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Abstract. We consider a problem of Discrete Tomography that has
been open for 20 years: the reconstruction of convex lattice sets from
their horizontal and vertical X-rays (X-rays is the mathematical term
for the number of points of a set in a sequence of consecutive lines).
We prove that it can be solved in polynomial time for the subclass of
the regular lattice sets. Regularity is a property related to the relative
position of the points of the set with extreme abscissa and ordinate.
This algorithm that we call ConvexTomo follows the classical strategy
initiated by E. Barcucci et al. for the reconstruction of horizontally and
vertically convex 4-connected lattice sets. The approach introduced for
the reconstruction of this class of lattice sets can be adapted until the
creation of combinatorial structures called switching components. They
are used to express horizontal and vertical convexity as a conjunction
of 2-clauses. Then polynomial time algorithms solving 2-SAT provide
polynomial time algorithms of reconstruction. The difficulty to overcome
is that convexity (and no more directional convexities) requires 3-clauses
which makes this approach no more polynomial.

In this paper, we present a new approach encoding the research of a
convex configuration of the switching components in the research of a
path between two sets of vertices in a Directed Acyclic Graph. This re-
duction passes through the introduction of a new class of problems of
computational and discrete geometry that we call Convex Aggregation:
given a convex lattice set A ⊂ Z2 and an ordered finite family of lattice
sets Bi ⊂ Z2 called blocks (blocks are around A), does there exist a non
empty subset of blocks such that their union with A remains convex?
We reduce the question to the research of a path connecting two sets
of vertices in a Directed Acyclic Graph. Then we investigate its vari-
ant related to the research of a convex configuration of the switching
components. This problem is made of four related problems of Convex
Aggregation. We reduce it again in a more complex manner to the re-
search of a path in Discrete Acyclic Graph. It provides the final step of
the algorithm ConvexTomo with a polynomial time complexity whereas
the clauses approaches might be exponential.



Fig. 1. Considered problem of Discrete Tomography: Find a convex polygon
with given numbers of interior lattice points on the horizontal and vertical lines. The
solution is a convex lattice set.
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1 Introduction4

1.1 About Discrete Tomography5

In the mid 1990s, researchers in Material Science and especially in three6

dimensional Electron Microscopy previewed the development of an up-7

coming technology able to count the number of atoms of a material8

crossed by a beam of straight lines [8]. Under the same principle than9

Computerized Tomography, they intended to use this process in order to10

reconstruct the 3D structure of different materials (proteins, crystals...)11

with a very high level of precision. They started to use the algorithms12

of Computerized Tomography well-known in Medical Imaging. They dis-13

covered that these algorithms designed for the investigation of materials14

at a scale where it can be assumed to be continuous were absolutely not15

well-suited at a level where the set of atoms is closer to a discrete set16

of points. The discrete nature of the objects to be reconstructed is the17

first difficulty which makes CT algorithms ineffective at the atomic scale.18

A second difficulty comes from the very low number of X-rays -from 219

to 10- which can be used in Material Science since the X-rays damage20

the atomic structure. As comparison, CT-scans provide usually hundreds21

of X-rays. The third difference with Computerized Tomography is that22

for the reconstruction of the atomic structure of crystals (see [3, 26] for23

crystalline structures of nano-particules computed with Discrete Tomog-24

raphy in the 2010s years), the atoms are centered on a lattice so that the25
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problem becomes the reconstruction of a lattice set, namely in dimension26

2 a binary matrix.27

The development of the technology for counting the number of atoms28

on straight lines took finally more time than expected but the impulse29

was given to explore this new range of questions dealing with the re-30

construction of discrete sets of points. The sequence of cardinalities of31

the intersections of a discrete set with consecutive parallel lines has been32

called by keeping the physical term of X-ray while the reconstruction of33

a discrete set from X-rays took the name of Discrete Tomography [15, 20,34

21]. Due to the technical principle providing the measurements and the35

complexity of the considered problems, a special attention has been given36

on the problem in dimension 2.37

1.2 Problem Statement38

An X-ray is the sequence of the cardinalities of the intersection between39

a given lattice set and the consecutive diophantine lines in a chosen direc-40

tion. In the two-dimensional case of the vertical and horizontal directions,41

it leads to the following definition:42

Definition 1. Given a finite lattice set S ⊂ [1..m]× [1..n], its vertical X-43

ray V (S) ⊂ Zm is the vector of coordinates vi(S) = |{(x, y) ∈ S|x = i}|44

for 1 ≤ i ≤ m and its horizontal X-ray H(S) ⊂ Zn is the vector of45

coordinates hj(S) = |{(x, y) ∈ S|y = j}| for 1 ≤ j ≤ n (Fig.2).46

Fig. 2. The horizontal and vertical X-rays of the lattice set S are the vectors
V (S) = (1, 2, 4, 5, 3, 1) and H(S) = (2, 4, 4, 5, 1).

It leads to introduce a generic problem of Discrete Tomography. The47

question is the existence of a lattice set with given X-rays and belonging48

to a given class A of lattice sets:49
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Problem 1 (DTA(h, v)).50

Given a class A of finite lattice sets,51

Input: two vectors v ∈ Zm and h ∈ Zn.52

Output: does there exist a lattice set S ∈ A included in the rectangle53

[1..m]× [1..n] with V (S) = v and H(S) = h ?54

The class A is a parameter of Problem DTA(h, v). We introduce the55

class C of convex lattice sets.56

Definition 2. A lattice set S ⊂ Zd is convex if it is equal to its intersec-57

tion with its real convex hull S = convRd(S) ∩ Zd (Fig.3). The class of58

the convex lattice sets is denoted C.59

Fig. 3. A convex lattice set is equal to the intersection of its convex hull (in yellow)
with the lattice Z2.

In other words, the convex lattice sets are the intersections of con-60

vex polygons with the lattice Z2. The complexity of their reconstruction61

DTC(h, v) is a twenty years old open question (Fig.1). The purpose of the62

paper is to break the status quo and provide a partial answer opening63

new perspectives.64

2 State of the Art65

While Computerized Tomography has been stated on the prior works of J.66

Radon (1917) [24] or Fourier Analysis [4], Discrete Tomography found its67

basis in results of D. Gale and H.J. Ryser (1957) [13, 25] or in the more68

general theory of flows in networks by L.R. Ford and D.R. Fulkerson69

(1956) [12].70

According to these fundamental results, if we consider the whole class71

denote W of all lattice sets, the problem DTW(h, v) can be solved in72
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polynomial time [13, 25]. Another way to consider the problem is on a set73

of edges of a complete bipartite graph. It can be solved by any max-flow74

algorithm (Fig.4).75

Fig. 4. Classical problem of reconstruction. The problem of reconstruction of a
lattice set with prescribed horizontal and vertical X-rays can be reformulated in terms
of flows in a bipartite graph. It can also be solved with the polynomial time algorithm
of H.J. Ryser [25].

Many variants of this problem have been investigated, not only with76

horizontal and vertical X-rays but in different dimensions, with different77

directions of X-rays and different kinds of atoms. In dimension 3, the78

problem is related with timetables or data security. Both variants are79

NP-complete [11, 22] and this extension is related with multi-commodity80

flow problems [18]. The reconstruction of sets with different kinds of atoms81

can also be considered with one X-ray per type of material. The problem82

becomes again NP-hard from two different kinds of atoms [17, 10]. Still83

in dimension 2, the number of X-rays can be increased with a result of84

NP-completeness from three X-rays [16].85

In the two-dimensional case with horizontal and vertical X-rays, the86

complexities of the problem DTA(h, v) have already been determined87

for many classes A. The problem is NP-complete for the class of the 4-88

connected lattice set (4-connected finite subsets of Z2 are called polyomi-89
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noes and their class is denoted P). We have also results with directional90

convexities. By denoting H the class of horizontally convex (H-convex)91

lattice sets i.e with consectutive points in any row (Fig.??), the problem92

is NP-complete [2]. We have of course the same result for the class de-93

noted V of the vertically convex (V-convex) lattice sets. If we consider94

the class of the horizontally and vertically convex (HV-convex) lattice95

sets H ∩ V, the problem remains again NP-complete [27] (Fig.??). No-96

tice that the reconstruction of HV-convex lattice sets is a particular case97

of puzzle games called nonograms. In summary, while the initial prob-98

lem DTW(h, v) without complementary constraints on the solutions can99

be solved in polynomial time, all the variants DTA(h, v) with P, H, V,100

H ∩ V as class A are NP-complete. These complexities in NP are how-101

ever counter-balanced by two major results of the field published in two102

seminal papers [2, 14].103

– Horizontaly and vertically 4-connected subsets of Z2 can be recon-104

structed in polynomial time: DTA(h, v) is polynomial for the class105

A = H ∩ V ∩ P [2].106

– On the other side, results of uniqueness have been obtained for the107

class C of convex lattice sets with different number of directions of108

X-rays. R. Gardner and P. Gritzmann characterized the sets of d di-109

rections for which any convex lattice set is uniquely determined by110

its X-rays [14]. For n = 2 or n = 3 directions, for any directions,111

there exist ambiguous pairs or triplet of X-rays. For n ≥ 7 directions,112

all convex lattice sets are uniquely determined by their X-rays. For113

3 < n < 7, the so-called cross-ratios of the directions provide a charac-114

terization of the sets of direction providing uniqueness or ambiguous115

X-rays [14]. With the directions of X-rays providing uniqueness, these116

results have been completed by a polynomial time algorithm of recon-117

struction [6]. This algorithm follows the same principle than the one118

used for the reconstruction of HV-convex polyominoes [2].119

Class A H and V X-rays 4 directions
or more

H ∩ V ∩ P
(HV-convex polyominoes)

DTH∩V∩P(h, v)
polynomial time [1]

another open question

C
(convex lattice sets)

DTC(h, v)
open question

polynomial time
(if uniqueness) [14, 6]

Table 1. Milestones results

6



The problem DTC(h, v) that we consider in the paper is very close120

to the two milestones results (Tab.1). It deals with very simple objects,121

convex lattice sets, and the most simple directions of X-rays: horizontal122

and vertical. After twenty years of silence, the question of its complexity123

became recently subject of a new attention [9].124

The complexity of DTC(h, v) has not been yet determined because the125

principles used for providing the polynomial time algorithms of Tab.1 [2,126

6] do not hold. First, we don’t have the uniqueness property used for the127

polynomial time algorithm from 4 directions of X-rays [6]. There are many128

ambiguities expressed by boolean variables. Secondly, the combinatorial129

expression of the convexity constraint requires 3-clauses whereas HV-130

convexity is expressed by a conjunction of 2-clauses which can be solved131

in a polynomial time.132

2.1 Main Result133

We prove in the paper that the problem DTC(h, v) of the reconstruction134

of convex lattice sets with given X-rays can be solved in polynomial for135

the subclass of the regular convex lattice sets (Fig.6). Regularity is re-136

lated with the positions of the points of the lattice set with minimal and137

maximal abscissa and ordinate. These extreme points are the feet of the138

lattice set (Fig.5).139

Fig. 5. The four feet of a lattice set S are denoted South, West, North and East.

Definition 3. Given a lattice set S ⊂ Z2, the South, West, North and140

East feet are its four subsets141

South(S) = {(x, y) ∈ S|∀(x′, y′) ∈ S, y′ ≥ y},142

West(S) = {(x, y) ∈ S|∀(x′, y′) ∈ S, x′ ≥ x},143
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North(S) = {(x, y) ∈ S|∀(x′, y′) ∈ S, y′ ≤ y},144

East(S) = {(x, y) ∈ S|∀(x′, y′) ∈ S, x′ ≤ x}.145

The lattice set S is said irregular if there exists (X,Y ) ∈ Z2 verifying146

either x(South(S)) < X < x(North(S)) and y(West(S)) < Y < y(East(S)),147

or x(South(S)) > X > x(North(S)) and y(West(S)) > Y > y(East(S)).148

Otherwise, S is said regular (Fig.6).149

Fig. 6. Regular lattice sets are the lattice sets such that there exists no integer point
(X,Y ) (represented by the green cross) separating the pairs of feet in opposite corners.

The class of the regular lattice sets (Fig.6) is denoted R (then the150

class of the regular convex lattice sets is C ∩ R). The main result of the151

paper is the following theorem:152

Theorem 1. The algorithm ConvexTomo solves DTC∩R(h, v) with a worst153

case time complexity in O(m4n4 + m11n2) where we can assume m ≤ n.154

The time complexity of ConvexTomo is high but polynomial.155

2.2 A Strategy Passing through Intermediary Results on a156

New Convex Aggregation Problem157

The algorithm ConvexTomo follows the guidelines of the three first steps158

of the classical polynomial time algorithm designed for the reconstruction159
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of HV-convex polyominoes [2]. The first step fixes the feet in a regular160

position (there are a polynomial number of possible positions). Under this161

assumption, the second step determines some points belonging to all the162

solutions (the set In) and some other points which can be excluded from163

all solutions (the set Out). It ends while the so-called filling operations do164

not allow to determine any new point or if a contradiction follows from a165

non empty intersection In∩Out 6= ∅ (in this case, the considered position166

of the feet admits no solution).167

Data: m, n, h ∈ Zn, v ∈ Zm

Result: Regular convex lattice set In ⊂ [1,m]× [1, n] verifying H(In) = h and
V (In) = v

1 for regular configuration South, East, North, West do
2 /* Step 1 - Initialization of the feet */

3 Out← RectangleBorder \ (South ∪ East ∪North ∪West)
4 In← convR2(South ∪ East ∪North ∪West) ∩ Z2

5 NW ∪NE ∪ SE ∪ SW← DecompositionIn(Shell)
6 /* Step 2 - Filling operations */

7 FillTomo(m,n, h, v,NW,NE,SE, SW, In,Out)
8 /* Step 3 - Compute Extended Switching Components */

9 Extended Switching Components ← SwitchingComponents(m,n,h,v,In,
Out)

10 /* Step 4 - Convex Aggregation */

11 In← ConvexAggregation(m,n, v, h,NW,NE, SE,SW, In, Extended
Switching Components)

12 end

Algorithm 1: Main algorithm ConvexTomo(m,n, h, v)

The set of the remaining undetermined points is a shell between the168

points of In and the ones of Out. It is denoted Shell. It is the set of the169

points which might belong to some solutions and be outside from oth-170

ers. These ambiguities are formalized with a decomposition of the shell171

in combinatorial structures called switching components. After the fill-172

ing operations, the prescribed X-rays are guaranteed but it remains to173

determine a configuration of the switching components providing a con-174

vex lattice set. Unfortunately, the classical approach encoding convexities175

with clauses is unable to provide a polynomial algorithm.176

This combinatorial difficulty is the main challenge to overcome. Our177

main contribution is a new approach which allows to solve it in polyno-178

mial time in the case of the regular lattice sets. This result requires first179

recent results on regular switching components stated in Property 2 [19].180

It requires also a better understanding of the combinatorial problem. It181
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can be seen as a specific problem of Convex Aggregation of either the odd182

parts, or the even parts of the switching components to the set In. This183

problem being quite hard to handle, we provide first results on a more184

generic problem of same nature:185

Given a finite convex lattice set A ⊂ Z2 and q finite lattice sets Bi called186

blocks, is it possible to add blocks to In so that their union remains187

convex?188

It is the problem denoted ConvexAggregation(A,Bi). It is stated189

more precisely in Sect.4 in Problem 2. Under the assumption that the190

blocks Bi can be ordered (their rows and columns are ordered), we pro-191

vide a polynomial time algorithm for solving it although its expression192

with boolean variables requires again 3-clauses. The result is stated in193

Theorem 2. The main idea is that convexity can be controlled through194

the local property that all the turning angles of the border have the same195

orientation. The only information that we need to keep in memory for196

building a convex contour is the last edge. This deep property allows to197

solve ConvexAggregation(A,Bi) in polynomial time by reducing it to198

the research of a path connecting two subsets of vertices in a Directed199

Acyclic Graph (DAG) (Property 3).200

If we come back to the problem of Discrete Tomography DTC∩R(h, v),201

it can be seen as four related problems of Convex Aggregation. We build202

one DAG per problem and call them the slave DAGs. Then the relations203

between the four solutions that we search for are controlled by building204

a fifth DAG that we call master DAG. It allows to encode the existence205

of a solution of DTC∩R(h, v) with the considered feet in the existence of206

a path joining two regions of the master DAG (Theorem 3). It provides207

the fourth and final step of the algorithm ConvexTomo reconstructing a208

convex solution of DTC∩R(h, v) in polynomial time if there exists one.209

The benefit of the paper is to solve this highly non trivial combinato-210

rial problem DTC∩R(h, v) with a completely new approach. The reduction211

of the problem of Convex Aggregation to the research of path in a DAG212

(Property 3) is an intermediary result which has its own interest.213

2.3 Plan214

The polynomial time algorithm ConvexTomo is presented in the following215

order. We start with the presentation of its three first steps in Sec.3. Then,216

the problem can be reformulated into a particular question of Convex217

Aggregation. Before solving it, we need first to investigate a more simple218

problem of the same kind. Sec.4 is devoted the presentation of generic219

Convex Aggregation and its reduction to the research of a path in a DAG220
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(Property 3). We adapt the approach for the fourth and last step of the221

algorithm ConvexTomo with a master DAG and four slave DAGs in Sec.5.222

Its final complexity analysis provides a proof of Theorem 1.223

3 ConvexTomo - Steps 1/2/3 - From X-rays to Extended224

Switching Components225

Following the guidelines of the original algorithm presented in [2] for226

DTH∩V∩P(h, v), we start by fixing the position of the feet.227

3.1 Step 1 - Fixing the Position of the Feet and Initialization228

The algorithm ConvexTomo investigates all the regular configuration of229

the feet. One of them being chosen, we can determine that some points230

are necessary in a solution, if it exists one, while others can be excluded231

from any solution. This principle is formalized by working with a partition232

of [1..m]× [1..n] in three sets of points:233

– The set In contains the points which are known to belong to all solu-234

tions.235

– The set Out contains the points which are known to be excluded from236

all solutions.237

– The set Shell is the set of the undetermined points.238

Once that the feet have been fixed, we add in Out the points with x = 1239

or x = m or y = 1 or y = n which are not in the feet since under the240

assumption of the considered feet, we are sure that they don’t belong to241

any solution. As we search for a convex solution, we initialize the set In242

with the convex hull of the feet (Fig.7).243

The convex hull of In provides a partition of the undetermined points244

(the shell) in four subsets: the North West, North East, South East and245

South West borders. They are respectively denoted NW, NE, SE and SW246

(Fig.7). The assignation of the points of the shell to its four borders NW,247

NE, SE and SW is done by the function denoted DecompositionIn(Shell)248

in Alg.1.249

250

Complexity Analysis251

There are at most m− 1 possible positions for each one of the South252

and the North feet and n− 1 cases for the West and East feet. It makes253

less than m2n2 configurations of the feet to explore.254
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Fig. 7. Fix the feet and Initalize In, Out, NW, NE, SE and SW. On the left, the
different possible positions of the feet. We do not consider the irregular configurations.
In the middle, a regular position of the feet is chosen. The other points with x = 1 or
x = m or y = 1 or y = n are added in Out (in red). The shell (in grey) is the set of
the points which are not yet determined. On the right, due to convexity, we can add to
In not only the four feet but directly the lattice points of their convex hull. The shell
is thus decomposed in four subsets NW, NE, SE and SW according to their position
relatively to the convex hull of In.

With the configuration of the feet, the computation of the convex hull255

of In takes a constant time. The assignation of the points of the lattice256

to In, Out, NW, NE, SE and SW requires less than O(mn) operations.257

Proposition 1. The initialization takes O(mn) time.258

3.2 Step 2 - Filling Operations - FillTomo259

Filling operations are widely used in Discrete Tomography and we refer260

to [7, 6] for a more complete presentation of the operations with suitable261

data structures.262

Starting from the feet, according to the X-rays, the first run of the263

filling operations fills directly the rows of the West and East feet and264

the columns of the South and North feet so that it does not remain any265

undetermined points on these lines. They are all either in In, or in Out.266

Notice that just with HV-convexity (we recall that convexity implies HV-267

convexity), a whole part of the lattice can be quickly determined (Fig.8).268

A run of the filling operations is organized as follows.269

1. Fill the rows with the procedure FillRows(In,Out, h). It includes the270

four filling operations illustrated Fig.10.271

2. Fill the columns with the procedure FillColumns(In,Out, v) under272

the same principle than for rows.273
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Fig. 8. Filling from the feet. Starting from the feet, the filling operations allow to
fill directly an important part of the lattice. In one run, we obtain a figure that can be
summarized in the right drawing, where the undetermined points are only in the white
zones.

3. As we search for convex solutions, if In has been updated in the pre-274

vious steps, we complete the update by replacing it by its discrete275

convex hull (In← convv(In) ∩ Z2).276

4. If In or Out have been updated in the three previous steps, we com-277

plete Out by all the hidden points (a point x is hidden if convR2({x}∪278

In) ∩Out 6= ∅ - Fig.10).279

5. Update the four borders SE, NE, NW and SW of the shell.280

Fig. 9. The filling operations used in FillRows(In,Out, h) and
FillColumns(In,Out, v). Notice that even if there no point of In in a row, there
is always some points of its convex hull (in yellow) that can be used in a similar way.
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Fig. 10. The filling operations including the points of the convex hull of In and
excluding the undetermined points hidden by a point of Out. On the left, we assume
that new points of In and Out have been determined (the six large disks). Then we
compute the new convex hull with the new points of In and use the tangent lines of
the points of Out to compute the hidden zones (in pink).

We run the filling operations until falling in one of the two following281

cases:282

– We stop if a run does not allow to determine any new point. It is283

for instance the case if we have no more undetermined point. In this284

case, we just have to check the solution. We might also have a set285

of undetermined points expressing the ambiguity of the input. They286

express the possibility that different lattice sets can be solutions.287

– We stop if a point of In is added in Out or conversely. This contradic-288

tion means that the considered position of the feet does not provide289

solutions.290

Complexity Analysis291

With suitable data structures, each run of the classical filling oper-292

ations can be performed in O(mn) time [7, 6]. The complexity do not293

differ for Algorithm FillTomo. We refer to [5] for the dynamic update of294

the convex hull as well as the computation of the hidden points (through295

the tangents). The time of computation of these two parts can be easily296

bounded by O(mn) per new determined point.297

As FillTomo stops if no new point is determined, the number of runs298

is at most the number of undetermined points which is bounded by mn.299
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1 FillTomo Data: m, n, v ∈ Zm, h ∈ Zn and four borders In, Out, NW, NE, SE,
SW

Result: Sets In, Out, SE, NE, NW and SW under the assumption of the given
feet

2 while SE, NE, NW or SW have been decreased do
3 /* Filling operations */

4 FillRows(In,Out, h);
5 FillColumns(In,Out, h);
6 In← convR2(In) ∩ Z2;
7 Out← ShadowIn(Out) ∩ Z2;
8 /* Remove new determined points from SE, NE, NW or SW */

9 Decrease(SE,NE,NW, SW, In,Out);
10 if In ∩Out 6= ∅ then
11 return(”no solution”);
12 end

13 end

Algorithm 2: FillTomo(m,n, v, h, In,Out,NW,NE,SE, SW)

Therefore, the overall time complexity of the function FillTomo is in300

O(m2n2).301

Proposition 2. Algorithm FillTomo requires O(m2n2) operations.302

3.3 Step 3 - Computing the Switching Components -303

SwitchingComponents304

The third step of ConvexTomo occurs only if it remains undetermined305

points. Their set, the shell has a lot of properties. If an undetermined306

point p = (i, j) is in a South border SW ∪ SE, then the point denoted307

p = (i, j + vi) is a North undetermined point (otherwise the filling op-308

erations would have determined (i, j)). We define them as vertical corre-309

spondents. In the same way, any West undetermined point |p = (i, j) has310

an horizontal East correspondent p| = (i+hj , j) (Fig.11). Horizontal and311

vertical correspondences are symmetric relations.312

Their main property is the following:313

Property 1. We consider an instance DTC(h, v) with a position of the feet314

leading to undetermined points at the end of the filling operations. For315

any solution S of DTC(h, v), an undetermined point p is in S if and only316

if its correspondents are not in S.317

Proof. Corresponding points cannot be both in S because their distance318

is hj (horizontally) or vi (vertically) would lead to have too many points319
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Fig. 11. Corresponding points. On the left, the undetermined points are drawn in
grey in white cells. In the middle, a pair of vertical correspondents (green) and a pair of
horizontal correspondents (blue). We represent the corresponding points alternatively
with squares or diamonds. Notice that the segment represented by the dotted ellipse
has only two possible positions. Due to its length, if it contains the square, it does
not contain the diamond and conversely. On the right, the correspondences define
closed paths called switching components which provide a partition of the undetermined
points. For each switching components, either the squares, or the diamonds belong to
a solution.

in the row or column of p. Conversely, they cannot be both outside from320

S because otherwise, it does not remain enough points between them to321

have the prescribed number of points on its row or column.322

Starting from an undetermined point p1, a sequence of correspondents323

can be defined by induction: the point p2k is the horizontal correspondent324

of p2k−1 while p2k+1 is the vertical correspondent of p2k. As the set of the325

undetermined points is finite, the sequence is cyclic.326

Definition 4. A switching component P is a closed path of alternatively327

horizontal and vertical corresponding undetermined points (Fig.12).328

The switching components provide a partition of the shell. Due to329

Property 1, either the points with even indices, or the points with odd330

indices belong to a solution S. This binary state of the switching compo-331

nent with regard to a solution S can be encoded by a boolean variable332

denoted P (S). We choose P (S) = 1 if the points with odd indices are in333

S and P (S) = 0 otherwise.334

The classical approach developed in [2] for reconstructing HV-convex335

polyominoes is to search for an assignment of the boolean variables leading336

to an HV-convex solution S. The approach passes through the encoding337

of the HV-convexity constraint in a conjunction of 2-clauses. It leads to338

a 2-SAT instance (Fig.13).339
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Fig. 12. Switching components. In each switching component, the squares represent
the points with odd indices and the diamonds the ones with even indices. Either the
squares, or the diamonds of a switching component are in a solution. In the two left
cases, the feet are in a regular position, while we have an irregular position of the feet on
the right. In this case, the switching components might have a different structure with
turning sometimes clockwise and sometimes anticlockwise. Such switching components
are said irregular but they don’t occur in the regular case that we investigate.

Convexity can be also be encoded with clauses (Fig.13) but 3-clauses340

might be necessary with the difficulty that 3-SAT is no more polyno-341

mial but NP-complete. This obstruction is the main difficulty of the re-342

construction of convex lattice sets. The new approach presented in next343

Sec.5 requires some properties proved very recently on regular switching344

components [19]. We summarize these properties as follows.345

Property 2. (i) With a regular position of the feet, all the switching com-346

ponents have a constant turning angle (they are called regular).347

(ii) By choosing p1 in NW (it is always possible), for any k, we have348

p1+4k ∈ NW, p2+4k ∈ NE, p3+4k ∈ SE, p4k ∈ SW.349

(iii) The switching components which have two points at Euclidean350

distance 1 are considered as connected. This symmetric relation leads to351

define the connected components of switching components that we call352

extended switching components. The extended switching component of353

a switching component P is denoted P . HV-convexity enforces all the354

switching component of P to be equal to P . Either the points of the NW355

and SE borders of P (represented by squares in Fig.12) belong to S, or the356

points of NE∪SW (represented by diamonds) are in S. For the following,357

we assume that the extended switching components are unstructured sets358

obtained by union of the points of the connected sequences.359

(iv) The points of different extended switching components can share360

neither a row, nor a column.361
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Fig. 13. 2 and 3 clauses encoding convexity. HV-convexity is expressed by a
conjunction of 2-clauses. Thus, the research of an HV-convex solution is reduced to
a 2-SAT instance that can be solved in polynomial time. Expressing convexity in the
same manner, might require 3-clauses with the difficulty that 3-SAT is NP-complete.

(v) The switching components can be ordered according to their rows362

(or equivalently according to their columns). They cannot interlace.363

The algorithm SwitchingComponents decomposes the shell in switch-364

ing components and then merges them in extended switching components.365

Complexity analysis366

The computation is linear in the number of undetermined points. It367

requires no more than O(mn) operations.368

Proposition 3. Algorithm SwitchingComponents takes O(mn) time.369

4 Problem of Convex Aggregation370

The three first steps of Algorithm ConvexTomo led to a stage where any371

assignment of the switching components provides the requested X-rays.372
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Fig. 14. Extended switching components. On the left, due to convexity, the switch-
ing components P 1, P 2, P 3, P 4 are necessarily equal while P 5 is independent. On the
right, we merge P 1, P 2, P 3, P 4 in the extended switching component P 1 and P 5

becomes P 5. The extended switching components are on different rows and columns.
They can also be ordered according to their rows (or columns).

The convexity of the solution is however not yet guaranteed. The ap-373

proaches of the state of the art do not allow to overcome this difficulty.374

Therefore, we explore a new class of problems dealing with Convex Ag-375

gregation. We reduce it to a question of reachability in a Directed Acyclic376

Graph. In the following section, we use this tool to provide the final step377

of Algorithm ConvexTomo.378

4.1 Problem Statement379

We consider a new problem of Convex Aggregation of blocks along a380

convex set. The problem can be stated as follows:381

Problem 2 (ConvexAggregation(A,Bi)).382

Input: - A convex lattice set A ⊂ [0..s]× [0..t] with {(0, 0), (s, t)} ⊂ A383

- a finite sequence of q lattice sets that we call blocks Bi ⊂ [0..s] × [0..t]384

disjoined from A, above the diagonal from (0, 0) to (s, t), with increasing385

abscissa and ordinates so that for any i < j, (x, y) ∈ Bi, (x′, y′) ∈ Bj , we386

have x < x′ and y < y′.387

Output: Does there exist a convex union A ∪ (∪i∈IBi) where I is a non388

empty subset of the indices from 1 to q (Fig.15)?389

We could also generalize the problem with a given non convex lattice390

set A. In this case, the first step of an approach would be to fill the391

non-convex parts of A with blocks and repeat this process until finding392

19



a Convex Aggregation. There is no combinatorial difficulty with such an393

instance. The problem becomes of interest if we start from a set which is394

already convex and search for a non trivial Convex Aggregation of blocks.395

We can assume without loss of generality that the set A contains the396

point (s, 0) and fills the triangle below the diagonal from (0, 0) to (s, t).397

The reason is that the blocks Bi being above the diagonal, the edges of the398

convex hull of A below the diagonal remain unchanged. The combinatorial399

problem is above.400

Fig. 15. An instance of ConvexAggregation(A,Bi) and its solution. On the left,
the input is a convex lattice set A and a sequence of lattice sets Bi. On the right the
output is a non empty union of Bi so that their union with A is still convex. It means
that some of the sets Bi have to be aggregated with A and some others discarded (for
instance the green and the red sets in the suggested solution).

We could encode the choice to add or reject a block Bi by a boolean401

variable but as previously (Fig.13), the convexity is expressed by a con-402

junction of 3-clauses that 3-SAT algorithms cannot necessarily solve in403

polynomial time. It is the same difficulty than the one presented in the404

framework of DTC(h, v).405

4.2 Rewriting ConvexAggregation(A,Bi)] with a Directed406

Acyclic Graph407

We provide a new approach by reducing the problem to the research of a408

path joining two subsets in a Directed Acyclic Graph. Let us consider a409
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solution A∪i∈IBi of the instance ConvexAggregation(A,Bi) as drawn in410

Fig.15. The possible vertices of the upper hull of a solution are necessarily411

upper vertices of A or upper vertices of a block Bi. The set of all these412

upper vertices is denoted U . Then the set of the upper edges of a solution413

is included U×U . We orient them and call them bipoints in order to avoid414

the possible ambiguities with other edges considered in the following.415

Let us consider a bipoint
−→
vv′ ∈ U × U between two vertices v =416

(x0, y0) and v = (x1, y1) in U with y0 ≤ y1. We define its left Left(
−→
vv′)417

as the set of points p ∈ [0..m]× [y0..y1], verifying det(
−→
vv′,−→vp) > 0 (strict418

inequality) while its right is the set of points p ∈ [0..m]× [y0..y1] verifying419

det(
−→
vv′,−→vp) ≤ 0 (large inequality) (Fig.16).420

To complete the notations, given a block Bi, we denote H i the minimal421

horizontal strip containing all the points of the block ( H i = {(x, y)|422

∃(x′, y′) ∈ Bi, ∃(x′′, y′′) ∈ Bi, y′ ≤ y ≤ y′′}). Notice that due to the423

increasing assumption on the blocks in ConvexAggregation(A,Bi), the424

horizontal strips Hj are ordered and disjoined.425

There are bipoints with vertices in U which can clearly not appear426

in the contour of a solution of ConvexAggregation(A,Bi). We want to427

exclude them. We define the set V as the set of bipoints of U×U obtained428

by removing from U × U any bipoint
−→
pp′ ∈ V × V (Fig.16)429

1. with x > x′ or with x =′ and y > y′ (we keep only the bipoints going430

to the right or upward),431

2. or having on its right (in Right(
−→
pp′)) a lattice point which is not in432

A ∪1≤i≤n Bi (such point are called outliers),433

3. or with a point of A on its left (in Left(
−→
pp′)),434

4. or with points of the same block Bi on its right (Bi ∩Right(
−→
pp′) non435

empty) and on its left (Bi ∩ Left(
−→
pp′) non empty).436

Let us come back to a solution A ∪i∈I Bi of the instance Convex437

Aggregation(A,Bi). The upper path connecting the origin to the point438

(s, t) is the concatenation of bipoints of V . Convexity is expressed by the439

property that two consecutive bipoints
−→
pp′ and

−−→
p′p′′ turn always clockwise.440

This condition is the key to build the DAG that we use to solve Problem441

ConvexAggregation(A,Bi) (Fig.17).442

We have however to take care to avoid inconsistent concatenation of443

bipoints as for instance drawn in Fig.17. A path which is passing on the444

left of some points of a block Bi should not be able to pass further on the445

right of Bi. A solution to forbid such inconsistent concatenation is first446

to duplicate the bipoints included in the horizontal strip H i of a block447
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Fig. 16. The excluded bipoints. Let us precise that, although the shapes drawn in
this figure appear to be continuous, they represent discrete lattice sets. Above, the sets

Left(
−→
pp′) and Right(

−→
pp′). Below, we exclude the bipoints with an outlier on their right,

with a point of A on their left, and with a pair of points of the same block on both
sides. They are excluded because they are surely not contour bipoints of a solution of
ConvexAggregation(A,Bi).

Bi but also, without any point of Bi neither on its left, nor on its right.448

This case is illustrated in the lower part of Fig.17. Such duplication leads449

to define a new set of bipoints that we denote V ′. We complete now the450

definitions:451

Definition 5. Let U be the set of the upper vertices of the convex hulls452

of the sets A and of the blocks Bi. Let p(x, y) and p′(x′, y′) be a pair of453

vertices in U .454

The set V is the set of bipoints
−→
pp′ ∈ V ×V satisfying the four condi-455

tions:456

(i) y′ > y or if y′ = y, x′ > x where (x, y) and (x′, y′) are respectively the457

coordinates of p and p′),458

(ii) there is no outlier on the right of
−→
pp′ (([0..s]× [0..t]\ (A∪1≤i≤nBi))∩459

Right(
−→
pp′) = ∅),460

(iii) there is no point of A on the left of
−→
pp′ (A ∩ Left(

−→
pp′) = ∅),461

(iv) there are no pair of points of the same block Bi on the right and462

on the left of
−→
pp′ (for any index i, Bi ∩ Left(

−→
pp′) or Bi ∩ Right(

−→
pp′) is463

empty).464

The final set V ′ is obtained from V by duplicating the bipoints
−→
pp′ in-465

22



Fig. 17. Critical cases. On the left, we have two configurations which might lead to
inconsistent concatenation of bipoints with points of Bi on both sides of the path. We
avoid this problem by adding labels (or colors). Labeling is sufficient to solve the case
above, but not the one below. The reason is that the intermediary bipoint might be
used for a path with the block Bi on its left or on its right (we did no assumption on
the connectivity or convexity of the blocks). To avoid inconsistency, we duplicate this
bipoints and provide a copy with the two possible labels (or colors).

cluded in the horizontal strip Hj of a block Bi but with no point of Bi in466

Left(
−→
pp′) ∪ Right(

−→
pp′). The copy is denoted

−→
pp′∗.467

We label now the bipoints of V ′ in order to avoid inconsistent paths.468

The labels are registered in a vector of dimension q where q is the number469

of blocks Bi.470

Definition 6. For any index i from 1 to q, the label of the bipoint
−→
pp′ ∈ V471

of index i is denoted
−→
pp′[i] and we have:

−→
pp′[i] = 1 if Bi ∩ Right(

−→
pp′) is472

not empty,473 −→
pp′[i] = −1 if Bi ∩ Left(

−→
pp′) is not empty,474
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−→
pp′[i] = 0 otherwise, except if the bipoint is included in the strip H i. In475

this specific case,
−→
pp′[i] = −1 for the original bipoint

−→
pp′ and

−→
pp′∗[i] = 1476

for its copy.477

Fig. 18. Labels. The labels of the bipoint
−→
pp′ are [−1,−1, 1, 0] since it passes to the

right of the two previous blocks B1 and B2, to the left of B3 and does not cross the
horizontal strip H4 of B4.

The labels allow to avoid the concatenation of inconsistent bipoints.478

Concatenation of the bipoint
−→
pp′ with

−−→
p′p′′ is only accepted if they turn479

clockwise and if
−→
pp′[i] and

−−→
p′p′′[i] are equal in the case where the point p′480

in the horizontal strip H i of block Bi. As example, the concatenation of a481

bipoint
−→
pp′[i] of labels [0, 1,−1, 0, 0, 0] with

−→
pp′[i] of label [0, 0, 1,−1, 1, 0] is482

excluded since the third label is different. The clockwise constraint guar-483

antees the convexity of the path while the label consistency guarantees484

that the blocks are either on the left, or on the right of a path obtained485

by concatenation. Formally, we build the following DAG.486

Definition 7. We consider the DAG GA,Bi = (V ′, E). Its vertices are487

the bipoints of V ′. We have an edge from the bipoint
−→
pp′ ∈ V ′ to the488

bipoint
−−→
p′p′′ ∈ V ′ if489

- the angle (
−→
pp′,
−−→
p′p′′) turns clockwise (det(

−→
pp′,
−−→
p′p′′) < 0),490

- and, if p′ is in the horizontal strip H i of the block Bi, then
−→
pp′[i] =491

−−→
p′p′′[i].492

We reduce the problem ConvexAggregation(A,Bi) to the research of493

a path from a bipoint starting at the origin to a bipoint ending at point494

(s, t).495
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Property 3. The set of bipoints
−→
pp′ where p = (0, 0) is denoted V 0 while496

the set of bipoints
−→
pp′ where p′ = (m,n) is denoted V 1.497

The instance ConvexAggregation(A,Bi) admits a solution if and only498

if the DAG GA,Bi admits a non trivial path from the set V 0 to the set V 1
499

(the trivial path is the convex border of A excluding all the blocks Bi.500

All labels are −1).501

Proof. First, a solution of ConvexAggregation(A,Bi) has a convex path502

from the origin to (s, t). By taking its consecutive pairs of vertices as503

bipoints, we have a sequence of bipoints turning clockwise, starting from504

a bipoint with the origin in (0, 0) and going to a bipoint with its end in505

(s, t). If they are all in V ′ and verify the conditions of concatenation, they506

provide a path going from V 0 to V 1 in the DAG. Both conditions follow507

directly from the definitions.508

Secondly, we consider a path going from V 0 to V 1 in the DAG GA,Bi .509

The concatenation condition on the labels guarantees that the path passes510

either on the left, or on the right of any block. The orientation condition511

(clockwise angle) guarantees the convexity of the path, and the condition512

that each bipoint has no outlier on its right guarantees that the set of the513

points on the right of the path is the union of A with the blocks providing514

labels equal to +1.515

It remains to notice that the trivial solution of ConvexAggregation(A,516

Bi) corresponds to the excluded path with all labels equal to −1.517

According to Property 3, we can solve ConvexAggregation(A,Bi) by518

searching for a non trivial path from V 0 to V 1 in the DAG GA,Bi . Starting519

from the bipoints of V 0, we use a depth-first search to to determine if V 1
520

is reached. At each vertex (bipoints) of the graph, we give the priority of521

exploration to the following bipoints having a first non null label equal to522

+1 or before −1. With this strategy, the trivial path is the last one to be523

explored, so that the requested result is obtained before considering it.524

Complexity Analysis The number of upper vertices of the sets A ⊂525

[0..s]× [0..t] and of the disjoined blocks Bi ⊂ [0..s]× [0..t] is at most s+s.526

Therefore, the number of bipoints in V is in O(s2). With duplications, it527

provides the number of vertices of the DAG in O(s2). It remains to count528

the number of edges. Edges are no more than triangles. Their number is529

in O(s3).530

About the time to create the DAG GA,Bi , we need first to compute all531

the upper vertices of the convex hulls of A and the blocks. We can assume532

that the lattice points are ordered so that the total time is bounded by533

O(st) (ordered lattice sets provide simple polygons whose convex hulls534
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can be computed in linear time [23]). It provides the set U .535

Then we have to check the conditions required for a bipoint of U × U to536

belong to V . The condition (i) is trivial while each one of the conditions537

(ii) (iii) and (iv) can be resolved in O(st) with a naive algorithm. The538

labels are also computed in O(st). With O(s2) possible bipoints in V , we539

obtain O(s3t) for the computation of V ′.540

The determination of the valid edges of the DAG (clockwise turning angle541

and label’s consistency) can be done in constant time for each pair of542

bipoints (or triangle) and therefore with a total time in O(s3).543

The depth-first search algorithm used to determine whether V 1 can544

be reached from V 0 takes a linear time in the number of vertices and545

edges i.e O(s2 + s3) = O(s3). By counting the time necessary to build546

the graph and to search for a solution, we have (without optimization) a547

worst-case time complexity in O(s3t). It proves the following theorem.548

Theorem 2. The problem ConvexAggregation(A,Bi) in [0..s] × [0..t]549

can be solved in O(s3t).550

5 ConvexTomo - Steps 4 - Convex Aggregation of the551

Extended Switching Components552

5.1 Reformulation of the Problem in Terms of Convex553

Aggregation554

At the end of the third step of the algorithm ConvexTomo, the set In555

and the extended switching components have been computed. It remains556

to find a assignment of the extended switching components providing a557

convex solution. According to Property 2, for each extended switching558

component, we have the choice between aggregating its North West and559

South East parts (represented with squares if the figures) or its South560

West and North East parts (the diamonds in the figures) to the set In.561

Thus, the blocks are the subsets of the extended switching components in562

each border NW, NE, SE and SW. The block Bi of the North West border563

is for instance Bi
NW = P i∩NW. Property 2 (different extended switching564

components have neither rows, nor columns in common) guarantees the565

growing property of the blocks assumed in ConvexAggregation(A,Bi).566

Without the relations induced by the switching components on each567

border, we would have four independent problems of Convex Aggregation568

ConvexAggregation(A,Bi) as solved in previous section (Fig.19). The569

difficulty comes from the fact the four problems are not independent but570

deeply related: If the block Bi
NW is added in the North West border NW,571
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Fig. 19. Convex Aggregation of switching components and corresponding
DAGs. After the third step, the algorithm ConvexTomo provides a decomposition of
the undetermined points in extended switching components (with colored squares and
diamonds). For each color, we aggregate either the squares, or the diamonds to the set
In with the goal to provide a convex lattice set. It’s the problem of Convex Aggregation
that we address to conclude the paper. We start by building four DAGs GNW, GNE, GSE

and GSW corresponding to the four rectangles drawn on the right. The four problems
are considered upward for the North borders and downward for the South borders so
that the switching components provide blocks in the same order.

the block Bi
SE of the same extended switching component in SE has also572

to be aggregated while the corresponding blocks Bi
NE and Bi

SW in NE and573

SW have to be discarded (Fig.19). We could think about exploring the sets574

of solutions on the four border in order determine whether a combination575

of solutions might be consistent but the potential exponential number576

of solutions makes this approach potentially non polynomial. We have577

to solve simultaneously the four related problems of Convex Aggregation.578

The principle that is we use is to build a new DAG that we call the master579

DAG coordinating the aggregation on each border.580

5.2 Building the Master DAG581

We place us after the third step of the algorithm ConvexTomo for an582

instance an instance DTC∩R(h, v) with a regular position of the feet. At583

this stage, the extended switching components P i and the convex set In584

have been computed. We start by defining the four DAGs GNW, GNE,585

GSE and GSW with a subset of In as convex set A and with the switching586

components Bi
NW = P i ∩ NW as block Bi and the same for the three587

other borders. According to the ordering of the blocks, the fours DAGs588
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are oriented upward for the North borders and downward for the South589

borders (Fig.19) so that the blocks Bi of the switching components appear590

in the same order. The vertices of the DAGs are V ′NW, V ′NE, V ′SE and V ′SW591

and their edges ENW, ENE, ESE and ESW as defined in Definition 7. We592

call them the slave DAGs. Then we define the master DAG as follows:593

Definition 8. The master DAG G = (V,E) has a set of vertices V con-594

taining the 4-tuples of bipoints (−−−→wNW,−−→wNE,
−−→wSE,

−−→wSW) ∈ V ′NW × V ′NE ×595

V ′SE × V ′SW verifying two conditions (letter w represents bipoints):596

– Label’s consistency- for any index i from 1 to q, the labels −−−→wNW[i],597

−−→wSE[i] are of same sign (with the convention that 0 is both positive598

and negative). The labels −−→wNE[i] and −−→wSW[i] are also of same sign and599

it is the opposite from the previous pair.600

– Label’s continuity- If there is null label for the four bipoints (−−−→wNW[i] =601

−−→wNE[i] = −−→wSE[i] = −−−→wSW [i] = 0), either all the labels with indices i ≤ i0602

are null (∀i ≤ i0,−−−→wNW [i] = −−→wNE [i] = −−→wSE [i] = −−−→wSW [i] = 0), either603

all labels with indices i ≥ i0 are null (∀i ≥ i0,−−−→wNW [i] = −−→wNE [i] =604

−−→wSE [i] = −−−→wSW [i] = 0).605

We have an edge from (−−−→wNW,−−→wNE,
−−→wSE,

−−→wSW) to (
−−−→
w′NW,

−−→
w′NE,

−−→
w′SE,

−−→
w′SW)606

if three of the bipoints are unchanged (for instance −−−→wNW =
−−−→
w′NW, −−→wNE =607

−−→
w′NE, −−→wSE =

−−→
w′SE) and the pair of different bipoints is an edge of the608

corresponding slave DAG: for instance, (−−→wSW,
−−→
w′SW) ∈ ESW.609

The vertices of the master DAG are made of four bipoints, one on610

each border. The edges between these vertices do not allow to progress611

simultaneously on different border. The contour advances from the East612

and West feet border per border until reaching or not the South and613

North feet.614

The condition of label’s consistency is not sufficient to guarantee the615

coherence of the contour obtained this way. Without the condition of616

continuity, we could imagine that the contour could progress first in the617

North West border until reaching the North foot, before advancing on the618

other borders. In such a case, there would be no guarantee that the choices619

(or labels) done in the North West border would be consistent with the620

ones done afterwards. The condition of continuity avoids such a lost of621

information. The contour does not leave a switching component before622

all the four paths arrived to it. It’s a keypoint to provide the following623

equivalence.624
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5.3 Equivalence between a Path in the Master DAG and a625

Convex Aggregation of the Related Blocks626

We prove the following theorem:627

Theorem 3. We consider an instance DTC∩R(h, v) with a regular posi-628

tion of the feet providing after the third step of algorithm ConvexTomo q629

switching components P i.630

The slave DAGs GNW, GNE, GSE and GSW and the master DAG G =631

(V,E) being defined according to Definition 8, we denote V 0 the 4-tuples632

of vertices (wNW, wNE, wSE, wSW) with all bipoints w starting from the633

West and East feet V 0 ⊂ V 0
NW × V 0

NE × V 0
SE × V 0

SW. In the same way, V 1
634

is the set the valid 4-tuples of bipoints ending at the North and South feet635

V 1 ⊂ V 1
NW × V 1

NE × V 1
SE × V 1

SW.636

The instance DTC∩R(h, v) admits a solution if and only if there is path637

in the master DAG G = (V,E) from V 0 to V 1.638

Proof. We have to prove that a solution of DTC∩R(h, v) provides a path639

from V 0 to V 1 in the master DAG G and conversely that a path in the640

DAG provides a convex lattice set with the prescribed X-rays.641

For the first assertion, we have a convex solution with a contour be-642

tween the four feet. The main point is to show that we can advance on the643

different borders from the East and West feet to the South and North feet644

by using only valid 4-tuples of bipoints and valid edges (valid according645

to the definition of the master DAG). The consistency of the 4-tuples of646

bipoints that can be extracted from the contour is straightforward but647

not the continuity. There are however strategies which allow to guarantee648

this property at each step: we move the bipoint with the less advanced649

starting point with respect to the horizontal strips H i of the switching650

components (as illustrated in Fig.20). By induction, the continuity of 4-651

tuples of bipoints (which is true in V 0) is guaranteed. It provides the first652

assertion.653

For the converse, each path in the master DAG from V 0 to V 1 provides654

a path in the slave DAGs. Theorem 2 insures that each one of these paths655

defines a convex contour with blocks on the left and blocks on the right.656

It remains to prove that the contours on each border are consistent.657

We have a first property: following the path in the DAG until a 4-tuple658

of bipoints (−−−→wNW,−−→wNE,
−−→wSE,

−−→wSW), if a label of one of the bipoints (for659

instance −−−→wNW[i]) is not null, then all the labels which have been visited660

and determined by the path after the index i have non null values for at661

least one of the bipoints of the 4-tuple. This property denoted (i) can be662
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established by induction. It is obvious for the initial 4-tuple of bipoints663

(due to the consistency condition) and it remains true by induction due664

to the continuity condition of the 4-tuple of bipoints.665

Let us show now that the contour gradually built from the path in the666

DAG is consistent. We prove it again by induction. With the consistency667

condition, it is true for the initial 4-tuple of bipoints. Then we assume668

that the contour generated by the path is consistent until the vertex669

(−−−→wNW,−−→wNE,
−−→wSE,

−−→wSW). According to the set of edges E, we can assume670

w.l.g that the next vertex is (−−−→wNW,−−→wNE,
−−→wSE,

−−→
w′SW). If the new bipoint671

−−→
w′SW is inconsistent for the switching component of index j, it means that672

the index already had in the path a non null label. Due to property (i),673

this label is also non null value in the current 4-tuple. As there was no674

inconsistency before, it follows that
−−→
w′SW has an inconsistent label with675

one of the three bipoints −−−→wNW , −−→wNE, −−→wSE. It’s in contradiction with676

the consistency of the 4-tuple (−−−→wNW,−−→wNE,
−−→wSE,

−−→wSW). It proves that the677

contour built from the path in the master DAG is a valid solution and678

therefore provides a convex lattice set with the prescribed X-rays.679

5.4 Algorithm ConvexAggregation680

The fourth step of Algorithm ConvexTomo solves the problem of Convex681

Aggregation issued from the switching components through the research682

of a path in the master DAG G. The algorithm ConvexAggregation starts683

by computing the four slave DAGs. Then it considers all the 4-tuples of684

bipoints in VNW × VNE× VSE× VSW and checks their validity. Afterward,685

it computes the edges of the master DAG by checking the validity and686

the turning angle of the pairs of vertices.687

The final part of the algorithm is the research of a path starting688

from V 0 and reaching V 1. It can be done with depth-first or breadth-first689

search.690

Complexity Analysis691

We start with the computation of the slave DAGS. According to the692

previous analysis, by replacing (s, t) by the upper bound (m,n), it can693

be done in O(m3n).694

For the master DAG, as we have at most m2 bipoints in each slave DAG,695

the number of 4-tuples of bipoints in V is bounded by O(m8). For each696

one of them, testing their validity requires O(q). The computation of the697

vertices of the master DAG takes O(qm8).698

For going from the vertex (
−−−−−−→
pNWp′NW,

−−−−−−→
pNWp′NW,

−−−−−−→
pNWp′NW,

−−−−−−→
pNWp′NW) to one699

of its successors, we have to introduce a new upper point, for instance700
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Data: m, n, In and the extended switching components (P i)1≤i≤q

Result: An assignment of the extended switching component providing a
convex aggregated set

1 /* Compute the slave DAGs GNW, GNE, GSE and GSW with labels */

2 (VNW, ENW)← DAG(In, (P i)1≤i≤q ∩NW);

3 (VNE, ENE)← DAG(In, (P i)1≤i≤q ∩NE);

4 (VSE, ESE)← DAG(In, (P i)1≤i≤q ∩ SE);

5 (VSW, ESW)← DAG(In, (P i)1≤i≤q ∩ SW);
6 /* Compute the master DAG */

7 (V,E)← masterDAG((VNW, VNE, VSE, VSW, ENW, ENE, ESE, ESW, labels);
8 V 0 ← V ∩ V 0

NW × V 0
NE × V 0

SE × V 0
SW;

9 V 1 ← V ∩ V 1
NW × V 1

NE × V 1
SE × V 1

SW;
10 /* Search for a path from V 0 to V 1 */

11 path← searchPath(V, E, V0, V1);
12 readLabels(path)

Algorithm 3: ConvexAggregation(m,n, In, (P i)1≤i≤q)

p′′NW ∈ NW, and then checking if (
−−−−−−→
p′NWp′′NW,

−−−−−−→
pNWp′NW,

−−−−−−→
pNWp′NW,

−−−−−−→
pNWp′NW)701

is a valid vertex. It checks also whether the pair (
−−−−−−→
pNWp′NW,

−−−−−−→
p′NWp′′NW) is702

in ENW.703

The number of edges is bounded by the number of vertices O(m8) times704

the number of possible new points 2m. It makes a number of edges in705

O(m9). The time necessary to check their validity is constant with a suit-706

able data structure containing the edges of the slave DAGs.707

With the number of vertices and edges, the breadth-first search can be708

done in O(m9). As q is lower than m, it provides a total time of compu-709

tation in O(m9). It proves the following theorem.710

Theorem 4. Algorithm ConvexAggregation(m,n, In, (P i)1≤i≤q) solves711

the problem of Convex Aggregation of the blocks issued from the switching712

components in [0..m]× [0..n] with a worst case time complexity in O(m9).713

Notice that if n < m, with a rotation of π
2 , it could be as well O(n9).714

5.5 Proof of Theorem 1715

Theorem 4 provides the time complexity in O(m9) of the algorithm Convex716

Aggregation. According to the propositions 1, 2, 3, the three first steps717

(Initialization, FillTomo, SwitchingComponents) require respectively718

O(mn), O(m2n2) and O(mn) operations. Since there are at most m2n2
719

regular positions of the feet to explore, the overall time complexity of720

Algorithm FillTomo is O(m4n4 + m11n2), as stated in Theorem 1.721
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6 Conclusion722

The problem of the reconstruction of convex lattice sets with prescribed723

horizontal and vertical X-rays is the most challenging problem of com-724

plexity in the framework of Discrete Tomography. The question is to725

determine whether we can handle with ambiguous X-rays and convexity726

constraints in polynomial time.727

The paper is a first step in the direction of a better understanding728

of the relations between ambiguities and convexity. The ambiguities are729

expressed by the switching components. After the three first steps of730

the classical algorithm, they lead to reduce the problem to a question731

of Convex Aggregation. The new idea that we present is that discrete732

convexity is a local constraint. It can be reduced to the property that733

consecutive edges have a clockwise turning angle. Such a constraint can734

be handled with a DAG or more generally with Dynamic Programming.735

The crucial information is the last reconstructed edge so that we can try736

to go further. These two elements (switching components and encoding737

of the last edge) allowed us to develop the polynomial time algorithm738

ConvexTomo in the case of a regular position of the feet. It is a good739

news but why not a more general result ? What happens in the case of740

an irregular position of the feet which is different than for the regular741

positions ? The answers can be reduced to only one word: ”structure”.742

The structure of the regular switching components can be simplified743

by merging them into extended switching components. According to re-744

cent combinatorial results (Property 2 [19]), extended switching compo-745

nents can be ordered (their rows and columns are ordered) so that the746

consecutive blocks to consider in a Convex Aggregation framework are747

also well ordered. This order (or increasing property) is the only assump-748

tion that we did on the blocks in problem ConvexAggregation(A,Bi).749

Without it, there is no doubt that Convex Aggregation would become750

NP-hard. Structural properties are necessary to provide polynomial time751

algorithms of Convex Aggregation. This remark leads to the following752

question: with irregular positions of the feet, do switching components753

(Fig.12) have enough structures to be handled with polynomial time al-754

gorithms ? It’s an open question whose answer could as well lead to a755

polynomial time algorithm as to a result of NP-completeness.756
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Fig. 20. A path in the master DAG and the corresponding solution of
DTC∩R(h, v). We show why any solution of DTC∩R(h, v) can be obtained through
a path from V 0 to V 1 in the master DAG. The path is obtained with the strategy to

advance the bipoint
−→
vv′ with the less advanced point v regarding the horizontal strips

Hi of the switching components. With this strategy, the continuity of the labels is
guaranteed by induction.

35


