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The packing chromatic number χ ρ (G) of a graph G is the smallest integer k such that its set of vertices V (G) can be partitioned into k disjoint subsets V 1 , . . . , V k , in such a way that every two distinct vertices in V i are at distance greater than i in G for every i,

Recently, Balogh, Kostochka and Liu proved that χ ρ is not bounded in the class of subcubic graphs [Packing chromatic number of subcubic graphs, Discrete Math. 341 (2018), 474483],

thus answering a question previously addressed in several papers. However, several subclasses of cubic or subcubic graphs have bounded packing chromatic number. In this paper, we determine the exact value of, or upper and lower bounds on, the packing chromatic number of some classes of cubic graphs, namely circular ladders, and so-called H-graphs and generalised H-graphs.

Introduction

All the graphs we consider are simple. For a graph G, we denote by V (G) its set of vertices and by E(G) its set of edges. The distance d G (u, v) between vertices u and v in G is the length (number of edges) of a shortest path joining u and v. The diameter of G is the maximum distance between two vertices of G. We denote by P n , n ≥ 1, the path of order n and by C n , n ≥ 3, the cycle of order n.

A packing k-colouring of G is a mapping π : V (G) → {1, . . . , k} such that, for every two distinct vertices u and v, π(u) = π(v) = i implies d G (u, v) > i. The packing chromatic number χ ρ (G) of G is then the smallest k such that G admits a packing k-colouring. In other words, χ ρ (G) is the smallest integer k such that V (G) can be partitioned into k disjoint subsets V i , 1 ≤ i ≤ k, in such a way that every two vertices in V i are at distance greater than i in G for every i, 1 ≤ i ≤ k. A packing colouring of G is optimal if it uses exactly χ ρ (G) colours.

The packing colouring of graphs was introduced by Goddard, Hedetniemi, Hedetniemi, Harris and Rall in [START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF][START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF], under the name broadcast colouring. In their seminal paper [START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF], the question of determining the maximum packing chromatic number in the class of cubic graphs of a given order is posed. In [START_REF] Sloper | An eccentric colouring of trees[END_REF], Sloper proved that the packing chromatic number is unbounded in the 1 Faculty of Mathematics, Laboratory L'IFORCE, University of Sciences and Technology Houari Boumediene (USTHB), B.P. 32 El-Alia, Bab-Ezzouar, 16111 Algiers, Algeria.
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In [START_REF] Gastineau | S-packing colourings of cubic graphs[END_REF], Gastineau and Togni observed that each cubic graph of order at most 20 has packing chromatic number at most 10. They also observed that the largest cubic graph with diameter 4 (this graph has 38 vertices and is described in [START_REF] Alegre | Some large graphs with given degree and diameter[END_REF]) has packing chromatic number 13, and asked whether there exists a cubic graph with packing chromatic number larger than 13 or not. This question was answered positively by Bre²ar, Klavºar, Rall and Wash [START_REF] Bre²ar | Packing chromatic number under local changes in a graph[END_REF] who exhibited a cubic graph on 78 vertices with packing chromatic number at least 14. Recently, Balogh, Kostochka and Liu nally proved in [2] that the packing chromatic number is unbounded in the class of cubic graphs, and Bre²ar and Ferme gave in [5] an explicit innite family of subcubic graphs with unbounded packing chromatic number.

On the other hand, the packing chromatic number is known to be upper bounded in several classes of graphs with maximum degree 3, as for instance complete binary trees [START_REF] Sloper | An eccentric colouring of trees[END_REF], hexagonal lattices [START_REF] Bre²ar | On the packing chromatic number of Cartesian products, hexagonal lattice, and trees[END_REF][START_REF] Fiala | The packing chromatic number of innite product graphs[END_REF][START_REF] Korºe | On the packing chromatic number of square and hexagonal lattice[END_REF], base-3 Sierpi«ski graphs [START_REF] Bre²ar | Packing Chromatic Number of Base-3 Sierpi«ski Graphs[END_REF] or particular Sierpi«ski-type graphs [4], subdivisions of subcubic graphs [START_REF] Bre²ar | Packing chromatic number, (1, 1, 2, 2)colourings, and characterizing the Petersen graph[END_REF][START_REF] Gastineau | S-packing colourings of cubic graphs[END_REF] and of cubic graphs [3], or several subclasses of outerplanar subcubic graphs [START_REF] Gastineau | On the packing chromatic number of subcubic outerplanar graphs[END_REF].

We prove in this paper that the packing chromatic number is bounded in other classes of cubic graphs, extending in particular partial results given in [START_REF] William | Packing chromatic number of certain graphs[END_REF]. More precisely, we determine the exact value of, or upper and lower bounds on, the packing chromatic number of circular ladders (in Section 3), H-graphs (in Section 4) and generalised H-graphs (in Section 5).

Preliminary results

We give in this section a few results that will be useful in the sequel.

Let G be a graph. A subset S of V (G) is an i-packing, for some integer i ≥ 1, if any two vertices in S are at distance at least i + 1 in G. Note that such a set S is a 1-packing if and only if S is an independent set. A packing colouring of G is thus a partition of V (G) into k disjoint subsets V 1 , . . . , V k , such that V i is an i-packing for every i, 1 ≤ i ≤ k.

For every integer i ≥ 1, we denote by ρ i (G) the maximum cardinality of an i-packing in G. Since at most ρ i (G) vertices can be assigned colour i in any packing colouring of G, we have the

following result. Proposition 1 If G is a graph with χ ρ (G) = k, then i=k i=1 ρ i (G) ≥ |V (G)|. Let H be a subgraph of G. Since d G (u, v) ≤ d H (u, v)
for any two vertices u, v ∈ V (H), the restriction to V (H) of any packing colouring of G is a packing colouring of H. Hence, having packing chromatic number at most k is a hereditary property: Proposition 2 (Goddard, Hedetniemi, Hedetniemi, Harris and Rall [START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF])

Let G and H be two graphs. If H is a subgraph of G, then χ ρ (H) ≤ χ ρ (G).
In particular, Proposition 2 gives a lower bound on the packing chromatic number of a graph G whenever G contains a subgraph H whose packing chromatic number is known. As we will see later, all the cubic graphs we consider in this paper contain a corona of a cycle as a subgraph. Recall that the corona G K 1 of a graph G is the graph obtained from G by adding a degree-one neighbour to every vertex of G. In [START_REF] Laïche | Packing colouring of some undirected and oriented coronae graphs[END_REF], we have determined with I. Bouchemakh the packing chromatic number of the corona of cycles. Theorem 3 (Laïche, Bouchemakh, Sopena [START_REF] Laïche | Packing colouring of some undirected and oriented coronae graphs[END_REF])
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The packing chromatic number of the corona graph C n K 1 is given by:

χ ρ (C n K 1 ) = 4 if n ∈ {3, 4}, 5 if n ≥ 5.
This result will thus provide a lower bound on the packing chromatic number of each cubic graph considered in this paper.

Circular ladders

Recall that the Cartesian product G H of two graphs G and H is the graph with vertex set V (G) × V (H), two vertices (u, u ) and (v, v ) being adjacent if and only if either u = v and u v ∈ E(H) or u = v and uv ∈ E(G).

The circular ladder CL n of length n ≥ 3 is the Cartesian product CL n = C n K 2 . Note that CL n is a bipartite graph if and only if n is even.

For every circular ladder CL n , we let

V (CL n ) = {u 0 , . . . , u n-1 } ∪ {v 0 , . . . , v n-1 }, and E(CL n ) = {u i v i | 0 ≤ i ≤ n -1} ∪ {u i u i+1 , v i v i+1 | 0 ≤ i ≤ n -1}
(subscripts are taken modulo n). Figure 1 depicts the circular ladder CL 7 .

Note that for every n ≥ 3, the corona graph C n K 1 is a subgraph of the circular ladder CL n . Therefore, by Proposition 2, Theorem 3 provides a lower bound on the packing chromatic number of circular ladders. More precisely,

χ ρ (CL n ) ≥ 4 if n ∈ {3, 4}, and χ ρ (CL n ) ≥ 5 if n ≥ 5.
William and Roy [START_REF] William | Packing chromatic number of certain graphs[END_REF] proved that the packing chromatic number of a circular ladder of length n = 6q, q ≥ 1, is at most 5. In Theorem 7 below, we extend this result and determine the packing chromatic number of every circular ladder.

We rst need the following technical lemma, which will also be useful in Section 5.

Lemma 4 Let X be the graph depicted in Figure 2, and π be a packing 5-colouring of X. If π(u i ) = 1 and π(v i ) = 1 for some integer i, 3 ≤ i ≤ 5, then either u i or v i has colour 2, and its three neighbours have colours 3, 4 and 5 (the three corresponding edges are the vertical edges surrounded by the dashed box). Proof. The proof is done by case analysis and is given in Appendix A.
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Observe now that for every integer n ≥ 9, the subgraph of CL n induced by the set of vertices {u i , v i | 0 ≤ i ≤ 8} contains the graph X of Figure 2 as a subgraph. Moreover, every packing 5-colouring π of CL n , 6 ≤ n ≤ 8, can be unfolded to produce a packing 5-colouring π of X, by setting π (u i ) = π(u i ) and π (v i ) = π(v i ) for every i, 0 ≤ i ≤ n -1, and π (u n-1+j ) = π(u j-1 ) and π (v n-1+j ) = π(v j-1 ) for every j, 1 ≤ j ≤ 9 -n. This follows from the fact that vertices u j and u n+j , as well as vertices v j and v n+j , are at distance n ≥ 6 from each other, while the largest colour used by π is 5. Therefore, thanks to the symmetries of CL n for every n ≥ 6, Proposition 2 and Lemma 4 give the following corollary.

Corollary 5 Let CL n , n ≥ 6, be a circular ladder with χ ρ (CL n ) ≤ 5, and π be a packing 5colouring of CL n . For every integer i, 0 ≤ i ≤ n -1, if π(u i ) = 1 and π(v i ) = 1, then either u i or v i has colour 2, and its three neighbours have colours 3, 4 and 5.

Let CL n be a circular ladder satisfying the hypothesis of Corollary 5, and π be a packing 5-colouring of CL n . From Corollary 5, it follows that if π(u i ) = 1 and π(v i ) = 1 for some edge u i v i of CL n , then the colour 2 has to be used on the edge u i v i and, since the neighbours of the 2-coloured vertex are coloured with 3, 4 and 5, the colour 2 can be replaced by colour 1.

Therefore, we get the following corollary.

Corollary 6 If CL n , n ≥ 6, is a circular ladder with χ ρ (CL n ) ≤ 5, then there exists a packing 5-colouring of CL n such that the colour 1 is used on each edge of CL n .

Note that from Corollary 6, it follows that for every integer n ≥ 6, χ ρ (CL n ) ≤ 5 implies that CL n is a bipartite graph. Hence, χ ρ (CL n ) ≥ 6 for every odd n ≥ 6.

We are now able to prove the main result of this section. Theorem 7 For every integer n ≥ 3,

χ ρ (CL n ) =    5 if n = 3, or n is even and n ∈ {8, 14}, 7 if n ∈ {7, 8, 9}, 6 otherwise.
Proof. We rst consider the case n ≤ 5. Figure 3 describes a packing 5-colouring of CL 3 and CL 4 , and a packing 6-colouring of CL 5 . We claim that these three packing colourings are optimal. To see that, observe that ρ

1 (CL 3 ) = 2, ρ i (CL 3 ) = 1 for every i ≥ 2, ρ 1 (CL 4 ) = ρ 1 (CL 5 ) = 4, ρ 2 (CL 4 ) = ρ 2 (CL 5 ) = 2
, and ρ i (CL 4 ) = ρ i (CL 5 ) = 1 for every i ≥ 3. The optimality for CL 3 and CL 5 then follows from Proposition 1. The optimality for CL 4 also follows, with the additional observation that colour 2 can be used at most once if colour 1 is used four times.

Assume now n ≥ 6. Since n ≥ 6 and every circular ladder CL n contains the corona graph C n K 1 as a subgraph, we get χ ρ (CL n ) ≥ χ ρ (C n K 1 ) ≥ 5 by Theorem 3 and Proposition 2. Moreover, by Corollary 6, we have χ ρ (CL n ) ≥ 6 if n is odd.

We now consider two general cases.

1. n is even and n / ∈ {8, 14}. As observed above, in that case, it is enough to exhibit a packing 5-colouring of CL n to prove χ ρ (CL n ) = 5.

If n ≡ 0 (mod 6), a packing 5-colouring of CL n is obtained by repeating the following circular pattern (the rst row gives the colours of vertices u i , 0 ≤ i ≤ n -1, the second row gives the colours of vertices v i , 0 ≤ i ≤ n -1, according to the value of (i mod 6)):

1 3 1 2 1 5 2 1 4 1 3 1 If n ≡ 2 (mod 6), which implies n ≥ 20, a packing 5-colouring of CL n is obtained by repeating the previous circular pattern n-20 6 
times and adding a pattern of length 20, as illustrated below:

1 3 1 2 1 5 1 3 1 2 1 3 1 4 1 5 1 3 1 2 1 3 1 4 1 5 2 1 4 1 3 1 2 1 4 1 5 1 2 1 3 1 2 1 4 1 5 1 2 1 3 1
Finally, if n ≡ 4 (mod 6), which implies n ≥ 10, a packing 5-colouring of CL n is obtained by repeating the same circular pattern n-10 6

times and adding a pattern of length 10:

1 3 1 2 1 5 1 3 1 2 1 3 1 4 1 5 2 1 4 1 3 1 2 1 4 1 5 1 2 1 3 1 2.
n is odd and n ≥ 11.

As observed above, in that case, it is enough to exhibit a packing 6-colouring of CL n to prove χ ρ (CL n ) = 6.

Similarly as in the previous case, if n ≡ 1, 3 or 5 (mod 6), a packing 6-colouring of CL n is obtained by repeating the previous circular pattern n-7 6 , n-9 6 or n-5 6 times, respectively, and adding a pattern of length 7, 9 or 5, respectively, as illustrated below:

1 3 1 2 1 5 1 3 1 4 1 2 6 2 1 4 1 3 1 6 1 2 1 3 1 5 1 3 1 2 1 5 1 4 1 2 3 1 4 1 6 2 1 4 1 3 1 2 1 6 1 5 2 1 3 1 1 3 1 2 1 5 1 3 1 2 6 2 1 4 1 3 1 2 1 4 1 5
It remains to consider four cases, namely n = 7, 8, 9, 14, which we consider separately.

1. n = 7.

We rst claim that χ ρ (CL 7 ) ≥ 7. Note that ρ 1 (CL 7 ) = 6, ρ 2 (CL 7 ) = 3, ρ 3 (CL 7 ) = 2, and ρ i (CL 7 ) = 1 for every i ≥ 4. However, if we use six times colour 1, colour 2 can be used at most twice. Hence, at most 13 vertices of CL 7 can be coloured with a colour in {1, . . . , 6}

and the claim follows.

A packing 7-colouring of CL 7 is given by the following pattern:

1 3 1 2 1 4 5 2 1 6 1 3 1 7 2. n = 8.

We rst claim that χ ρ (CL 8 ) ≥ 7. A packing 7-colouring of CL 8 is given by the following pattern:

1 3 1 2 1 5 1 7 2 1 4 1 3 1 6 1 3. n = 9. We rst claim that χ ρ (CL 9 ) ≥ 7. Note that ρ 1 (CL 9 ) = 8, ρ 2 (CL 9 ) = 4, ρ 3 (CL 9 ) = ρ 4 (CL 9 ) = 2
, and ρ i (CL 9 ) = 1 for every i ≥ 5. However, if we use eight times colour 1, colour 2 can be used at most thrice. Hence, at most 17 vertices of CL 9 can be coloured with a colour in {1, . . . , 6} and the claim follows. A packing 7-colouring of CL 9 is given by the following pattern:

1 3 1 2 1 5 1 4 6 2 1 4 1 3 1 2 1 7

4. n = 14.

We rst claim that χ ρ (CL 14 ) ≥ 6. Note that ρ 1 (CL A packing 6-colouring of CL 14 is given by the following pattern:

1 3 1 2 1 5 1 2 1 4 1 3 1 6 2 1 4 1 3 1 6 1 3 1 2 1 5 1
This completes the proof of Theorem 7.

H-graphs

The H-graph H(r), r ≥ 2, is the 3-regular graph of order 6r, with vertex set

V (H(r)) = {u i , v i , w i : 0 ≤ i ≤ 2r -1},
and edge set (subscripts are taken modulo 2r)

E(H(r)) = {(u i , u i+1 ), (w i , w i+1 ), (u i , v i ), (v i , w i ) : 0 ≤ i ≤ 2r -1} ∪ {(v 2i , v 2i+1 ) : 0 ≤ i ≤ r -1}. u 0 w 0 v 0 u 1 w 1 v 1 u 2 w 2 v 2 u 3 w 3 v 3 u 4 w 4 v 4 u 5 w 5 v 5 u 6 w 6 v 6 u 7 w 7 v 7
Figure 4: The H-graph H(4).

Figure 4 depicts the H-graph H(4). These graphs have been introduced and studied by William and Roy in [START_REF] William | Packing chromatic number of certain graphs[END_REF], where it is proved that χ ρ (H(r)) ≤ 5 for every H-graph H(r) with even r ≥ 4.

We complete their result in Theorem 10 below.

We rst prove a technical lemma. For every pair of integers r ≥ 2 and 0 ≤ i ≤ r-1, we denote by G i (r) the subgraph of H(r) induced by the set of vertices {u 2i , u 2i+1 , v 2i , v 2i+1 , w 2i , w 2i+1 }.

Observe that for every r ≥ 2, all the subgraphs G i (r) are isomorphic to the graph depicted in Figure 5(a), and thus χ ρ (G i (r)) = χ ρ (P 2 P 3 ) = 4 [START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF].

For a given packing 5-colouring π of H(r), we denote by π(G i (r)) the set of colours assigned to the vertices of G i (r). We then have the following result. Lemma 8 For every integer r ≥ 3 and every packing 5-colouring

π of H(r), π(G i (r)) ∩ π(G i+1 (r)) = {1, 2, 3} for every i, 0 ≤ i ≤ r -1.
Proof. Since χ ρ (P 2 P 3 ) = 4, every packing 5-colouring of H(r) must use colour 4 or colour 5 on every G i (r), 0 ≤ i ≤ r -1. We now prove that if colour 4 (resp. colour 5) is used on G i (r), then colour 4 (resp. colour 5) cannot be used on G i+1 (r). Observe rst that every vertex of G i (r) is at distance at most 5 from every vertex of G i+1 (r). Therefore, colour 5 cannot be used on both G i (r) and G i+1 (r). Suppose now that colour 4 is used on both G i (r) and G i+1 (r). Up to symmetries, we necessarily have one of the two following cases.

1. π(u 2i ) = π(w 2i+3 ) = 4 (see Figure 5(b)).

Since every vertex of G i-1 (r) is at distance at most 4 from u 2i , it follows that G i-1 (r) does not contain the colour 4. This implies that G i-1 (r) contains the colour 5 since χ ρ (G i-1 (r)) > 3. By symmetry, G i+2 (r) must also contain the colour 5. Furthermore, since two consecutive G i (r)s cannot both use colour 5, neither G i (r) nor G i+1 (r) contains the colour 5. Now, on the remaining uncoloured vertices of G i (r), colour 1 can be used at most thrice, colour 2 at most twice and colour 3 at most once. If colour 1 is used thrice, then we

necessarily have π(u 2i+1 ) = π(v 2i ) = π(w 2i+1 ) = 1, so that {π(v 2i+1 ), π(w 2i )} = {2, 3},
and no colour is available for w 2i+2 (recall that colour 5 is not used on G i+1 (r)). If colour 1 is used twice, then we necessarily have, up to symmetry, π(v 2i ) = π(w 2i+1 ) = 1, π(u 2i+1 ) = π(w 2i ) = 2, and π(v 2i+1 ) = 3, and no colour is available for w 2i+2 .

2. π(v 2i ) = π(v 2i+3 ) = 4 (see Figure 5(c)).

Similarly as before, since every vertex of G i-1 (r) is at distance at most 4 from v 2i and two consecutive G i (r)'s cannot both use colour 5, it follows from the rst item of Lemma 8 that colour 5 is used neither on G i (r), nor, by symmetry, on G i+1 (r). Again, on the remaining uncoloured vertices of G i (r), colour 1 can be used at most thrice, colour 2 at most twice and colour 3 at most once. If colour 1 is used thrice, then we

necessarily have π(u 2i ) = π(v 2i+1 ) = π(w 2i ) = 1, so that {π(u 2i+1 ), π(w 2i+1 )} = {2, 3}.
Up to symmetry, we may assume π(u 2i+1 ) = 2 and π(w 2i+1 ) = 3, which implies π(u 2i+2 ) = 1, and no colour is available for v 2i+2 (recall that colour 5 is not used on G i+1 (r)). If colour 1 is used twice, then we necessarily have, up to symmetry, π(u 2i+1 ) = π(w 2i ) = 1, π(u 2i ) = π(w 2i+1 ) = 2, and π(v 2i+1 ) = 3, and no colour is available for u 2i+2 .

This completes the proof.

From Lemma 8, it follows that every G i (r) must use colour 4 or 5, and that no two consecutive G i (r)'s can use the same colour from {4, 5}. Therefore, H(r) does not admit any packing 5colouring when r is odd. Corollary 9 For every odd integer r, r ≥ 3, χ ρ (H(r)) > 5.

We are now able to prove the main result of this section.

Theorem 10 For every integer r ≥ 2, χ ρ (H(r)) = 5 if r is even, and 6 ≤ χ ρ (H(r)) ≤ 7 if r is odd.

Proof. We consider two cases, according to the parity of r.

1. r is even.

Since H(r) contains the corona graph C 6 K 1 as a subgraph (consider for instance the 6-cycle u 1 v 1 w 1 w 2 v 2 u 2 ), we get χ ρ (H(r)) ≥ 5 by Theorem 3 and Proposition 2. A packing 5-colouring of H(r) is then obtained by repeating the pattern depicted in Figure 6(a), and thus χ ρ (H(r)) = 5.

r is odd.

From Corollary 9, we get χ ρ (H(r)) ≥ 6. A packing 7-colouring of H(r) is described in times. This gives χ ρ (H(r)) ≤ 7.

This concludes the proof. 5

Generalised H-graphs

We now consider a natural extension of H-graphs. For every integer r ≥ 2, the generalised H-graph H (r) with levels, ≥ 1, is the 3-regular graph of order 2r( + 2), with vertex set

V (H (r)) = {u i j : 0 ≤ i ≤ + 1, 0 ≤ j ≤ 2r -1}
and edge set (subscripts are taken modulo 2r)

E(H (r)) = {(u 0 j , u 0 j+1 ), (u +1 j , u +1 j+1 ) : 0 ≤ j ≤ 2r -1} ∪ {(u i 2j , u i 2j+1 ) : 1 ≤ i ≤ , 0 ≤ j ≤ r -1} ∪ {(u i j , u i+1 j ) : 0 ≤ i ≤ , 0 ≤ j ≤ 2r -1}.
Figure 7 depicts the generalised H-graph with three levels H 3 (4). Note that generalised H-graphs with one level are precisely H-graphs.

The three following lemmas will be useful for determining the packing chromatic number of generalised H-graphs. Lemma 11 For every pair of integers ≥ 3 and r ≥ 3, let H (r) be a generalised H-graph with χ ρ (H (r)) ≤ 5 and let π be a packing 5-colouring of H (r). For every edge u i 2j u i 2j+1 , 1 ≤ i ≤ , 0 ≤ j ≤ r -1, with π(u i 2j ) = 1 and π(u i 2j+1 ) = 1, either u i 2j or u i 2j+1 has colour 2 and its three neighbours have colours 3, 4 and 5.

Proof. We rst claim that every such edge u i 2j u i 2j+1 belongs to a subgraph of H (r) isomorphic to the graph X depicted in Figure 2, in such a way that u i 2j u i 2j+1 corresponds to one of the edges 2,3 x Lemma 15 For every pair of integers ≥ 3 and r ≥ 3, if H (r) is a generalised H-graph with χ ρ (H (r)) ≤ 5, then there exists a packing 5-colouring π of H (r) such that π(u 0 j ) / ∈ {4, 5} and π(u +1 j ) / ∈ {4, 5} for every j, 0 ≤ j ≤ 2r -1.

Proof. Let π be a packing 5-colouring of H (r) such that colour 1 is used on each edge of H (r)

(the existence of such a colouring is ensured by Corollary 14). Thanks to the symmetries of H (r), it suces to prove the result for any vertex u 0 2j , 0 ≤ j ≤ r -1. Suppose to the contrary that π(u 0 2j ) ∈ {4, 5} for some j, 0 ≤ j ≤ r -1. We have two cases to consider.

1. π(u 0 2j ) = 4. Let Y be the subgraph of H (r) depicted in Figure 8, where the vertex u 0 2j is the unique vertex with colour 4, and vertices with colour 1 are drawn as big vertices. Observe that the three neighbours of x, as well as the three neighbours of y, must use colours 2, 3 and 5. Therefore, the common neighbour of x and y must be assigned colour 5. It then follows that no colour is available for z.

2. π(u 0 2j ) = 5.

The proof is similar to the proof of the previous case, by switching colours 4 and 5.

This completes the proof.

Let H (r) be a generalised H-graph satisfying the hypothesis of Lemma 15, and π be a packing 5-colouring of H (r). From Lemma 15, it follows that the restriction of π to the 2rcycle induced by the set of vertices {u 0 j | 0 ≤ j ≤ 2r -1} is a packing 3-colouring. It is not dicult to check (see [START_REF] Laïche | Packing colouring of some undirected and oriented coronae graphs[END_REF]) that a 2r-cycle admits a packing 3-colouring if and only if r is even. Therefore, we get the following corollary. Corollary 16 For every pair of integers ≥ 3 and r ≥ 3, r odd, χ ρ (H (r)) ≥ 6.

We are now able to prove the main results of this section. We rst consider the case of generalised H-graphs H (r) with / ∈ {2, 5}.

Theorem 17 For every pair of integers ≥ 3, = 5, and r ≥ 2, 

χ ρ (H (r)) = 5 if r is even, 6 otherwise. 1 2 1 3 3 1 2 1 4 1 5 1 1 3 1 2 2 1
|0 ≤ i ≤ + 1} ∪ {u i 2 |0 ≤ i ≤ + 1}), we get χ ρ (H (r)) ≥ χ ρ (C 2 +4 K 1 ) = 5
by Theorem 3 and Proposition 2. We now prove χ ρ (H (r)) ≤ 5. Figure 9 depicts a packing 5-colouring of H 4 (2), together with its corresponding colouring pattern. It can easily be checked that this (6 × 4)-pattern is periodic, that is, can be repeated, both vertically and horizontally, to produce a packing 5-colouring of any generalised H-graph of the form H 6i+4 (2j), with i ≥ 0 and j ≥ 1.

If ≡ 4 (mod 6), we use the colouring patterns depicted in Figure 10, depending on the value of modulo 6. The upper six rows of each colouring pattern, surrounded by double lines, can be repeated as many times as required, or even deleted when ≡ 1, 2, 3 (mod 6).

Therefore, these colouring patterns give us a packing 5-colouring of any generalised Hgraph of the form H (2), for every ≥ 3, = 5. It is again easy to check that each of these colouring patterns is horizontally periodic, that is, can be horizontally repeated in order to get a packing 5-colouring of any generalised H-graph of the form H (r), for every ≥ 3, = 5, ≡ 4 (mod 6), and even r.

2. r is odd.

The inequality χ ρ (H (r)) ≥ 6 directly follows from Corollary 16. Therefore, we only need to prove the inequality χ ρ (H (r)) ≤ 6 (recall that ≥ 3 and = 5).

We rst consider a few particular cases. A packing 6-colouring of H 3 (3) is depicted in Figure 11(a), and a packing 6-colouring of H 3 (r), for every odd r ≥ 5, is depicted in In order to produce a packing 6-colouring of H (r), with ≥ 8, r ≥ 3, and r odd, we use the colouring patterns depicted in Figures 13 and14. In both these gures, the four columns surrounded by double lines must be repeated r-3 2 times (and thus do not appear if r = 3) or r-5 2 times when = 9 and r ≥ 5 (and thus do not appear if r = 5). In Figure 14, the six rows surrounded by double lines must be repeated This completes the proof. The last two theorems of this section deal with the cases not covered by Theorem 17, that is, = 2 and = 5, respectively.

(a) H 4 (3) (b) H 4 (r), r ≥ 5, r odd (c) H 6 (r), r ≥ 3,
Theorem 18 For every integer r ≥ 2,

χ ρ (H 2 (r)) = 7 if r ∈ {2, 4, 7, 8, 11}, 6 otherwise. 
Proof. The fact that H 2 (r) does not admit a packing 6-colouring for every r ∈ {2, 4, 7, 8, 11}

has been checked by a computer program, using brute-force search. Packing 7-colourings for each of these graphs are depicted in Figure 15.

Assume now r / ∈ {2, 4, 7, 8, 11}. We checked by a computer program, again using brute-force search, that the subgraph of such a generalised H-graph induced by three successive ladders, that is, by the set of vertices {u j i | 0 ≤ i ≤ 5, 0 ≤ j ≤ 3}, does not admit a packing 5-colouring.

Packing 6-colourings of such generalised H-graphs are depicted in Figure 16, according to the value of r, r modulo 3, or r modulo 6 (periodic patterns, made of 6 or 12 columns, are surrounded by double lines).

Theorem 19 For every integer r ≥ 2, χ ρ (H 5 (r)) = 6.

Proof. Again, we checked by a computer program, using brute-force search, that both H 5 (2) and the subgraph of H 5 (r), r ≥ 5, induced by three successive ladders, that is, by the set of vertices {u j i | 0 ≤ i ≤ 5, 0 ≤ j ≤ 6}, do not admit a packing 5-colouring. Packing 6-colourings of H 5 (r), r ∈ {2, 3, 5}, are depicted in Figure 17, while packing 6-colourings of H 5 (r), r = 4 or r ≥ 6, are depicted in Figure 18 according to the value of r modulo 4, or r modulo 6 (periodic patterns, made of eight or twelve columns, are surrounded by double lines and are repeated at least once when r ≡ 0 (mod 4) or r ≡ 3 (mod 6)). [START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF] 

Discussion

In this paper, we have studied the packing chromatic number of some classes of cubic graphs, namely circular ladders, H-graphs and generalised H-graphs. We have determined the exact value of this parameter for every such graph, except for the case of H-graphs H(r) with r ≥ 3, r odd (see Theorem 10), for which we proved 6 ≤ χ ρ (H(r)) ≤ 7. Using a computer program, we have checked that χ ρ (H(r)) = 7 for every odd r up to r = 13. We thus propose the following question.

Question 1 Is it true that χ ρ (H(r)) = 7 for every H-graph H(r) with r ≥ 3, r odd?

In [START_REF] Laïche | On the Packing colouring of Undirected and Oriented Generalized Theta Graphs[END_REF][START_REF] Laïche | Packing colouring of some undirected and oriented coronae graphs[END_REF], we have extended the notion of packing colouring to the case of digraphs. If D is a digraph, the (weak) directed distance between two vertices u and v in D is dened as the length of a shortest directed path between u and v, in either direction. Using this notion of distance in digraphs, the packing colouring readily extends to digraphs. Recall that an orientation of an undirected graph G is any antisymmetric digraph obtained from G by giving to each edge of G one of its two possible orientations. It then directly follows from the denition that χ ρ (D) ≤ χ ρ (G) for any orientation D of G. A natural question for oriented graphs, related to this work, is then the following.

Question 2 Is it true that the packing chromatic number of any oriented graph with maximum degree 3 is bounded by some constant? 
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 1 Figure 1: The circular ladder CL 7 .
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 2 Figure 2: The graph X.
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 3 Figure 3: Optimal packing colouring of CL 3 , CL 4 and CL 5 .
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 5 Figure 5: The subgraph G i (r) and two congurations for the proof of Lemma 8.
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 6 Figure 6(b), where the circular pattern (surrounded by the dashed box) is repeated r-3 2
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 36 Figure 6: Packing colouring patterns for H-graphs.
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 8 Figure 8: The subgraph Y of H (r).
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 1153 Figure 11(b) (the rst four columns, surrounded by a double line, are repeated r-5 2 times, and thus do not appear if r = 5). A packing 6-colouring of H 4 (3) is depicted in Figure 12(a), and a packing 6-colouring of H 4 (r), for every odd r ≥ 5, is depicted in Figure 12(b) (the rst four columns are repeated r-5 2 times). A packing 6-colouring of H 6 (r), for every odd r ≥ 3, is depicted in Figure 12(c) (the four columns surrounded by a double line are repeated r-3 2 times, and thus do not appear if r = 3). A packing 6-colouring of H 7 (3) is depicted in Figure 12(d), and a packing 6-colouring of H 7 (r), for every odd r ≥ 5, is depicted in Figure 12(e) (the four columns surrounded by a double line, are repeated r-3 2
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 6 ( mod 6) 6 times (and thus do not appear if = 8).
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 15 Figure 15: Packing 7-colourings of H 2 (r), r ∈ {2, 4, 7, 8, 11}.
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 18 Figure 18: Colouring patterns for H 5 (r), r = 4 or r ≥ 6.

Figure 21 :

 21 Figure 21: Congurations for the proof of Claim 2 (the double edge is the edge u 0 2 u 0 3 ).

  Note that ρ 1 (CL 8 ) = 8, ρ 2 (CL 8 ) = 4, ρ 3 (CL 8 ) = ρ 4 (CL 8 ) = 2, and ρ i (CL 8 ) = 1 for every i ≥ 5. However, if we use eight times colour 1, colour 2 can be used at most twice, and then colour 4 at most once. On the other hand, if we use seven times colour 1, then, either colour 2 is used thrice, and then colour 4 can be used at most once, or colour 2 is used at most twice, and then colour 4 can be used at most twice. Hence, at most 15 vertices of CL 8 can be coloured with a colour in {1, . . . , 6}

and the claim follows.

  Figure 9: A packing 5-colouring of H 4 (2) and its corresponding colouring pattern. Colouring patterns for H 3 (3) and for H 3 (r), r ≥ 5, r odd.1. r is even. Since the corona graph C 2 +4 K 1 is a subgraph of H (r) for every r ≥ 2 (consider the cycle of length 2 + 4 induced by the set of vertices {u i 1
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	12 13 12 13 16 13 16 21 21	12 13 12 13 16 13 16 12 15 13 16 14 12 17 14 15 12 13 12 13 16 21 21 31 31 21 21 21 51 31 21 31
	41 51 41 51 21 14 17	41 51 41 51 21 14 13 14 12 14 13 13 13 12 13 12 41 51 41 51 21
	13 12 13 12 13 31 51	13 12 13 12 13 31 51 21 71 31 51 71 21 41 51 61 13 12 13 12 13
	21 31 21 31 41	21 31 21 31 41		21 31 21 31 41
	15 14 15 14 12 r = 2	15 14 15 14 12 r = 4	15 14 15 14 12 r = 7
	31 21 31 21 31	31 21 31 21 31		31 21 31 21 31
	12 13 14 31 51 21 16 12 15 21 31 31 14 14 16 31 21 21 15 13 13 21 61 51 13 12 14 (d) H 7 (3) 21 51 41 14 13 12 31 21 31 12 14 15 51 31 21 21 51 41 14 23 12 31 14 31 12 61 25 = 9, r = 3 13 12 16 12 13 12 15 12 61 23 12 13 15 12 16 51 41 21 31 31 13 12 13 14 12 21 31 61 21 51 14 15 14 15 13 31 21 31 31 21 12 13 12 12 14 51 41 51 41 31 13 12 13 16 12 41 51 41 31 31 14 51 13 12 13 14 14 23 12 21 31 21 21 21 51 31 15 14 15 13 13 12 14 31 21 31 51 51 31 21 41 51 41 31 31 21 51 13 12 13 14 14 13 12 51 41 21 21 21 51 41 12 13 15 16 13 12 13 12 13 12 13 16 41 51 41 51 21 13 12 13 12 13 21 31 21 31 41 15 14 15 14 12 31 21 31 21 31 41 51 41 51 21 13 12 13 12 14 21 31 21 31 31 15 14 15 14 12 31 21 31 21 61 = 9, r ≥ 5 = 10, r ≥ 3 41 51 31 12 13 12 51 41 51 13 12 13 21 31 21 14 15 14 31 21 61 15 14 12 21 31 51 13 12 13 61 51 21 12 13 14 13 12 13 12 16 41 51 41 51 31 12 13 12 13 12 51 41 51 41 51 13 12 13 12 13 21 31 21 31 21 14 15 14 15 14 31 21 31 21 61 15 14 15 14 12 21 31 21 31 51 13 12 13 12 13 21 31 21 31 31 41 51 41 51 21 31 21 31 21 51 12 13 12 13 14 14 15 14 15 15 12 13 12 13 14 14 15 14 15 13 61 51 41 51 21 12 13 12 13 15 41 51 41 51 21 13 12 13 12 13 21 41 51 41 41 15 13 12 13 12 31 21 31 21 61 41 31 21 31 21 12 13 12 13 15 41 51 41 51 21 13 12 13 12 16 21 31 21 31 41 15 14 15 14 13 31 21 31 21 21 61 51 41 51 31 13 12 13 12 14 12 13 12 13 15 41 51 41 51 21 13 12 13 12 16 51 41 51 41 31 12 13 12 13 14 31 21 31 21 21 21 31 21 31 51 15 14 15 14 12 31 21 31 21 61 ≡ 0 (mod 6) ≡ 1 (mod 6) ≡ 2 (mod 6) ≥ 12 ≥ 13 ≥ 8 12 13 12 13 16 41 51 41 51 21 13 12 13 12 13 21 31 21 31 41 15 14 15 14 12 31 21 31 21 31 12 13 12 13 15 41 51 41 51 61 13 12 13 12 12 51 41 51 41 41 12 13 12 13 13 31 21 31 21 21 12 13 12 13 16 41 51 41 51 21 13 12 13 12 15 21 31 21 31 31 15 14 15 14 12 31 21 31 21 41 12 13 12 13 13 41 51 41 51 21 13 12 13 12 15 21 31 21 31 61 15 14 15 14 12 31 21 31 21 31 13 12 13 12 16 41 51 41 51 31 12 13 12 13 12 31 21 31 21 41 15 14 15 14 13 21 31 21 31 21 13 12 13 12 15 41 51 41 51 31 12 13 12 13 12 51 41 51 41 61 13 12 13 12 14 21 31 21 31 21 13 16 13 12 17 13 12 15 21 21 21 54 31 21 41 31 14 13 14 21 14 15 13 12 31 51 71 36 21 31 21 61 13 16 13 12 14 13 16 14 12 17 15 21 21 21 51 31 21 21 21 31 31 31 14 13 14 13 12 15 13 13 15 12 12 31 51 71 21 61 31 41 71 21 41 61 (e) H 13 12 16 13 12 13 12 13 12 12 12 14 13 12 13 12 13 15 12 15 14 15 13 12 13 12 13 15 14 15 14 15 13 r = 8 r = 11
	= 11, r = 3 13 12 13 12 14 13 12 13 12 15 = 11, r ≥ 5 51 41 51 41 21 21 31 21 31 31	15 14 15 14 12 21 31 21 31 41
	12 13 12 13 16	15 14 15 14 12		13 12 13 12 13
		31 21 31 21 61		41 51 41 51 21
				12 13 12 13 16
	≡ 3 (mod 6)	≡ 4 (mod 6)		≡ 5 (mod 6)
	≥ 15	≥ 16		≥ 17

7 

(r), r ≥ 5, r odd Figure

12:

Proof. We consider two cases, according to the parity of r.
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u 3 v 3 , u 4 v 4 or u 5 v 5 of X. Indeed, consider rst the extremal case of H 3 (3), and observe that X is a subgraph of the subgraph of H 3 (3) induced by the set of vertices {u 0 0 , . . . , u 0 5 } ∪ {u 4 0 , . . . , u 4 5 } ∪ {u 1 2 , u 1 3 , u 2 2 , u 2 3 , u 3 2 , u 3 3 }.

Our claim then follows for H 3 (3) thanks to its symmetries.

It is now easy to see that our claim holds for every generalised H-graph H (r) with , r ≥ 3.

The result then follows by Lemma 4.

From Lemma 11, it follows that if π(u i 2j ) = 1 and π(u i 2j+1 ) = 1 for some edge u i 2j u i 2j+1 of H (r), 1 ≤ i ≤ , 0 ≤ j ≤ r -1, then the colour 2 has to be used on this edge and, since the neighbours of the 2-coloured vertex are coloured with 3, 4 and 5, the colour 2 can be replaced by colour 1. Therefore, we get the following corollary.

Corollary 12 For every pair of integers ≥ 3 and r ≥ 3, if H (r) is a generalised H-graph with χ ρ (H (r)) ≤ 5, then there exists a packing 5-colouring of H (r) such that, for every pair of integers i and j, 1 ≤ i ≤ , 0 ≤ j ≤ r -1, the colour 1 is used on the edge u i 2j u i 2j+1 of H (r).

Lemma 13 For every pair of integers ≥ 3 and r ≥ 3, let H (r) be a generalised H-graph with χ ρ (H (r)) ≤ 5 and π be a packing 5-colouring of H (r). For every j, 0 ≤ j ≤ 2r -1, π must assign colour 1 to one vertex of each of the edges u 0 j u 0 j+1 and u +1 j u +1 j+1 (subscripts are taken modulo 2r).

Proof. The proof is done by case analysis and is given in Appendix B.

Let H (r) be a generalised H-graph with χ ρ (H (r)) ≤ 5. From Corollary 12 and Lemma 13, it follows that one can always produce a packing 5-colouring of H (r) that uses colour 1 on each edge u i 2j u i 2j+1 of H (r), 0 ≤ i ≤ + 1, 0 ≤ j ≤ r -1. Since adjacent vertices cannot be assigned the same colour and H (r) is a bipartite graph, we get the following corollary. Corollary 14 For every pair of integers ≥ 3 and r ≥ 3, if H (r) is a generalised H-graph with χ ρ (H (r)) ≤ 5, then there exists a packing 5-colouring of H (r) such that the colour 1 is used on each edge of H (r).

A Proof of Lemma 4

The congurations used in the proof correspond to partial colourings of the graph X and are depicted in Figures 19 and20, with the following drawing convention. If {a, b} is the set of colours assigned to two distinct vertices, then the colour of both these vertices is denoted a, b. If the same conguration describes two partial colourings of X and the colours assigned to some vertex by these two colourings are respectively a and b, then the colour of this vertex is denoted a|b. Finally, if a vertex has no available colour, its colour is denoted ?.

Suppose that for some i, 3 ≤ i ≤ 5, π(u i ) = 1 and π(v i ) = 1. We rst prove the following claim.

Claim 1 2 ∈ {π(u i ), π(v i )}.

Proof. Assume to the contrary that this is not the case, that is, {π

Thanks to the symmetry exchanging u i and v i , we may assume π(u i ) < π(v i ), without loss of generality. Recall that there is no edge

We consider the following cases (subscripts are taken modulo n).

In that case, we necessarily have π(u i+1 ) ∈ {1, 2, 5}.

, so that π(u i-1 ) = 2 and no colour is available for v i-2 (see Figure 19(a)). If π(u i+2 ) = 2 (and π(v i+1 ) = 5), then {π(u i-1 ), π(v i-1 )} = {1, 2}, and no colour is available either for u i-2 or for v i-2 (see Figure 19

and no colour is available for u i-2 (see Figure 19(c)). If π(v i+1 ) = 1, then either π(u i-1 ) = Figure 19: Congurations for the proof of Lemma 4 (the double edge is the edge u i v i ). This completes the proof of Claim 1.

By Claim 1, we can thus assume π(u i ) = 2, without loss of generality (again, thanks to the symmetry exchanging u i and v i ), so that π(v i ) ∈ {3, 4, 5}. To nish the proof of Lemma 4, we need to prove that {π(u i-1 ), π(u i+1 )} = {3, 4, 5} \ {π(v i )}. Suppose that this is not the case. We consider the following cases, according to the value of π(v i ).

In that case, we necessarily have π(u i+1 ) ∈ {1, 4, 5}.

If π(u i+1 ) = 1, then {π(u i+2 ), π(v i+1 )} = {4, 5}, so that π(u i-1 ) = 1, and no colour is available for v i-1 (see Figure 20(a)).

If π(u i+1 ) = 4, then either π(u i-1 ) = 1, so that π(v i-1 ) = 5, and no colour is available for u i-2 (see Figure 20(b)), or π(u i-1 ) = 5, which contradicts our assumption since it would imply {π(u i-1 ), π(u i+1 )} = {3, 4, 5} \ {π(v i )}.

Similarly, if π(u i+1 ) = 5, then either π(u i-1 ) = 1, so that π(v i-1 ) = 4, and no colour is available for u i-2 (see Figure 20(c)), or π(u i-1 ) = 4, which again contradicts our assumption.

2. π(v i ) = 4 (the case π(v i ) = 5 is similar, by switching colours 4 and 5).

In that case, we necessarily have π(u i+1 ) ∈ {1, 3, 5}.

, and no colour is available for v i-1 . If π(u i+2 ) = 5 and π(v i+1 ) = 3, then π(v i-1 ) = 1, and no colour is available for u i-1 (see Figure 20(d)).

If π(u i+1 ) = 3, then either π(u i-1 ) = 1, so that π(v i-1 ) = 5, and no colour is available for u i-2 , or π(u i-1 ) = 5, which contradicts our assumption (see Figure 20(e)).

Finally, if π(u i+1 ) = 5, then either π(u i-1 ) = 1, so that π(v i-1 ) = 3, and no colour is available for u i-2 , or π(u i-1 ) = 3, which contradicts our assumption (see Figure 20(f )).

This completes the proof of Lemma 4.

B Proof of Lemma 13

We rst prove the following claim.

Claim 2 For every integer j, 0 ≤ j < r, either π(u 0 2j ) = 1 or π(u 0 2j+1 ) = 1. Proof. Thanks to the symmetries of H (r), it is enough to prove the claim for the edge u 0 2 u 0 3 .

Suppose to the contrary that π(u 0 2 ) = 1 and π(u 0 3 ) = 1. Thanks to the symmetries of H (r), we can assume π(u 0 2 ) < π(u 0 3 ), without loss of generality.

We consider four cases. The corresponding congurations are depicted in Figure 21, using the same drawing convention as for the proof of Lemma 4 (see Appendix A).

1. π(u 0 2 ) = 2 and π(u 0 3 ) = 3.

3 )} = {4, 5}, which implies π(u 0 1 ) = 1, and no colour is available for u 0 0 (see Figure 21(a)). If π(u 1 2 ) = 4, then either π(u 0 1 ) = 1, which implies π(u 0 0 ) = 5, and no colour is available for u 1 1 , or π(u 0 1 ) = 5, which implies π(u 0 4 ) = 1, π(u 0 5 ) = 2, and no colour is available for u 1 4 (see Figure 21(b)). The case π(u 1 2 ) = 5 is similar, by switching colours 4 and 5. 2. π(u 0 2 ) = 2 and π(u 0 3 ) = 4 (the case π(u 0 2 ) = 2 and π(u 0 3 ) = 5 is similar, by switching colours 4 and 5).

, and no colour is available for u 1 1 (see Figure 21(c)). If π(u 1 2 ) = 3, then either π(u 0 1 ) = 1, which implies π(u 0 0 ) = 5, and no colour is available for u 1 1 , or π(u 0 1 ) = 5, which implies π(u 2

2 ) = π(u 1 3 ) = 1, so that π(u 2 3 ) = 2, and no colour is available for u 3 2 (see Figure 21(d)). Finally, if π(u 1 2 ) = 5, then either π(u 0 1 ) = 1, which implies π(u 0 0 ) = 3, and no colour is available for u 1 1 , or π(u 0 1 ) = 3, which implies π(u 1 1 ) = 1, π(u 2 1 ) = 2, and no colour is available for u 1 0 (see Figure 21(e)).

π(u 0

2 ) = 3 and π(u 0 3 ) = 4.

3 )} = {2, 5}, and thus either π(u 0 1 ) = 1, so that π(u 0 0 ) = 2, and no colour is available for u 1 1 , or π(u 0 1 ) = 2, so that π(u 0 0 ) = 1, and no colour is available for u 1 0 (see Figure 21(f )). If π(u 1 2 ) = 2, then either π(u 2 2 ) = 1, which implies π(u 3 2 ) = 5, and no colour is available for u 2 3 , or π(u 2 2 ) = 5, which implies π(u 1

3 ) = 1, and no colour is available for u 2 3 (see Figure 21(g)). Finally, if π(u 1 2 ) = 5, then either π(u 0 1 ) = 1, which implies π(u 0 0 ) = 2, and no colour is available for u 1 1 , or π(u 0 1 ) = 2, which implies π(u 1 1 ) = 1, and no colour is available for u 2 1 (see Figure 21(h)).

4. π(u 0 2 ) = 3 and π(u 0 3 ) = 5. This case is similar to the previous one, by switching colours 4 and 5, except when π(u 1 2 ) = 1 (which implies {π(u 2

2 ), π(u 1 3 )} = {2, 4}) and π(u 0 1 ) = 2. In that case, we necessarily have π(u 0 0 ) = π(u 1 1 ) = 1, which implies π(u 1 0 ) = 4, and no colour is available for u 2 1 (see Figure 21(i)).

5. π(u 0 2 ) = 4 and π(u 0 3 ) = 5.

3 ) = 1, and no colour is available for u 3 3 (see Figure 21(j)). If π(u 1 2 ) = 2, then either π(u 0 1 ) = 1, which implies {π(u 0 0 ), π(u 1 1 )} = {2, 3}, so that π(u 1 0 ) = 1, and no colour is available for u 2 0 , or π(u 0 1 ) = 3, which implies π(u 2 2 ) = π(u 1 3 ) = 1, so that π(u 2 3 ) = 3, and no colour is available for u 3 2 (see Figure 21(k)). Finally, if π(u 1 2 ) = 3, then either π(u 0 1 ) = 1, which implies π(u 0 0 ) = 2, and no colour is available for u 1 1 , or π(u 0 1 ) = 2, which implies π(u 0 0 ) = π(u 1 1 ) = 1, so that π(u 1 0 ) = 3, and no colour is available for u 2 1 (see Figure 21(l)).

This completes the proof of Claim 2.

Since the cycle induced by the set of vertices {u 0 0 , u 0 1 , . . . , u 0 2r-1 } has even length, and adjacent vertices cannot be assigned the same colour, it follows from Claim 2 that colour 1 must be used on each edge u 0 j u 0 j+1 , 0 ≤ j ≤ 2r -1 (subscripts are taken modulo 2r). By symmetry, colour 1 must also be used on each edge u +1 j u +1 j+1 , 0 ≤ j ≤ 2r -1. This concludes the proof of Lemma 13.