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Abstract 
We give in this article a general frame for propagat- 
temporal constraints over events, these events be- 

ing exclusively considered as sets of possible occurrences 
(SOPOs). These SOPOs are the numerical expression of 
an uncertainty about the exact occurrence of an event, 
while this exact occurrence is constrained by the possible 
occurrence of other events.Thiz key-problem of schedul- 
ing is an instance of the consistent labeling problem and 
is known to be NP-complete. We introduce a graphi- 
cal representation of SOPOs which is a useful tool to 
understand and help solving the problem.We give a con- 
straint propagation algorithm which is a Waltz-type fil- 
tering algorithm. Theoretically, it does not discard all 
the inconsistent occurrences; however, under a number of 
relatively weak assumptions, the problem can be trans- 
formed into a solvable one. 

1 Introduction 

occurrences so that they become compatible with the symbolic 
relations which act as constraints upon them. 

Suppose, for example, you plan to meet someone during 
your lunch-break. The two events lunch-break and meeting 
are linked by the relation during. Suppose your lunch-break 
lasts from half an hour to an hour, between 11:30 and 13:30, and 
your meeting lasts at least half an hour, ending before 12:30. 
This defines the initial sets of occurrences of lunch-break and 
meeting. In order to be consistent with the constraint during, 
the meeting must start after l1:30 and the lunch-break must 
start before 12:O0. The sets of occurrences must be modified 
in order to build a coherent schedule. This operation consists 
in solving what we call a constrained occurrences problem. It 
must be done whenever some numerical scheduling is involved. 
Things may seem simple on this example, but the situation 
can become considerably more complex when more relations 
are considered. 

When you want to define how a task must be done, you have 
to solve two different sub-problems: 

1. First you have to structure the task.To perform this, you 
define the various elementary subtasks which allow the 
performance of the main task, and what resources will be 
needed. Furthermore, the logical relations which must be 
kept between the subtasks are stated. Some of them are 
symbolic temporal relations such as precedence relations. 

is not in the scope of this paper. A general architecture where 

2. Then you have to detail the actual execution of the task, 
that is when the subtasks will take place and the resources 

the place of a temporal module is clearly defined can be found 

will be used. The main output of this activity is a sched- 
ule which keeps some symbolic information from the first 

in [3] (Delesalle Descotte, 86) for example. 

step and gives some numerical information. In particular, 
the duration of the tasks is a key data in schedules. . 

The aim of this article is to provide a theoretical model 
for the definition and propagation of numerical temporal con- 
straints for the second subproblem. Its purpose is to be a gen- 
era1 framework for building a “temporal module” in a schedul- 
ing system. What the scheduling system should otherwise be 

A formal definition of the problem is given in Section 2. Sec- 
tion 3 introduces a graphical point of view which helps under- 
standing how a constraint propagation algorithm can work.In 
Section 4 we discuss the validity of this model and show that 
it is not possible to discard every inconsistent occurrence un- 
less some restrictions on the sets of occurrences are made and 
disjunctive relations are “eliminated” in some way. We also 
evaluate the computational complexity of the propagation. In 
Section 5 we relate our work to others’, especially Allen’s, who 
introduced a complete taxonomy of symbolic relations among 
intervals, and Vere’s, who introduced the concept of window 
which is a particular kind of set of occurrences. Finally we 
conclude with suggestions on how the model could be strength- 
ened. 

2 A Formalization of the Constrained 
Occurrences Problem 

2.1 What Events Are 

be described as the association of a logic predicate and an oc- 
currence. The semantics of the predicate is outside the scope 
of this temporal module. It can denote a fact, the existence 

Events are the basic objects of our time module. An event can 

The basic objects of our model are events linked with sym- 
bolic temporal relations. Events are characterized by sets of 
possible occurrences, where an occurrence is defined as the in- 
terval during which an event happens. The function of a tem- 
poral module for sched uling is to modify these sets of possible 

of a process, the execution of a task, whatever the abstraction 
level. On the contrary, the occurrence is the significant data 
at this relatively low-level stage of reasoning. An occurrence 
is a one-dimensional interval, its intuitive meaning is “the mo- 
ments when the predicate holds”. The case of events happening 
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over multiple intervals, like having-lunch (which happens ev- 
ery day), is not considered here. At a higher level, such events 
can be easily decomposed into elementary subevents happening 
over single intervals. 

Handling events with a uniquely defined occurrence is not 
very interesting. In most cases, the occurrence of an event is 
numerically constrained : it belongs to a domain where the 
duration, beginning and end of the occurrence are constrained. 
This domain is called the set of possible occurrences (SOPO). 
It should be now obvious that the meaning of the predicate is 
not relevant to the temporal module point of view. 

2.2 Linking Events with Temporal Relations 

The second type of input data are relational data. They are 
temporal links between events and are mainly derived from 
higher level descriptions of the world. For example, suppose 
you want to buy something, then your action of paying hap- 
pens during buying because paying is hierarchically a subtask 
of buying. Moreover paying happens before getting the 
object because paying is a condition of getting the object. 

For the temporal module, all the relations are translated 
into a low-level set of primitives which describe the relationship 
between two intervals. These primitives are before, during, 
overlap... A complete enumeration was given by Allen [l]. 

However, these primitives are used to link two intervals, and 
we want to link SOPOs. This requires some formalization. A 
temporal relation is a boolean function defined over the SOPOs 
of two events (we will also say that it is defined between these 
events). The arguments of such a relation are therefore two 
intervals : 

R12 : 01x02 + {W 

(w32) H R12(01,02) 

Where R12 is a temporal relation, Or and 02 are SOPOs, and 
or,02 are occurrencesThis relation express a constraint over 
the parameters of orandoz (beginning, end and duration). For 
example, if Rl2 is the relation before, b(o) the beginning of o 
and e(o) the end of o: 

R(ol,oz) = 1 * b(o2) > e(a) 

Let Or,. . . , 0, be n SOPOs and or,. . . , o, be n occurrences 
such that 

Vi E [l,n],Oi E Oi 

The set {oi,i E [l,n]} f 0 occurrences is a solution of a set of 
relations { Rjk, j, k E [1, n]} iff : 

V.j,k E [Ml, Rjk(oj, ok) = 1 

Semantically, a solution of a set of temporal relations is a de- 
scription of a world where each event has one occurrence and 
where all the temporal relations are satisfied. 

2.3 The Constrained Occurrences Problem 

t 
I I J I I 

I + 

0 1 3 5 6 8 

Figure 1: one-dimensional representation of occurrences 

problem is : 
Discarding from Or,, . . , 0, the occurrences which do not be- 
long to any solution. 

Of course, finding all the solutions of R would be more satis- 
fying, but it is impossible to explicitly represent them since the 
SOPOs contain an infinite number of elements. It is then nec- 
essary to keep implicitly the solutions in the SOPO-based rep- 
resentation. In order to “extract” a solution, you must choose 
one occurrence o in a SOPO. If the constrained occurrences 
problem has been solved, o belongs to at least one solution. 
Choosing o is equiva!ent to defining a new SOPO, thus a new 
constrained occurrences problem. Solving this new problem 
will give all the solutions containing o. 

Naturally, you can more generally choose a subset of a 
SOPO. As long as R is not changed, you know that the new 
constrained occurrences problem has some solutions. 

3 A Graphical Representation of Con- 
strained SOPOs 

3.1 A 2-D representation of occurrences 

An occurrence being a numerical interval, a one-dimensional 
line is an obvious graphical aid for representing occurrences 
and relations between them (fig 1). However, a 1-D representa- 
tion is ambiguous because SOPOs have to be represented with 
intervals whereas they are sets of intervals. For example, the 
interval on fig 1 could represent the set of occurrences begin- 
ning after 2 and ending before 6, or the set of such occurrences 
with a duration equal to 3, or the set of occurrences whose 
beginning cannot belong to [4,5]. This ambiguity comes from 
the 2-dimensional nature of an occurrence : it is completely 
determined with two parameters : beginning and end. This is 
why we use, as a graphical aid, the plan of occurrences with 
beginning and end axis (fig 2). As occurrences begin before 
they end, all possible ones belong to the dotted region of fig 2. 
The main diagonal has a particular meaning: it is the locus of 
occurrences whose beginning equals the end, thus the locus of 
dates. This links the 2-D representation with the 1-D one in the 
following manner : the beginning and the end of any occurrence 
o are dates and can then be “projected,, onto the diagonal (fig 
2). The segment defined by these two dates is the set of all the 
“instants,, forming o, in other words, this segment is the 1-D 
representation of o. It is thus possible to switch easily from one 
point of view to the other : 2-D for sets of occurrences, 1-D for 
occurrences. 

Fig 3 is a unambiguous representation of the SOPOs that 
fig 1 cannot represent. 

Let er, . . . ,e, be events, Or,. . . , 0, their SOPOs and R a set 
of relations between the events. The constrained occurrences 
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begin 

Figure 2: two-dimensional representation of occurrences 

end 

begin 

Figure 4: A mapping of the plan using Allen’s primitives 

end 

Figure 5: An example of a disjunctive constraint 

Figure 3: Fig 1 revisited with a 2-D representation 

3.2 2-D Representation of Relations and SOPOs 

Let R be a temporal relation, and o an occurrence, the set of all 
the occurrences verifying the relation R with o, {z/R(z, o) = 
l}, is a generally easily representable region in the plan. We 
will call it the region allowed by o and R. 

Fig 4 is a “complete” mapping of the plan with the set of 
temporal relations given by Allen [I]. Any occurrence on it can 
be temporally related to o. Of course, there are obviously other 
ways of mapping, with more or less primitives, depending on 
how complex the temporal module should be. We will keep this 
one in the following. 

Disjunctive relations can be represented as the union of the 
regions allowed by the parts of the disjunction (fig 5). In the 
same way, conjunctions are represented through the graphical 
intersection of regions (fig 6). 

A SOP0 is also a region of the plan. The simplest SOP0 
(except the trivial occurrence set) is the window, using Vere’s 
(one-dimensionnal) (71 t erminology. Occurrences in a window 
must begin after an earliest start time and end before a latest 
finish time. If their duration is not constrained, the window 
has a triangular shape, if their duration is given, the window 

is a segment (fig 7). The SOP0 of a given event can theoreti- 
cally have any shape. However, in the following, we will speak 
only of one sort of SOPO, unless otherwise stated, namely the 
generalized window where the beginning, end and duration of 
an occurrence are independantly bounded. This simple repre- 
sentation covers a fair number of cases. The shape of such a 

end 

begin 

Figure 6: An example of a conjunctive relation 
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begin 

earliest start time 

end 

end 

latest 
finish 
time 

earliest 
finish 

begin 

Figure 9: Propagation of a constraint on a SOP0 
Figure 7: windows 

time l/J lajst begg 

start time start time 

Figure 8: a generalized window 

SOP0 is on fig 8. 

3.3 Propagation of Temporal Constraints over 
SOPOS 

Returning to the problem of temporal relations, a SOP0 can 
be considered as a disjunctive clause where each part of the 
clause is a single occurrence. In this respect, given a relation R 
and a SOP0 Or, we can define a region allowed by 01 and R as 
the union of the regions allowed by each occurrence in Or and 
R (formally, this allowed region is {z / 30 E Or /R(z, o) = 1)). 
If R is defined between Or and a SOP0 02, this means that 
any occurrence of 02 that does not belong to this region does 
not belong to any solution, whereas the other occurrences may 
do so. On a dual point of view, the intersection of all such 
regions({z /Vo E Or, R(z, o) = 1)) defines a “certain” region : 
all the elements of 02 in this region belong to a solution, what- 
ever the choice of an element in Or, whereas the elements which 
do not belong to this certain region might not belong to any 
solution (fig 9). 

This is the basis of a temporal constraint propagation. Each 
time a SOP0 Oi is constricted, the regions allowed by 0; and 
any relation &j involving Oi are constricted. If the SOPOs Oj 
such that Oi &j Oj are therefore constricted, the propagation 
must be furthered. The general structure of the algorithm is 
thus : 

begin 
while S # 0 

for i = 1,n 
if Oi E S 

for j = 1, n 
ifOjflA(Oi,&j) #0 

Oj + OjnA(Oi,&j) 
S + SU{Oj} 

endif 
endfor 
s + s - (Oi) 

endif 
endfor 

endwhile 
end 

where S is the set of modified SOPOs to be checked and 
A (Oi , &j) is the region allowed by Oi and R+j. 

An interesting feature of this method is that disjunctive con- 
straints can be propagated. Disjunctive constraints can create 
“holes” in a SOPO. In fig 10, the SOP0 Or creates a hole in 
the window 02 which therefore loses its connexity. However, 
constraints involving 02 can still be propagated, furthering a 
kind of common information about the two parts of 02. 

4 Evaluating the Algorithm 

4.1 Consistency 

The constrained occurrences problem belongs to a class of prob- 
lems which received much attention in Artificial Intelligence 
and Operational Research, namely the consistent labeling prob- 
lem. In our case, the domain of variables is not finite because 
it is continuous. 
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end 

not discarded by 
propagating 
“before (01,02) or 
after (0 1,02)” 

Cl 
discarded, thus 
creating a hole I 

begin. 

Figure 10: Making a hole in a SOP0 

The algorithm we gave for temporal constraint propagation 
in section 3.3 is the same than Waltz’s algorithm [8] used for 
scene analysis problems. According to Mackworth’s terminol- 
ogy (41 it achieves only arc-consistency because it only checks 
consistency between pairs of SOPOs. As defined in section 2.2, 
belonging to a solution is a global property of an occurrence. 
A local check between pairs of SOPOs is necessary but not 
sufficient. This is why such an algorithm is only a filtering 
algorithm, it ‘lets go by” inconsistent occurrences. 

In fact the consistent labeling problem is NP-complete [4]. 
However, if the SOPOs are generalized windows, and if the 
disjunctive relations me eliminated by enumerating the differ- 
ent terms, the constrained occurrences problem can be solved 
with an arc-consistency algorithm (see [S] for hypotheses a bit 
weaker than generalized windows). Such an elimination should 
come after the arc-consistency elimination, otherwise the in- 
terest in our formalism of propagating disjunctions would be 
greatly spoiled. 

4.2 Complexity 

We will consider here only the complexity of the arc-consistency 
algorithm since it is the heart of the constraint propagation 
algorithm. We saw in section 3.3 that each time a SOP0 is 
modified, a consistency check must be made. The complexity 
of the algorithm is then : 
number of constrictions x cost of a consistency check 

( number of constricted SOPOs x number of constrictions 
$r SOPO) X ( number of relations per SOP0 x cost of a 
consistency check between two SOPOs) 

NnXeXrXc 

The evaluation of this expression is in fact quite difficult : 

n number of events or SOPOs, is precisely defined and cannot 
be influenced. 

e measures the efficiency of the constrictions, e = 1 means that 
each SOP0 is modified once with a “one-shot”, definitive 
constriction. Unfortunately, things can go very bad in the 

end 

Figure 11: A bad case for constraint propagation 

case of contradictory relations. For example, on fig 11, 
e = 4 for A and B : you must apply four times the 
constraints before (A,B) and before (B.A) in order 
to remove this inconsistent conjunction. 

r is the average number of relations involving a given event. If 
r is big, the algorithm will be more costly, having more 
constraints to propagate. But the “information” of a con- 
striction will be propagated more efficiently, thus lowering 
e. 

c depends on the “shape” of the SOPOs, and not on their num- 
ber. If the shape is very complicated (for example with a 
lot of holes) the global efficiency will be lowered. In fact, c 
is directly bound to the number of disjunctions, since they 
make holes into SOPOs, thus complicating their shape. 

As an example, if r is biggest, e lowest, the complexity of the 
algorithm is cn2. It is analogous to the complexity of arc- 
consistency algorithms : Nn2, where N would be the number 
of elements in a SOPO. But we must repeat here that the true 
complexity can be highly variable. 

5 Related Works 

Many systems were designed to be temporal modules. They 
all suppose that occurrences are intervals (or their degenerated 
form : points). But they differ in the objects they describe 
best and thus belong to two families : numerical and symbolic 
systems. 

Symbolic systems put the emphasis on the description of 
temporal relations. In [l] (Allen 83) a relation is a disjunction 
of primitives which are very cleanly built in [2] (Allen Hayes 85) 
from the “meet” relation between two intervals. This represen- 
tation allows a very easy computation of conjunctive relations 
(AqB A Ar2B ---+ ArsB) which is in some way an intersec- 
tion of combinations. Moreover, Allen gives a table for com- 
puting the composition of relations (AqB A Br2C --+ ArsC). 
This allows the computation of path-consistency (according to 
Mackworth’s terminology [4]) which is more complete than an 
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arc-consistency, hence a O(n3) complexity, where n is the num- 
ber of events. However, the system only deals with symbols, so 
numerical data are not efficiently handled, especially duration. 

On the other hand, numerical systems put the emphasis on 
the description of occurrences. The beginning and the end of an 
occurrence are explicitly represented with two numbers. DE- 
VISER [7] (V ere 83) is a planning system where the windows 
were first introduced. They are compressed in the same way 
that we constrict our SOPOs. The hypotheses of DEVISER 
ensure that the arc-consistency is sufficient to solve the con- 
strained occurrences problem. However, all Allen’s primitives 
are not representable (some are with an astute use of the for- 
malism) and disjunctions cannot be propagated. Moreover, the 
temporal relations are inside the system since they are implic- 
itly deduced from the plan structure, so the user has no access 
to them. Smith [6] proposes a temporal module for the ISIS 
job-shop scheduling system. ISIS builds a hierarchical task net 
with resources and Smith’s temporal module propagates the 
reservations of these resources through the net, also using win- 
dow compressing. Here the plan structure is also the only way 
of specifying temporal relations, and disjunctions are not prop- 
agated. 

6 Conclusion 

We gave in this article a general frame for propagating temporal 
constraints over events, these events being exclusively consid- 
ered as sets of possible occurrences (SOPOs). These SOPOs are 
the numerical expression of an uncertainty about the exact oc- 
currence of an event, while this exact occurrence is constrained 
by the possible occurrence of other events. Making the SOPOs 
compatible with the temporal constraints is what we call a con- 
strained occurrence.9 problem. This key-problem for scheduling, 
is an instance of the consistent labeling problem and is known 
to be NP-complete. We introduce a graphical representation of 
SOPOs which enables the visualization of a constraint prop 
agation algorithm. This algorithm is a Waltz-type filtering 
algorithm [8], it d oes not remove every inconsistency, unless 
the SOPOs are of the “generalized window” type and all the 
disjunctions are removed. 

We are developping our current reflections along two axis : 

1. Making the algorithm more efficient. The complexity can 
be variable, depending on how effectively the constraints 
are propagated. In an ideal network of constraints, every 
SOP0 is linked to the other so that only one constric- 
tion is sufficient (i.e. the whole information is propagated 
during the first shot along the links). If there is a num- 
ber of constrictions over one SOPO, this means that the 
temporal relations involving the SOP0 are too weak in 
comparison with the implicit constraint of the net. For 
a greater efficiency, the topology of the net should be 
changed, making explicit the actual constraints. Such a 
symbolic inference can be done using Allen’s [l] symbolic 
propagation, 

2. Using the temporal module for higher level scheduling 

concepts. All the solutions of a constrained occurrence 
problem are not good ones. Qualifying solutions involves 
high level concepts such as robustness. A robust schedule 
should require minor adjustments when a perturbation 
occurs. In this respect, a graphical point of view might 
give visual “patterns” useful for detecting the presence of 
good solutions. 
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