (h)K h 2 (u, X 1 ) c 0 (h min )K h 2 min (u, y) f (y)ω d (dy) ω d (du) -c 0 (h min )K h 2 min (u, X 2 ) c 0 (h)K h 2 (u, y) f (y)ω d (dy) ω d (du) + u y c 0 (h min )K h 2 min (u, y) f (y)ω d (dy) y c 0 (h)K h 2 (u, y) f (y)ω d (dy) ω d (du) 2 . ≤ Ξ n 2 (A 1 + A 2 + A 3 + A 4 ). We have, for A 2 , E c 0 (h)K h 2 (u, X 1 ) c 0 (h min )K h 2 min (u, y) f (y)ω d (dy) ω d (du) 2 ≤ f 2 ∞ E c 0 (h)K h 2 (u, X 1 ) c 0 (h min )K h 2 min (u, y)ω d (dy) ω d (du) 2 = f 2 ∞ E c 0 (h)K h 2 (u, X 1 )ω d (du) 2 ≤ f 2 ∞ c 0 (h)K h 2 (u, y)ω d (du) 2 f (y)ω d (dy) = f 2 ∞ .
With similar computations, we obtain the same bound for A 3 . As for A 4 , we get

E u c 0 (h min )K h 2 min (u, y) f (y)ω d (dy) c 0 (h)K h 2 (u, y) f (y)ω d (dy) ω d (du) 2 ≤ E f ∞ c 0 (h min )K h 2 min (u, y)ω d (dy) c 0 (h)K h 2 (u, y) f (y)ω d (dy) ω d (du) 2 ≤ f 2 ∞ E c 0 (h)K h 2 (u, y) f (y)ω d (dy)ω d (du) 2 ≤ f 2 ∞ f (y) c 0 (h)K h 2 (u, y)ω d (du)ω d (dy) 2 = f 2 ∞ . Hence C 2 ≤ Ξ n 2 E        c 0 (h)K h 2 (u, X 1 )c 0 (h min )K h min (u, X 2 )ω d (du) 2        + Ξ f 2 ∞ × n 2 .
It remains to bound A 1 . We have, using the Cauchy-Schwarz inequality,

E        c 0 (h)K h 2 (u, X 1 )c 0 (h min )K h min (u, X 2 )ω d (du) 2        = y x u c 0 (h)K h 2 (u, x)c 0 (h min )K h 2 min (u, y)ω d (du) 2 f (x)ω d (dx) f (y)ω d (dy) ≤ f ∞ y x u c 2 0 (h)K 2 h 2 (u, x)c 0 (h min )K h 2 min (u, y)ω d (du)× u c 0 (h min )K h 2 min (u, y)ω d (du) ω d (dx) f (y)ω d (dy) ≤ f ∞ y x u c 2 0 (h)K 2 h 2 (u, x)c 0 (h min )K h 2 min (u, y)ω d (du)ω d (dx) f (y)ω d (dy) ≤ f ∞ c 2 0 (h)c 2 (h). Finally, C ≤ Ξ n f 1/2 ∞ c 0 (h) c 2 (h) + Ξ f ∞ n. Hence, given that x ≥ 1, we get C √ x/n 2 ≤ Ξ f 1/2 ∞ c 0 (h) c 2 (h) √ x/n + Ξ f ∞ √ x/n ≤ θ c 2 0 (h)c 2 (h)/(3n) + Ξ f ∞ x/(θ n) + Ξ f ∞ √ x/n ≤ θ c 2 0 (h)c 2 (h)/(3n) + Ξ f ∞ x/(θ n).

Now let us consider

S =        a = (a i ) 2≤i≤n , b = (b i ) 1≤i≤n-1 : n i=2 E{a 2 i (X i )} ≤ 1, n-1 i=1 E{b 2 i (X i )} ≤ 1       
.

We have

D = sup (a,b)∈S         n i=2 i-1 j=1 E{(G h,h min (X i , X j ) + G h min ,h (X i , X j ))a i (X i )b j (X j )}         .
We have, for (a, b) ∈ S,

n i=2 i-1 j=1 E{G h,h min (X i , X j )a i (X i )b j (X j )} ≤ n i=2 i-1 j=1 E |c 0 (h)K h 2 (u, X i ) -f h (u)||a i (X i )||c 0 (h min )K(u, X j ) -f h min (u)||b j (X j )|ω d (du) ≤ n i=2 n-1 j=1 E {|c 0 (h)K h 2 (u, X i ) -f h (u)||a i (X i )|} E{|c 0 (h min )K h 2 min (u, X j ) -f h min (u)||b j (X j )|}ω d (du),
and for any u, using the Cauchy-Schwarz inequality, we get

n i=2 E {|c 0 (h)K h 2 (u, X i ) -f h (u)||a i (X i )|} ≤ √ n n i=2 E{|c 0 (h)K h 2 (u, X i ) -f h (u)| 2 }E{a 2 i (X i )} ≤ √ n n i=2 E{c 2 0 (h)K 2 h 2 (u, X i )}E{a 2 i (X i )} ≤ √ n f ∞ c 2 0 (h)c 2 (h) n i=2 E{a 2 i (X i )} ≤ c 2 0 (h)c 2 (h) n f ∞ . Now since f h min (u)ω d (du) = 1, and E{c 0 (h min )K h 2 min (u, X j )}ω d (du) = 1, we have n-1 j=1 E{|c 0 (h min )K h 2 min (u, X j ) -f h min (u)|ω d (du)|b j (X j )|} ≤ 2 n-1 j=1 E{|b j (X j )|} ≤ 2 √ n n-1 j=1 E{|b 2 j (X j )|} ≤ 2 √ n.
Finally,

n i=2 i-1 j=1 E{G h,h min (X i , X j )a i (X i )b j (X j )} ≤ 2n f ∞ c 2 0 (h)c 2 (h), and 
Dx/n 2 ≤ 4 f ∞ c 2 0 (h)c 2 (h)/nx ≤ θ c 2 0 (h)c 2 (h)/(3n) + 12 f ∞ x 2 /(θ n).
In summary, we have proved

Ax 2 /n 2 ≤ 8x 2 c 0 (h min ) K ∞ /n 2 , Bx 3/2 /n 2 ≤ θ c 2 0 (h)c 2 (h)/(3n) + 6c 2 0 (h min )c 2 (h min )x 3 /n 2 θ C √ x/n 2 ≤ θ c 2 0 (h)c 2 (h)/(3n) + Ξ f ∞ x/(θ n), Dx/n 2 ≤ θ c 2 
0 (h)c 2 (h)/(3n) + 12 f ∞ x 2 /(θ n). But c 2 0 (h min )c 2 (h min ) = c 0 (h min ) K h 2 min (x, y)c 0 (h min )K h 2 min (x, y)ω d (dy) ≤ c 0 (h min ) K ∞ . Thus finally, with probability larger than 1 -5.54|H|e -x , we have, for any h ∈ H, |U(h, h min )/n 2 | ≤ θ c 2 0 (h)c 2 (h)/n + Ξ f ∞ x 2 /(θ n) + Ξ c 0 (h min ) K ∞ x 3 /(θ n 2 ). This ends the proof of Lemma B. Back to (A.9), we have the following control.

Lemma C. With probability greater that 1 -9.54|H|e -x , for any h ∈ H, fhf, fh minfc 0 (h)K h 2 , c 0 (h min )K h 2 min /n ≤ θ f hf 2 + θ c 2 0 (h)c 2 (h)/n + {θ /2 + 1/(2θ )} f h minf 2 + Cx 2 f ∞ /(θ n) + C(K)c 0 (h min )x 3 /n 2 , (A.12)

where C is an absolute constante and C(K) a constant only depending on K.

Finally using Lemma B, we get with probability larger than 1 -9.54|H|e -x , | fhf, fh minfc 0 (h)K h 2 , c 0 (h min )K h 2 min /n| ≤ θ c 2 0 (h)c 2 (h)/n + Ξ f ∞ x 2 /(θ n) + Ξ c 0 (h min ) K ∞ x 3 /θ n 2 )

+ 3 f ∞ /n + {θ /2 + 1/(2θ )} f h min -f 2 + 2 f ∞ x/(θ n) + θ f h -f 2 ≤ θ f h -f 2 + θ c 2 0 (h)c 2 (h)/n + {θ /2 + 1/(2θ )} f h min -f 2 + Cx 2 f ∞ /(θ n) + C(K)c 0 (h min )x 3 /n 2 ,
which completes the proof of Lemma C. Now Proposition A gives with probability larger than 1 -Ξ |H|e -x , for any h ∈ H,

f -f h 2 + c 2 0 (h)c 2 (h)/n ≤ 2 f -fh 2 + C 2 (K) f ∞ x 2 /n,
where C 2 (K) depends only on K. Hence by applying Lemma C with h first and then ĥ we obtain with probability larger than 1 -Ξ |H|e -x , for any h ∈ H, | fhf, fh minfc 0 (h)K h 2 , c 0 (h min )K h 2 min /nfĥf, fh minf + c 0 ( ĥ)K ĥ2 , c 0 (h min )K h 2 min /n| ≤ 2θ fhf 2 + 2θ fĥf 2 + (θ + 1/θ ) f h minf 2 + C(K){ f ∞ x 2 /n + x 3 c 0 (h min )/n 2 }/θ , (A. [START_REF] Klemelä | Estimation of densities and functionals of densities with spherical data[END_REF] where C(K) is a constant only depending on K. Now back to (A.8) and using (A.13), we have fĥf 2 ≤ fhf 2 + pen λ (h) -2{ fhf, fh minfc 0 (h)K h 2 , c 0 (h min )K h 2 min /n} -2 c 0 (h)K h 2 , c 0 (h min )K h 2 min /n pen λ ( ĥ) + 2{ fĥf, fh minfc 0 (h)K ĥ2 , c 0 (h min )K h 2 min /n} + 2 c 0 ( ĥ)K ĥ2 , c 0 (h min )K h 2 min /n ≤ fhf 2 + pen λ (h) -2 c 0 (h)K h 2 , c 0 (h min )K h 2 min /npen λ ( ĥ) + 2 c 0 ( ĥ)K ĥ2 , c 0 (h min )K h 2 min /n + 4θ fhf 2 + 4θ fĥf 2 + 2(θ + 1/θ ) f h minf 2 + C(K){ f ∞ x 2 /n + x 3 c 0 (h min )/n 2 }/θ . Choosing θ = θ/4 yields the result. This completes the proof of Proposition B.

The next proposition gives a bound for the bias term (see [START_REF] Klemelä | Estimation of densities and derivatives of densities with directional data[END_REF]) that is used to obtain rates of convergence. Define for f : S d-1 → R and s even,

D s f = s/2 i=1 2i (2i)! γ 2i,s/2-i D 2i f,
where γ 0 = 1 and

γ i = α 1 +•••+α d-1 =i (-1) α 1 (2α 1 + 1)! • • • (-1) α d-1 (2α d-1 + 1)! .
Proposition C. Assume that f ∈ F 2 (s). Let K be a class s kernel, where s ≥ 2 is even. Then For d = 3 and for von Mises kernel, SPCO algorithm turns to be simple to compute. Straightforward computations yield the next lemma, which specifies the various quantities involved in the procedure.

Lemma D. For S 2 and K(x) = e -x , we have fhfh min 2 = 4πc 2 0 (h) 

n 2 e -2/
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 1 Figure 1: The density f 1,vM in spherical coordinates

Figure 2 :Figure 3 :

 23 Figure 2: (a) Empirical L 2 -risk of fȟ to estimate f 1,vM in function of λ; (b) A zoom

nFigure 4 :

 4 Figure 4: Reconstruction of f 1,vM , n = 500: (a) fh oracle , h oracle = 0.33; (b)/SPCO fĥ , ĥ = 0.25; (c) cross-validation fh CV2 , h CV2 = 0.25.

lim h→0 h

 h→0 -s |E( fh )f | -|α -1 0 (K)α s (K)D s f | = 0.

Table 1 :

 1 MISE over 100 Monte Carlo repetitions to estimate f 1,vM .

		n = 50 n = 100 n = 500
	Oracle	0.0088 0.0064	0.0027
	SPCO	0.0160 0.0091	0.0048
	Cross-Validation 0.0191 0.0099	0.0053

Table 2 :

 2 MISE over 100 Monte Carlo repetitions to estimate f 2,vM .

		n = 50 n = 100 n = 500
	Oracle	0.0086 0.0051	0.0027
	SPCO	0.0122 0.0083	0.0043
	Cross-Validation 0.0139 0.0096	0.0047

Table 3 :

 3 MISE over 100 Monte Carlo repetitions to estimate f 3,vM .

  h 2 h 2 i, j sinh(|X i + X j |/h 2 ) |X i + X j | sinh(|X i /h 2 + X j /h 2 min |) |X i /h 2 + X j /h 2 min | , with c 0 (h) -1 = 4πe -1/h 2 h 2 sinh(1/h 2 ) and c 2 (h) = 2πe -2/h 2 h 2 sinh(2/h 2 ).

	+	4πc 2 0 (h min ) n 2	e -2/h 2 min h 2 min	i, j	sinh(|X i + X j |/h 2 min ) |X i + X j |
	-	8π n 2 c 2 0 (h)c 2 0 (h min )e -1/h 2 e -1/h 2 min	i, j

Acknowledgments

The author thanks the Editor-in-Chief, Christian Genest, an Associate Editor and two anonymous referees for their constructive comments, which helped to improve the manuscript. The author would also like to thank Claire Lacour and Vincent Rivoirard for interesting suggestions and remarks.

Appendix

This Appendix gathers technical results needed to prove the theorems. We shall start with a lemma that collects some standard properties about constants c 0 and c 2 .

Lemma A. We have, as h → 0, c -1 0 (h) = R 0 (K)h d-1 + o(1), (A. [START_REF] Amiri | On the estimation of the density of a directional data stream[END_REF] where R 0 (K) = 2 (d-3)/2 σ d-2 α 0 (K). We also have, as h → 0,

The proof of Lemma A can be found in the proof of Proposition 4.1 of [START_REF] Amiri | On the estimation of the density of a directional data stream[END_REF]. The following Propositions A and B are essential to prove Theorem 1 and 2. Let us start with Proposition A, which is a counterpart of Proposition 4.1 of [START_REF] Lerasle | Optimal kernel selection for density estimation[END_REF] for S d-1 .

Proposition A. Assume that the kernel K satisfies Assumption 1.

There exists n 0 such that, for n ≥ n 0 (n 0 not depending on f ), all x ≥ 1 and for all η ∈ (0, 1) with probability larger than 1 -Ξ |H|e -x , for all h ∈ H each of the following inequalities holds:

Then for a given h, we study the term 2 fhf, fh minf . Let us introduce the degenerate U-statistic

We first control the last term of (A.9) involving a U-statistic. This is done in the next lemma.

Lemma B. With probability greater than 1 -5.54|H|e -x , for any h in H,

We apply Theorem 3.4 of [START_REF] Houdré | Exponential inequalities, with constants, for U-statistics of order two[END_REF] Pr{|U(h,

with A, B, C and D defined subsequently. First, we have

Proof of Lemma C. We have first to control (A.10) and (A.11), namely

Let h and h be fixed. We have

Therefore,

which gives the control of (A.10), viz.

It remains to bound the three terms of (A.11). We get

Furthermore using the Cauchy-Schwarz inequality, we obtain

Consequently, with probability larger than 1 -2e -x , Bernstein's inequality [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF] leads to

The bound on V(h, h ) obtained above is first applied with h = h min ; then we invert the roles of h and h min . Besides, we have