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Perceptual Validation for the Generation of Expressive
Movements from End-Effector Trajectories

PAMELA CARRENO-MEDRANO∗, SYLVIE GIBET, and PIERRE-FRANCOIS MARTEAU,
University of Bretagne Sud

Endowing animated virtual characters with emotionally expressive behaviors is paramount to improve the
quality of the interactions between humans and virtual characters. Full-body motion, in particular its subtle
kinematic variations, represents an effective way of conveying emotionally expressive content. However,
before synthesizing expressive full-body movements, it is necessary to identify and understand what qualities
of human motion are salient to the perception of emotions and how these qualities can be exploited to
generate novel and equally expressive full-body movements. Based on previous studies, we argue that it is
possible to perceive and generate expressive full-body movements from a limited set of joint trajectories.
Hence, these selected trajectories define a significant and reduced motion space which is adequate for the
characterization of the expressive qualities of human motion and that is both suitable for the analysis and
generation of emotionally expressive full-body movements. The purpose and main contribution of this work
is the methodological framework we defined and used to assess the validity and applicability of the selected
trajectories for the perception and generation of expressive full-body movements. This framework consists of
the creation of a motion capture database of expressive theatrical movements, the development of a motion
synthesis system based on trajectories re-played or re-sampled and inverse kinematics, and two perceptual
studies.

CCS Concepts: • Human-centered computing → User studies; • Computing methodologies → Per-
ception; Animation;
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1 INTRODUCTION
One of the main challenges in character animation is to design compelling characters capable of
creating a more intuitive, engaging and entertaining interaction with a user. Whereas we play with
these animated virtual characters, observe them or control them, the quality of the interaction
and our level of engagement strongly depend on how believable – that is, how well the animated
character fits the user’s expectations – these characters are perceived. Among the many factors
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Fig. 1. Ingredible framework that studies the real-time interaction between a human and a virtual agent.

that potentially relate to believable virtual characters, emotion awareness (i.e., the virtual character
senses the human user’s emotional state) and expression (i.e., the virtual character generates an
appropriate and emotionally expressive behavior in response) have received increasing attention
during the last years [18, 38].

Humans perceive and express emotions through the combination of verbal and nonverbal modal-
ities such as speech, gaze, facial expressions, and bodily movements [42]. Within its movements,
a virtual human character expresses emotion mainly through kinematic patterns that are char-
acterized by the subtle variations in the manner movements are performed [21]. Hence, bodily
movement represents simultaneously: i.) the source of information from which a virtual character
can interpret the emotional state of the human user with whom the virtual character is currently
interacting, and ii.) the means through which the virtual character will provide an appropriate and
emotionally expressive response to the human user. Furthermore, since our bodies are the medium
through which we experience the world around us, they represent a relevant modality to consider
when designing engaging and satisfactory interactions within virtual environments and in the
presence of animated virtual characters [36, 38].

The work we present in this article is part of a larger project named Ingredible 1. This project aims
at reproducing between a human and a virtual character the mutual influence that is intrinsic to
human-human interactions. In particular, the Ingredible project focuses on how the expressive bodily
interaction between both agents can be continuously regulated and adapted such as to maintain
a natural, believable and satisfactory interaction with the human user [7]. To do so, it proposes
a larger framework, as shown in Figure 1, in which the bodily interaction between these agents
is both studied at the analysis and synthesis levels. In other words, by continuously measuring
low-level kinematic features from both the human and the virtual character bodily movements, the
framework estimates the level of coupling2 and the expressiveness between them, and conveniently
adapts the virtual character’s movements. In order to work, the Ingredible framework requires a
motion representation that: i.) efficiently abstracts the expressive information encoded in the bodily

1www.ingredible.fr
2In this work, coupling is defined as the continuous mutual influence between two individuals [17].
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Perceptual Validation for the Generation of Expressive Movements 1:3

movements – this information is necessary for accurately measuring coupling and expressiveness–;
and ii.) is both suitable to detect emotion in the user’s and character’s movements and to control
in real-time the generation of expressive movements for the virtual character. Furthermore, for
real-time interactive communication, the framework is expected to be highly efficient and easy
to adapt to new movements, and as independent as possible of the movements being performed.
Hence, the selected representation should generalize to different types of movements without
increasing its dimensionality, and require fewer computational resources for detection purposes.
The definition and evaluation of such a representation is the problem we address in this work.

Based on a synthesis-by-analysis approach and the requirements we have just mentioned, in
this article, we adopt a simple, yet powerful, motion representation that we argue is both suitable
for: i.) the control and generation of full-body movements for the virtual character, and ii.) the
identification and encoding of most –if not all– the information that is salient to the expression of
emotions and the regulation of the interaction between the human user and the virtual character.
The idea is not so much to find and use the best low-dimensional control space that allows for
producing a large variety of expressive full body motion (e.g., [28, 49, 63]), which is in itself a
challenging problem in 3D animation, but to investigate to what extent the representation we
adopt is able to convey the expressive qualities of the movement. This representation, shared by
the analysis and generation processes, consists of a limited set of joint trajectories comprising
the extremities of the limbs of a human-like character, i.e., head, hands and feet, the equivalent
of the human pelvis (root joint), and elbow trajectories (so-called target trajectories). We argue
that from this relatively low-dimensional space it is possible to: i.) extract the relevant features
necessary to analyze the ongoing interaction between the user and the virtual character as well
as to characterize the expressive content laying within their movements; and ii.) synthesize –
with the help of additional constraints on joint limits – novel expressive movement for the virtual
character. Furthermore, such a target-based representation, expressed in a space close to the task
space, especially for expressive hand movements, allows for editing meaningful and expressive
movements. This might ease the animators’ work in creating expressive gestures and semantic
scenarii.
The aim of the work presented in this article is to develop a methodological framework for

perceptually assessing the relevance and usefulness of this representation. Within the proposed
framework, our main contributions are: i.) two separate, yet complementary, user studies that
evaluate, from a perceptual point of view, how informative is the proposed representation when
compared to the full-body and how expressive are the full-body movements obtained from such
a representation; and ii.) a synthesis system based on a function that maps low-dimensional
trajectories to full-body movements and a re-sampling process suited to the MoCap data that
produces non-observed and action-independent low-dimensional trajectories. Both user studies
and the proposed synthesis systems were tested in the context of the analysis and synthesis of
expressive theatrical bodily movements. We have chosen to work on sequences of theatrical body
movements because each movement within a sequence is deliberately chosen and executed so that
the characters portrayed by the actors are perceived as believable.
In the following, we briefly survey the results from different research areas that motivated our

hypothesis of end-effectors trajectories as a suitable and compact motion representation for both
the analysis and generation of emotionally expressive full-body movements. We later review the
main approaches on the generation of expressive bodily motions. We then describe and discuss the
methodological approach we have adopted in order to support our hypothesis. Next, we introduce a
motion synthesis approach based on a re-sampling of the expressive Mocap Data that exploits this
representation. We then discuss the perceptual evaluations that we have conducted to measure the
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1:4 P. Carreno-Medrano et al.

suitability of the proposed representation as well as the expressive quality of the motions generated
from it.

2 RELATEDWORK
The work presented in this paper is based on the idea that end-effectors trajectories define a
relatively compact and significant motion space that is simultaneously relevant for the analysis
and synthesis of expressive full-body movements. In this section, we first review results from three
different research areas that motivated our choice of representation. We then survey works on
existing approaches for the generation of expressive full-body movements.

2.1 Why End-Effectors Trajectories?
Despite the high dimensionality and complexity observed in human movement, results from
different research areas suggest that due to the bio-mechanical and functional constraints ruling the
human body, most human movements can be represented, with minimal loss of information, in a
lower-dimensional space [22]. For instance, studies about the perception of biological motion have
shown that human observers seem to effortlessly recognize and extract information about human
motion from sparse body representations [8]. In particular, it has been observed that Point-light (PL)
displays3 provide enough information to make possible for humans the determination of gender
[60], affective states [2], and the identity of individuals [61]. Similarly, computing simultaneously
body shape and pose from sparse markers provides an efficient way to create lifelike animations [46].
Thus, it seems possible to parameterize human motion and all the nuanced expressive information
conveyed by it through a limited set of motion trajectories, i.e, a spatial subset of body joints
[23, 52]. In the following we summarize the main research findings which suggest that end-effectors
trajectories might be considered as one of such compact and informative motion parameterizations
or representations.

Recent results on human motion and emotion perception have pointed out that although human
observers seem to process expressive movements as a whole [53], different body parts convey
different amounts of emotion-related motion features [52]. In particular, it has been observed that
end-effectors are among the most relevant body parts for emotion perception and recognition. For
instance, there is consistent evidence indicating that: i.) head and hand-arm movements are of
significant importance for human observers when distinguishing between emotional states [40],
and ii.) movement qualities critical for the perception of emotion from gait examples depend only
on a small number of joints rather than on the whole body. Moreover, head and arms trajectories
have been identified as the most important sources of information for perception of emotion and
automatic analysis of expressive bodily motions, even when movements of the entire body are
presented [53].
A survey of the most recent literature on automatic recognition of affect reveals that head

and hand trajectories are among the bodily cues the most frequently and successfully used [29].
Bernhardt et al. [6] reported 50% recognition rates on upper-body functional movements (knocking
motion) depicting neutral, happy, angry and sad emotional states. Bouënard et al. [9] analyzed
expressive percussion gestures and found that a reduced dimensional representation consisting
of motion features computed from hand trajectories was sufficient for accurately classifying new
expressive percussion gestures. Glowinski and colleagues [27] found that it is possible to define a
minimal representation of expressive upper-body movements by analyzing the kinematic qualities
of head and hand trajectories. The resulting representation was later used to determine meaningful

3Body representation that consists of only a handful of markers attached to the head and main joints of the human body.
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groups of emotions. Similarly, in our previous work [12], we showed that it is possible to auto-
matically classify emotional movements from kinematic features computed from end-effectors
trajectories only.
In computer animation, the usefulness of end-effector trajectories for specifying a character’s

motion has been recurrently highlighted during the last years [14, 56]. From these trajectories, it is
possible to generate whole body motions that smoothly follow the specified trajectories and exhibit
the correct temporal variations. In the same way, three-dimensional motion sensors located on
the two hands and pelvis positions may be used as inputs of a controller to build virtual character
poses [41]. End-effector trajectories have also been successfully employed in other animation
related areas such as motion indexation and retrieval. For example, Krüger et al. found that the use
of richer representations give little or not advantage over the use of end-effector trajectories [44].
In motion compression, Tournier et al. [59] observed that it is possible to recover, with minimal
information loss, whole-body poses and motions by specifying only the end-effectors and root
positions of a skeleton structure as input. However, these techniques have not shown that they can
generate expressive movements whose emotional state could be perceptually recognized.

2.2 Generation of Expressive Body Movements for Virtual Characters
One of the constraints we considered when selecting a low-dimensional representation suitable for
our context of application, i.e., the Ingredible project, was the suitability of such representation
for the control and generation of expressive movement for virtual characters. In the following we
review the two main existing approaches for animating a virtual human character with expressive
movements: rule-based methods, generally coupled to procedural synthesis methods, and example-
based methods.

Rule-based methods have their foundations on psychology studies and suppose that movement
qualities important for the generation of expressive motions can be determined by analyzing how
humans perceive emotions. The intuition is that by using perceptually validated motion qualities
to guide the generation of the character’s movements, the expressive qualities of the new motions
will be ensured. New motions are synthesized through an ensemble of motion generation and
editing rules that specify how the identified motion qualities can be mapped to low-level motion
parameters. Some examples of approaches belonging to this category are: the EMOTE model for
effort and shape proposed by [15], the expressive gesture synthesis architecture for embodied
conversational agents presented in [30], and the supporting software inspired by the study of
artistic performance literature built by [51].
Example-based methods apply data-driven techniques based on machine learning methods to

automatically determine and learn what movement aspects characterize the expressiveness in the
captured data. This kind of methods can be further categorized into four main groups: Motion
blending, in which new motions are generated through weighted interpolation of structurally
similar (i.e., motions that depict the same action with different styles) but distinct motion examples
(e.g. [54, 58]). Component models, in which human motion is seen as the combination of many
different, sometimes mutually independent, motion components. New motions are generated by
exchanging, merging and/or interpolating one or several components according to some high-level
constraints or control parameters (e.g., [55], [32]). Style translation, in which an input motion is
transformed into a new style while preserving its original content (e.g., [37], [66]). The relevant
transformations are estimated through the analysis of the differences between the emotionally
expressive and non-expressive realizations of the same kinematic action, e.g., a neutral and a sad
walk. Stochastic generative models, in which statistical models such as hidden Markov models
(HMM) [10], stochastic adaptations of motions graphs [48], among others, are used to implicitly

ACM Transactions on Interactive Intelligent Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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capture and model the content and the expressiveness of motions examples. In particular neural
networks [34, 35, 57] have proven their high scalability and efficiency for controlling motion,
but they need a large amount of data, offline computation, and they fail to deal with precise and
expressive movements. The appeal behind these stochastic models is their capability to generate
motions that are significantly different from the training data.
Each approach has its own merits and drawbacks. In the one hand, rule-based methods offer

better control, which results in a higher flexibility and variability in the produced motions. However,
these motions are often described as stiff and less visually appealing. Furthermore, the definition
of the relations and rules that map control parameters to motion features and motion features to
emotional states is a complex task [40]. On the other hand, example-based methods generate novel
movements with a high level of details and a great realism. A MoCap database containing examples
of perceptually validated expressive motions ensures that the new generated movements will be
equally expressive. Nevertheless, the flexibility and variability of example-based methods entirely
depends on the richness and vastness of the database. Furthermore, example-based methods often
provide a very limited control over the possible output motions and styles, which is a limitation
when working with virtual animated characters.

In order to benefit from the strengths and advantages of both approaches, while potentially
addressing their shortcomings, we propose a synthesis approach that combines their main principles.
First, we propose to use end-effector trajectories as control signals. They are intuitive, easy to
specify, and can be directly mapped to whole-body motions. They also define a relatively low
dimensional motion representation that facilitates the construction of higher level ruled-based and
editing approaches. Furthermore, since these trajectories will be extracted or generated from a
labeled and perceptually validated dataset, using a statistical re-sampling methods to synthesize
new end-effector trajectories we expect to preserve most of the visual appeal of example-based
methods. Second, we propose to use inverse kinematics as the function that maps end-effector
trajectories to whole-body motions. By doing so, we retain the control and flexibility inherent to
rule-based approaches and decrease the dependency of the example-based methods on the motion
database.

3 METHODOLOGICAL FRAMEWORK
The validation of the proposed hypothesis is assessed for the perception and synthesis of expressive
bodily motions through the methodology illustrated in Figure 2. Two main elements are considered:

• An expressive synthesis system from end-effector trajectories: We need to define
a function that maps the end-effector trajectories to the high-dimensional full-body space.
This mapping should preserve all motion cues indicative of expressed emotions that are
present in the end-effector trajectories. Furthermore, in order to assess whether the proposed
representation generalizes beyond the movement categories in the MoCap database, it is
necessary to evaluate full body motions generated from novel end-effector trajectories. To
do so, we have proposed and implemented:
– An inverse kinematics (IK) reconstructionmodel. Since the geometry and configuration

of an anthropomorphic limb is quite dependent on the limb’s extremity position [44],
we generate full-body motions by defining an inverse kinematic controller for each
limb within the character’s body. To overcome the redundancy of the system, further
joint limits and elbow constraints were also added.

– A motion re-sampling scheme that can generate novel end-effector and pelvis trajecto-
ries while preserving the underlying emotional content. The main principle behind

ACM Transactions on Interactive Intelligent Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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Fig. 2. Methodology used to evaluate end-effectors trajectories.

the proposed re-sampling scheme is the generation of random and semantically void
trajectories whose content significantly differs from the original trajectories.

• Perceptual evaluations: Two perceptual studies have been conducted:
– First, a user study that provides a qualitative measure of how expressive end-effector

trajectories are in comparison to whole-body motions. This study measures how ob-
servers’ perception of emotions changed according to the type of motion representation
we presented to them.

– Second, we perceptually evaluate the synthesized motions. More precisely, we measure
the impact of the movement generation source (original MoCap database, movements
reconstructed from end-effector trajectories issued from the MoCap database, or move-
ments generated using re-sampled trajectories) on the perception of emotion.

4 A MOTION CAPTURE DATABASE OF EXPRESSIVE THEATRICAL MOVEMENTS
In this sectionwe review the expressivemotion capture database used to evaluate themethodological
framework introduced in Section 3 and depicted in Figure 2. This database was initially reported in
[11] and further extended for the work presented here.
The proposed database was designed for the analysis and synthesis of expressive full-body

movements. It contains several subjects, different types of movements in which all body limbs are
employed, several emotional states and various repetitions for each possible combination of type
of movement and emotional state. Furthermore, it was designed in the context of a form of theater
– known as physical theater– that privileges the use of the human body and its wide variety of
movements and postures to communicate emotions and interact with others.
Specifically, this database contains sequences from a mime-magician scenario in which skilled

actors were asked to convey meaning and express emotions only through their body movements.
In this scenario, each actor embodied a magician during performance. Three magician tricks: the
disappearing box, pulling a rabbit from a hat, and taking scarves from an empty jacket, were to be
performed under one of the following emotional states: happiness, sadness, stress, relaxedness, and
neutral. A combined mood induction procedure (story-based and imagination-based MIP) was used
in order to facilitate the enacting of the selected emotional states. It is important to notice that
although the magician sequences include individual actions only observable during a magician
performance, e.g, a bow towards the public or the use of a magical wand, other actions also present

ACM Transactions on Interactive Intelligent Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:8 P. Carreno-Medrano et al.

in these sequences are analogous to actions we execute on a daily basis, e.g, pick and place an
object, clean a flat surface, among others. 4
For the work presented here, two more motion sequences were added to the proposed MoCap

database. These new sequences are not related to the mime-magician scenario and consist of: a walk
example and an improvisation sketch that was freely chosen by each actor. With these additional
motion sequences we wished to extend the movement categories available in our database as well
as increase the range of expressive movements to be considered in our evaluation of the proposed
motion representation. In total, our database contains: movements from 5 actors (2 females and 3
males, ranging in age from 38 to 54), 5 emotional states, examples of at least 4 different movement
categories (i.e., magician actions, everyday life actions, locomotion, and theatrical improvisations),
3 repetitions of each magician trick for each emotional state by actor, and 1 repetition of the walk
example and the improvisation sketch for each emotional state by actor. All motions were recorded
at a rate of 200 fps with a Qualysis motion capture system consisting of 9 cameras. In total we have
approximately 206 minutes of high quality recorded full-body motion.

5 SYNTHESIS OF EXPRESSIVE WHOLE BODY MOTIONS
Below, we describe the components of the proposed synthesis system as well as the synthesis tasks
we designed to evaluate this system.

Right foot 

Fig. 3. Articulated chains and DOF controlled through IK. Red segments indicate end-effector associated to
each articulated chain. Degrees of freedom of each joint are indicated as follows: green dots = 1 DOF, pink
dots = 2 DOF, and light-blue dots = 3 DOF.

5.1 Inverse Kinematics Controllers
When mapping low-dimensional control signal to high-dimensional whole-body movements, two
types of approaches are usually privileged: data-driven reconstruction methods [14, 56] and inverse
kinematics (IK) solvers. In the former, examples closely approximating the trajectories described
by the control signals are retrieved from a large MoCap database. Those examples are later used
to build local models capable of producing continuous and smooth whole body motions. In the
latter approach, an iterative optimization solver computes the motion, posture by posture, for
4We refer the reader to the accompanying videos for some examples of the different sequences in our database.

ACM Transactions on Interactive Intelligent Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Perceptual Validation for the Generation of Expressive Movements 1:9

which the end effectors follow as smoothly and accurately as possible the control signals. Other
than the knowledge about the hierarchical representation of the character’s body and its degrees
of freedom (DOF), an IK solver has no prior information about the expressive characteristics of
the motions to be produced. Thus, if the resulting bodily motion exhibits variations related to a
particular emotional state, it is because the relevant expressive cues were encoded in the control
signals. For this reason, we have adopted an IK-based solver within our synthesis system.

Previously introduced in [13], our inverse kinematics implementation consists of a set of indepen-
dent IK controllers that map end-effector trajectories to whole-body motions. We have associated a
controller to each one of the 5 articulated chains in the character’s body. Figure 3 shows the five
selected chains and their corresponding end-effectors (highlighted in red) as well as the number of
DOFs associated to all joints within each chain. We observe that both leg chains have 12 DOFs each,
arm chains have 15 DOFs each (including the clamp of the hand), and the head-torso chain has 17
DOFs. As the inverse kinematics is achieved simultaneously on five articulated chains, this gives this
possibility of generating uncoordinated and unsynchronized movements and consequently offers
great variability in the synthesized movements. Conversely, this makes the tasks more difficult
to achieve. In order to constrain the space of possible IK solutions to more natural and humanly
plausible postures, a combination of joint limits and multiple tasks for the arm chains (i.e., targets
for both elbows and hands) were used during reconstruction.

5.2 Re-sampling Scheme: Local Grid Bootstrap
To further evaluate the suitability of the proposed low-dimensional motion representation and its
applicability to the generation of expressive whole-body motions, we need to produce and analyze
new and sufficiently different expressive end-effector trajectories. To that end, we have selected
and implemented a re-sampling procedure.

The main idea behind the use of a re-sampling method in our framework is to produce, from our
limited set of capture movement data, new movement trajectories that share most of the statistical
properties of the captured ones. We hypothesize that, as far as we select a convenient size for the
time window from which the temporal dependence of the data is modeled, we are able to filter
out most of the semantic dependency (i.e. the dependencies to the action that is performed) while
keeping the expressiveness that characterizes the captured data.

Re-sampling methods share many similarities with Monte Carlo simulations. The main difference
is that, in re-sampling methods, the simulated samples are drawn from the available data. In physics-
related problems, Monte Carlo methods are known to be useful for simulating systems with many
coupled degrees of freedom, such as fluids movement or strongly coupled solids [45]; this makes it
particularly suitable for synthesizing articulated chain movements.

In this way, the Local Grid Bootstrap (LGB) bootstrap procedure proposed by Monbet et al. [50]
and adopted in this work is a Monte Carlo method (MCM) since it shares a common objective:
given some probability measure µ defined on some state space S (for us the space in which the
movement data is embedded), generate as many random sequences from µ as required. The solution
to achieve this objective is to construct a Markov chain with state space S keeping µ invariant. In
other words, LGB, similarly to MCM, constructs a transition probability between states to create
a stochastic time evolution for the system that has produced the observation data. Our choice to
select LGB was motivated by its capability to:

• capture the temporal dependence of both MoCap data and end-effector trajectories,
• generate sequences whose length may be chosen independently from the length of the
observed sequences, and
• produce unobserved states within the new sequences.

ACM Transactions on Interactive Intelligent Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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5.2.1 Definition and LGB procedure. If X ∈ Rd represents a complete posture or any given part
of it (e.g., a specific articulated chain), the LGB procedure constructs a Markov chain of order p
(which is a parameter of the method) with state space S, according to

P (Xt+1 ∈ A|X j , j ≤ t ) = P (Xt ∈ A|X j , t − p + 1 ≤ j ≤ t ) (1)

where A is any compact subset5 of Rd . Hence, for all t ∈ T, the state of the process {Xt }t ∈T at
time t is supposed to depend only on the p previous samples. Furthermore, the state space S, on
which this Markov chain is defined, is a subset of Rdp that contains all the subsequences (vector
Y = (Xt ,Xt−1, · · · ,Xt−p+1)) in the captured data that will be re-sampled.

Then, the LGB re-sampling algorithm generates a new sequence (X̂i )i ∈{1, · · · ,N } , N being indepen-
dent from the length T of the observed time series. Each new synthesized sample X̂t+1 is obtained
by assigning probabilities to a finite subset of convenient states and sampling this subset according
to a discrete probability distribution evaluated from a probability measure µ which is defined using
a local density kernel estimator (Kdp ).

Fig. 4. Local grid bootstrap procedure

Let Ŷt = (X̂t , X̂t−1, ..., X̂t−p+1) ∈ R
dp be the state of the generated sequence at time t and let

SY = {Y ∈ S|∃i s.t. Yi = (Xi ,Xi−1, ...,Xi−p+1)} be the set of all possible states that can be extracted
from the observed sequence. Hence, the Markov chain constructed by LGB is a statistical model of
the underlying dynamical process Φ responsible for the production of the observed sequence of
movement:

Xt+1 = Φ(Yt ) (2)
The neighborhood V̂Y t of Ŷt is defined by the set of observed states that fall into the hyper-sphere

centered on Ŷt whose diameter is σT . Yl ∈ {Y ∈ SY |d (Y , Ŷt ) ≤ σT /2}.
Let (V̂Y t )

+ = Φ(V̂Y t ) be the image of this neighborhood through the dynamic operator Φ.
We define hG as the hyper-grid (i.e. the discretized hyper-cube) centered on the barycenter of
(V̂Y t )

+ ⊂ Rd whose edge length is σд and discretization step ∆д .
The LGB principle is schematized in Fig. 4 and proceeds as follows:

5i.e., a closed and bounded subset.

ACM Transactions on Interactive Intelligent Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Perceptual Validation for the Generation of Expressive Movements 1:11

(1) Initialization step: We select an initial state Ŷ1 ∈ SY , the width σT of the neighborhood
of a given state and the two hyper-grid parameters σд and ∆д .

(2) Step t + 1:
• Let us suppose that the state Ŷt is already sampled. The neighborhood V̂Y t of Ŷt is
extracted, depicted by the circle in the left side of Fig. 4 and its image through ϕ,
(V̂Y t )

+, evaluated.
• A hyper-grid hGt is then constructed which embeds (V̂Y t )

+, as depicted by the square
grid in the left part of figure 4, and a local density Kd is used to affect a probability of
presence for each element of the hyper-grid. Basically, if numerous observed trajec-
tories going through the neighborhood V̂Y t fall inside element k of the hyper-grid,
then the affected probability Pk to this grid element will be high. Conversely, if none
or few trajectories going through the neighborhood V̂Y t fall into grid element k , then
its probability Pk will be small.
• The next generated state, Ŷt+1, is constructed as follows. First a grid element is randomly

drawn according to the previous probability distribution. Then, X̂t+1 is defined as the
barycenter of the state vector of the observed trajectories falling into the selected grid
element, and this gives Ŷt+1 = (X̂t+1, X̂t , · · · , X̂t−p+1).

5.3 Generation of End-Effector Trajectories
To enhance LGB transition probabilities, closed and continuous end-effector trajectories are neces-
sary. Such trajectories can be produced by smoothly transitioning between the beginning and end
postures of each pair of motions in our database. Namely, given the motion sequences from which
end-effector trajectories are extracted, for each targeted emotional state, we generated transition
motions using the last and first L = 250 frames, respectively, of any two motion sequences. This
value was selected such as to ensure that all individual actions within any magician sequence are
completed before and after transitioning from one sequence to another. Once all transitions have
been generated, the continuous end-effectors (including elbow positions) and pelvis trajectories
necessary for LGB re-sampling are computed for each articulated chain.
Each new time series generated by LGB re-sampling scheme consists of four processes charac-

terized respectively by: the 3D head, the 6D right elbow-hand, the 6D left elbow-hand, the 6D+3D
lower body trajectories. Each of these processes is independently re-sampled according to the LGB
procedure for which Xt corresponds to the 3D or 6D trajectories. In the case of the leg chains,
we have sampled them together in order to guarantee the character’s stability during motion.
Additionally, since the motion of the character’s body root joint highly depends on the leg chains
displacement and vice versa, every time a new state is sampled, the corresponding root’s position
is taken from the observed sequence X = (Xi )i ∈{1, · · · ,T } associated to that sampled state.
The order of the Markov process representing each observed sequence has been empirically

adjusted to p = 1 for the 6D elbow-hand and 6D+3D lower-body trajectories, and to p = 3 for
the 3D head trajectories. This choice was made such that the density of the area explored by
each articulated chain can be sufficiently well estimated given the available data and so that the
synthesized trajectories were reliable and smooth enough after considering the number of points
and their dimensionality by emotional state.

For each process the grid parameter σд was locally adjusted so as to maintain between 50 and 100
observations inside the neighborhood V̂Y t . The parameter hT was set up to σд/3, which seems to
nicely fit with the implementation of a grid that has 3 subdivisions along each of the dimensions that
are considered. A Kd-tree [5] is used to index p.d dimensional samples collected along the observed
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(b) Motions from re-sampled trajectories task

Fig. 5. Synthesis tasks proposed to evaluate suitability of end-effectors trajectories for the generation of
expressive full-body movements.

end-effector trajectories. The search for the neighborhood of the current Ŷt , which conditions the
algorithmic complexity of the method, is near logarithmic with the size of the data as far as p.d is
sufficiently small, basically below 20.

6 SYNTHESIS TASKS
We have proposed two distinct yet complementary synthesis tasks: motion reconstruction and
motions from re-sampled trajectories. In the first task, we seek to evaluate whether the proposed IK
implementation generates motions that are similar to those from which the end-effector trajectories
guiding the reconstruction were extracted. In the second task, we want to assess whether the
full body movements obtained from the randomly sampled trajectories show the same expressive
patterns than the motions in our database. Both tasks are considered for each one of the five
emotional states in the database, i.e., happiness, neutral, relaxedness, sadness, and stress.

6.1 Motion Reconstruction
This task aims to evaluate the quality of the whole-body motions reconstructed through the
combination of observed end-effector trajectories and IK-based motion controllers. We proceed
as shown in Figure 5a. For each original motion, we extract the trajectories of the end-effectors
associated to each articulated chain (see Figure 3) as well as the trajectory of the root joint.
Additionally, we also consider the elbow trajectories for both arm chains in order to further
constraint the space of possible solutions. Each trajectory is expressed with respect to the coordinate
frame system associated to its respective articulated chain. Furthermore, all trajectories are invariant
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to the position of the character’s body in world space. Once all target trajectories have been defined,
the reconstructed motion is generated, posture by posture, using the proposed IK-based mapping.

6.2 Motions from Re-sampled Trajectories
This task aims to fully assess whether expressive end-effector trajectories are suitable control
signals for generating new expressive body movements. New expressive end-effector trajectories
are generated for each target emotional state using LGB re-sampling scheme. Once we have
synthesized target trajectories for each one of the articulated chains in the character’s body, we
proceed to generate a new motion, posture by posture, using the proposed IK-based mapping. The
main difference between our two synthesis tasks lies in the origin of the end-effector trajectories
guiding the reconstruction process. All the steps involved in this synthesis task are illustrated in
Figure 5b.

7 PERCEPTUAL EVALUATIONS
Since human perception of emotionally expressive body movements is highly subjective, we used
perceptual studies to evaluate: i.) the expressive information conveyed by end-effector trajectories
compared to full-body representations, and ii.) the quality and expressiveness of the synthesized
motions compared to the motions directly observed in our MoCap database.

7.1 End-Effector Trajectories vs Full-Body Motions
This study analyzed the impact of the body representation – full-body vs. end-effector trajectories –
on the perception of emotion. This evaluation was conducted using a subset of the motion capture
database presented in Section 4.

7.1.1 Study Design. To avoid any possible carry-over effect between representations and guar-
antee that participants remained naive to the purpose of the study, participants were randomly
assigned to either the full-body or the end-effector trajectories condition. Similarly, to avoid the
effects of boredom and fatigue, we reduced the number of sequences to evaluate from 250 to 125.
Only one repetition for each of the 5 sequence examples in the database was considered by actor
and emotion (5 sequences × 5 emotions × 5 actors = 125 sequences to rate). The selected sequences
were later randomly assigned to one of 5 groups in such a way that all emotions were depicted in
each group, and each group included at least two different sequences and actors. The assignment
was done so that from the initially selected 125 sequences a single participant rated no more than
25 sequences.

Video clips at 30 fps were created for each selected sequences, one for each representation. Hence,
a total of 10 groups were constituted. For each video clip, the character representation was placed
at the center of a 3D virtual space and facing the virtual camera at approximately 45 degrees. For
the end-effector trajectories, we displayed the 3D position of the selected joints along with the
trace of their respective trajectories. For the full-body condition, stick figures were used instead.

Participants were asked to answer the following questions for each clip:

(1) "Which of the 5 listed emotions do you think is conveyed through the motion?" A forced-choice
question was used since we were only interested in assessing whether the sequences in the
database effectively conveyed the target emotions.

(2) "How do you qualify the emotion conveyed in the video?" Participants had to rate the arousal
and valence components of the emotion perceived for each movement on a scale from 1 to
7.
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A total of 200 participants, 98 women and 102 men, ranging in age from 21 and 75, were recruited
through Amazon Mechanical Turk (MTuk) service. They were randomly assigned to one of the 10
groups. The same participant could not be part of more than one group. We had 20 participants by
group.

7.1.2 Detection of outlier participants. One of the main concerns when using crowd-sourcing
services such as Amazon Mechanical Turk is how to ensure the quality of the answers submitted by
the participants. Since the participants are not longer in a controlled environment and within the
reach of the experimenter, it becomes harder to ensure that the participants understand the task
they are asked to accomplish and that they do it with the care, diligence and seriousness expected
by the experimenter [65].

Among the strategies commonly used to evaluate the quality of the answers submitted by MTurk
workers, we have adopted an approach similar to the one suggested by Feng and colleagues [24].
With this approach, it is possible to improve the quality of the answers we later use in our analysis
without directly influencing participants answers and or changing the manner in which they
approach the task as it is the case with catch trial questions 6 [31].

Specifically, we use inter-rater agreement measures to automatically detect outlier participants
and improve the general quality of the collected answers. We start by computing the agreement
coefficients of all participants within the same group, we then identify which participants are
outliers with respect to the group they belong to by using the Tukey’s method [62]. That is, all
participants whose agreement scores lie outside a determined interval are considered as outliers.
We have used the interval defined by

I = [Q1 − k × (Q3 −Q1), Q3 + k × (Q3 −Q1)]with k = 1.5 (3)

where Q1,Q3 correspond to the 1st. and 3rd. quantiles of all agreement coefficients computed
within the same group. Using this procedure, among 200 participants who took part of the study,
190 were finally retained (10 were estimated as outliers, one for each group).

7.1.3 Results. We evaluated the main and interaction effects of motion representation (i.e.,
full-body or end-effector trajectories) and intended emotion on the perception of expressive body
movements using two-way mixed repeated ANOVA measures. We defined representation as a
between-subject factor and intended emotion as a within-subject factor. With i = {accuracy, valence,
arousal}, below we list the null hypotheses tested in this study:

• H0 (1, i ): The means of the participants’ ratings of i for the different intended emotions are
equal.
• H0 (2, i ): The means of the participants’ ratings of i for full-body and end-effector trajectories
stimuli are equal.
• H0 (3, i ): Representation type and intended emotion are independent factors and no interac-
tion between the two is present on the participants’ ratings of i.

The resulting F-statistics (with Greenhouse-Geisser correction if necessary), p-values and effect
sizes (η2) are listed in Table 1. Effects and interactions were evaluated at a significant level of
α = 0.05 (highlighted p-values). We present in Figure 6 the average accuracy rates, and valence and
arousal ratings across motion representations for all intended emotional states. Significant pair-wise
differences (post-hoc paired Tukey-HSD tests with Bonferroni corrections) are also indicated.

6Questions with obvious answers are presented at specific points during the perceptual study
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Ratings(i): Accuracy Valence Arousal

H0 (1, i )
F(4, 752) = 34.918 71.452 193.713
p-value = <0.001 <0.001 <0.001
η2 = 0.406 0.502 0.713

H0 (2, i )
F(1, 188)= 54.308 2.477 29.732
p-value = <0.001 0.117 <0.001
η2 = 0.224 0.013 0.136

H0 (3, i )
F(4, 752) = 2.951 14.16 12.981
p-value = 0.019 <0.001 <0.001
η2 = 0.061 0.175 0.136

Table 1. F-statistics, p-values and effect size (η2) results from two-way mixed repeated measures ANOVAs for
main effect of intended emotion and representation.

7.1.4 Analysis 1: Effect of Intended Emotions. Intended emotion was found to have a significant
effect on the participants’ perception of expressive movements for all ratings i . Hence, we reject
H0 (1, i ) for all dependent variables. Similarly, the effect of intended emotion is large (η2 > 0.16)
in all cases, indicating that the conveyed emotion was a critical factor on participants’ answers.
Follow-up post-hoc analyses show that accuracy for all emotional states is above chance level
(20%) for full-body representation. In contrast, only four of the five emotional states reported
recognition rates superior to chance for the end-effector trajectories condition. Significant pairwise
differences between participants’ accuracy were found at a significant level of p < 0.01 for most of
the intended emotions. Specifically, we observe that for both representations, happiness registered
the highest accuracy rates followed, in no particular order, by sadness and stress. However, no
significant difference (p<0.05) between the accuracy rates of relaxedness and neutral state were
found for both representations.
Regarding valence ratings, we found that for full-body represenations, both happy and sad

movements have valence ratings significantly different (p<0.001) from the other emotions. As both
happiness and sadness were more accurately recognized than other emotional states, assessing their
valence was possibly a much easier task. No significant differences were found for the valence rating
of neutral, relaxedness and stress (p> 0.05). For end-effector trajectories only pairwise differences
between happiness and emotional states with a negative valence, i.e., sadness and stress, were found
statistically significant (p<0.001).
Post-hoc analysis of arousal ratings showed that for the full-body representation there are

significant differences (p<0.0001) for almost all pairwise comparisons. No notable difference between
the arousal ratings of neutral and relaxedness emotional states was observed. This result suggests
that the examples of neutral and relaxed motions in our database might be kinematically very
similar, thus making it harder to perceive and rate the subtle differences of activation between
them. In the case of end-effector trajectories, the pairwise differences on arousal ratings follow the
same patterns observed with participants’ accuracy rates. Namely, arousal ratings for happiness
and sadness were found to be significantly different (p<0.0001). For the other emotional states,
participants do not seem to have perceived any difference on arousal levels.

7.1.5 Analysis 2: Effect of Representation and Interactions. Representation was found to have
a significant effect only on accuracy and arousal ratings. Hence, we reject the null hypotheses
H0 (2, accuracy) andH0 (2, arousal ). From Table 1, we observe that the main effect of representation
is large on participant’s accuracy (η2 > 0.16) but medium (0.06 < η2 < 0.16) on arousal ratings. In

ACM Transactions on Interactive Intelligent Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:16 P. Carreno-Medrano et al.

Neutral Sadness Happiness Stress Relaxedness
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y
ra

te
s

*

****

*
Body
Trajectories

(a) Accuracy

Neutral Sadness Happiness Stress Relaxedness
0

1

2

3

4

5

6

7

8

Va
le

nc
e

ra
te

s

****

**

Body
Trajectories

(b) Valence

Neutral Sadness Happiness Stress Relaxedness
0

1

2

3

4

5

6

7

8

A
ro

us
al

ra
te

s ****

****

****

Body
Trajectories

(c) Arousal

Fig. 6. Mixed two-way ANOVA accuracy and other ratings for end-effectors trajectories vs full-body move-
ments study. Significant differences were labeled using the following convention: ’****’: p <0.0001, ’***’: p
<0.001, ’**’: p <0.01, ’*’: p <0.05.

the one hand, the large effect on accuracy indicates that the body representation presented to the
observers had a significant impact on their perception of expressive movements and emotions. In
the other hand, the medium effect on arousal ratings suggests that representation alone can not
account for all the variability observed on the perception of the activation and kinematic patterns
of our expressive motions.
Although ANOVA tests reported that representation only had a significant effect on accuracy

and arousal ratings, we found that interactions between this factor and intended emotion were
tested as statistically significant at p < 0.05 for all dependent variables. Thus, we reject H0 (3, i )
for all dependent variables. These interactions registered, in average, a medium effect size (η2 ≈
0.124), indicating that the interplay between the type of representation and the intended emotion
is responsible for approximately 12% of the variability observed on participants’ perception of
expressive bodily emotions.
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Follow-up post-hoc tests showed that the main differences in accuracy are observed on the
perception of motions depicting sadness, happiness, and the neutral state. As showed in Figure 6a,
we found that the recognition rates of these three emotional states consistently decreased with
the change of representation. This effect is much more significant for sad movements and for the
neutral state. The former showed a loss of accuracy of approximately 20%, while the latter was no
longer recognized above chance level for the end-effector trajectories condition. Happiness accuracy
also decreased, but it remained the best recognized emotional state among participants.

Regarding arousal, we observed that motions depicting neutral, sadness and relaxedness emotions
obtained higher ratings when the end-effector trajectories representation was used. Arousal ratings
for happiness and stress remained the same across the two types of representations, indicating that
emotional states characterized by low-activation seem to be perceived as more energetic when
representations with reduced body information are employed.

For the perception of valence, we observed statistically significant differences (p<0.01) between
the average valence ratings of sadness and happiness (see Figure6b). While valence ratings of
motions depicting happiness registered a significant decrease between both representations, sad
motions were rated with a higher valence level when depicted through end-effector trajectories.
No significant differences between the valence ratings of neutral, stress and relaxedness emotional
states for both representation were found (see Figure 6b).

7.1.6 Findings Summary. Overall the change from a richer, i.e., full-body, to a sparser represen-
tation, i.e., end-effector and pelvis trajectories, was found statistically significant for two of the
three dependent variables we analyzed. In summary, we observed that:

• All intended emotional states were recognized above chance level (20%) for both represen-
tations. Only the recognition rates of motions depicting the neutral state fell below chance
level with the change of representation.
• For both representations, happiness, stress and sadness were among the best recognized

emotional states. Similarly, the recognition rates obtained for neutral, happiness, and sadness
decreased the most for the end-effector trajectories representation.
• The arousal ratings of emotional states associated with high activation levels such as
happiness and stress did not significantly change across representations. However, for
emotional states characterized with low activation levels, i.e., sadness and relaxedness, the
arousal ratings obtained for the end-effector trajectories representation were significantly
higher than those obtained for the full-body representation.
• The valence ratings participants gave to motions depicting stress, relaxedness or the neutral
state did not significantly changed across both representations. However, the valence
ratings of happy and sad motions respectively decreased and increased for the end-effector
trajectories representation.
• Independently of the representation being used, the similarity between the average valence
and arousal ratings that participants associated to opposed emotional states, e.g., relaxed-
ness and stress seem to suggest that some of our motion sequences and actors failed to
successfully convey the intended emotional states

7.2 Perceptual Evaluation of Synthesis Tasks
In this user study participants rated the emotional content and expressiveness of the motions
obtained from three sources. The first source, hereinafter referred to MoCap, corresponds to the
original motions performed by an actor. The other two sources correspond to the synthesis tasks
described in Section 6 and are hereinafter respectively referred to as IK reconstruction and re-
sampled trajectories The results obtained for the actor’s motions provide a base-line of perceived
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Fig. 7. Example of end-effector and root joint trajectories used as control signal and the whole-body postures
generated from them.

expressiveness against which we can compare the perception rates obtained from the synthetically
generated motions.

7.2.1 Study Design. For this study we used the MoCap recordings of a single actor. This choice
was motivated by the significant differences on emotion perception we observed across actors in
our previous study. The data we used consists of 24 motion sequences from the magician scenario:
6 sequences depicting happiness, 6 realizations for the neutral state, 4 sequences for relaxedness, 5
sequences for sadness, and 3 examples for stress. From these sequences we obtained the full-body
animations used as base-line as well as the end-effectors, elbows and pelvis trajectories necessary
to control the synthesis tasks previously described in Section 6. Figure 7 shows an example of the
end-effector trajectories used as control signals and the postures generated from them.
A total of 10 video clips at 30 fps were created for each movement generation source. For the

MoCap source, 2 realizations by emotional state were randomly selected among the 24 available
sequences. In the case of the stimuli belonging to the IK reconstruction source, video clips were
generated by applying the already described IK controllers on the end-effectors, elbows and pelvis
trajectories extracted from each one of the 10 realizations representing the MoCap source. The
stimuli associated to the third source, i.e., re-sampled trajectories, were obtained through a three-step
process. First, for each emotional state, 30000 frames long synthesized full-body motions were
generated using the procedure introduced in Section 5.2. Second, a group of short motion candidates
was generated by selecting several motion segments from the 30000 frames long synthesizedmotions.
Third, two annotators were asked to choose the two most expressive motion segments by emotional
state. Videos for which there was total agreement between the annotators were automatically
selected. If there was no agreement, we randomly selected one or two videos from the lists provided
by the annotators for each emotional state.

Participants were randomly assigned to one of the movement generation sources being evaluated;
the same participant could not be appointed to more than one source. Participants were presented
with each video twice. Video clips were presented in random order, however we made sure that all
video clips to be evaluated were rated once before showing any video a second time. Participants
answered the same questions used in our first study.

A total of 72 participants (24 by motion generation source) took part in this study. In total, we had
35 women and 37 men, ranging in age from 22 and 69 years old. We used MTuk as an intermediate
platform for recruiting participants and conducting our study. Since each video clip was rated twice,
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Ratings(i): Accuracy Valence Arousal

H0 (1, i )
F(4, 268) = 40.158 22.484 146.168
p-value = <0.0001 <0.0001 <0.0001
η2 = 0.775 0.586 0.874

H0 (2, i )
F(2, 67) = 0.627 4.424 0.319
p-value = 0.538 0.015 0.728
η2 = 0.018 0.117 0.009

H0 (3, i )
F(8, 268) = 1.146 1.749 0.663
p-value = 0.332 0.099 0.684
η2 = 0.054 0.098 0.044

Table 2. F-statistics, p-values and effect size (η2) results from two-way mixed repeated measures ANOVAs for
main effect of intended emotion and generation source.

each participant was presented with 20 videos in total. Participants took in average approximately
25 minutes to answer all questions. Participants whose agreement score within their group was
outside a determined interval were marked as outliers. Among the initial 72 participants, only 2
outliers were detected.

7.2.2 Results. A two-way mixed repeated measures ANOVA was used to evaluate the main
and interaction effects of intended emotion and movement generation source on the perception of
emotionally expressive body movements. In this analysis, emotion and generation source where
modeled as within-subject and between-subject factors respectively. Three ANOVAs tests were
performed on the average accuracy, valence, and arousal ratings across participants. With i =
{accuracy, valence, arousal}, we list below the null hypotheses tested in this study:

• H0 (1, i ): The means of the participants’ ratings of i for the different intended emotions are
equal.
• H0 (2, i ): The means of the participants’ ratings of i for the different movement generation
sources are equal.
• H0 (3, i ): Movement generation source and intended emotion are independent factors and
no interaction between the two is present on the participants’ ratings of i.

In the same manner, the resulting F-statistics (with Greenhouse-Geisser correction if necessary),
p-values and effect sizes (η2) are listed in Table 2. Effects and interactions were evaluated at a
significant level of α = 0.05 (highlighted p-values). Furthermore, we present in Figure 8 the average
accuracy rates, and valence and arousal ratings across motion generation sources for all intended
emotional states. Significant pair-wise differences are also indicated.

7.2.3 Analysis. Intended emotion was found to have a significant effect in all dependent variables
(p < 0.0001); hence H0 (1, i ) for i ∈ {accuracy, valence, arousal} are rejected. This effect is large in
size (η2 > 0.16), which suggests that the variance observed on participants’ ratings is mainly due
to the emotion being conveyed by the character’s motion. This detected main effect suggests that
the motions generated by our synthesis tasks retained almost, if not all, the subtle cues necessary
to perceive and differentiate all intended emotional states.
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Fig. 8. Mixed two-way ANOVA accuracy and other ratings for all movement generation sources. Significant
differences were labeled using the following convention: ’****’: p <0.0001, ’***’: p <0.001, ’**’: p <0.01, ’*’: p
<0.05.

Similarly, we observed that movement generation source and the paired differences in the
participants’ ratings of accuracy and arousal (see Figures 8a and 8c) were not found significant
(p > 0.05). Therefore, we retain H0 (2, i ) for i ∈ {accuracy, arousal} which states that the average
ratings of movements from different generation sources are equal. However, since a significant
effect of generation source on valence ratings was found (p < 0.05), we reject H0 (2,valence ) in
favor of the alternative hypothesis.

A further analysis of the effects of movement generation source suggests that although this factor
had little impact on the variability observed in participants’ perception of the intended emotions and
their associated activation levels, it still produced different valence ratings for the same intended
emotions. Follow-up post-hoc tests showed that the most significant effect of movement generation
source on valence ratings (p < 0.01) was obtained for the motions conveying a neutral emotional
state and that were generated using re-sampled trajectories (see Figure 8b). However, it is important

ACM Transactions on Interactive Intelligent Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Perceptual Validation for the Generation of Expressive Movements 1:21

to notice that these perceived differences had little impact on the perception and recognition of
emotionally expressive bodily motions belonging to this emotional state for all sources (each source
registered 13% average recognition rate as shown in Figure 8a).

Finally, regarding our third set of null hypothesesH0 (3, i ) on the interaction of movement genera-
tion source and intended emotion, we found no significant effect (p > 0.05) on participants’ accuracy,
and valence and arousal ratings. Hence, we retainH0 (3, i ) for i ∈ {accuracy, valence, arousal}, which
states that intended emotion and movement generation source factors are independent and that
when combined they have no effect on the mean participants’ ratings.

7.2.4 Findings Summary. Overall, when comparing participants’ perception of the expressive
cues conveyed by full-body movements produced by three distinct movement generation sources,
we observed that:

• The accuracy rates obtained for motions generated by either IK reconstruction or re-sampled
trajectories sources were found to be not significantly different from the rates obtained for
the original Mocap sequences. This suggests that the proposed synthesis framework seems
to encode most of the motions cues that are necessary for the perception of the different
intended emotions.
• The arousal and valence ratings participants associated to the almost all intented emotional
states did not significantly change across the different movement sources, indicating that
the movements generated with the proposed synthesis tasks are perceived very similarly
to the original motions executed by the human actor.
• Once again, four of the five target emotional states were recognized above chance level
(20%). Moreover, independently of the movement generation source, the neutral state was
perceived as conveying some particular expressive content even though it was initially
intended to convey no expressive content at all.

8 GENERAL DISCUSSION
In this article, we stated and challenged the hypothesis that end-effectors trajectories form a
compact and informative motion representation that is both suitable for the analysis and synthesis
of emotionally expressive full-body movements. The necessity of a motion representation with this
dual analysis-synthesis functionality was motivated by the context of application of the Ingredible
project. To prove our claim, we conducted two separate, yet complementary, user studies.
In the first study, described in Section 7.1, we evaluated how participants’ perception of the

expressive content conveyed through full-body movements changed according to the type of
representation, i.e., end-effector trajectories or full-body stick figures, that we showed them. This
study provided us with a qualitative measure of the loss of information we might have incurred with
the change of motion representation. The results obtained for this study showed that participants
presented with end-effectors trajectories – 28% average recognition rate – were in average 10%
less accurate than the participants who rated motions depicted by full-body stick figures – 38%
average recognition rate. In spite of this loss of accuracy, it is important to notice that although
observers were less accurate in their judgments of the emotional states conveyed through end-
effector trajectories, 4 of the 5 intended emotional state were still recognized above chance level.
This observation is in accordance with results obtained in previous studies about the contribution
of form and motion information to the recognition of emotions from bodily movements. In [3, 20], it
was observed that in the light of significantly disturbances of form-related motion cues, kinematic
information alone can help to distinguish basic emotions above chance level. Thus, although
the use of end-effectors and pelvis trajectories alone may considerable weaken form and shape
cues previously identified as relevant for emotion perception (e.g., head orientation, elbow bend,
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curvature of spine, etc. [16]), the motion qualities of these selected trajectories (e.g., quantity and
duration of the movement; the observed velocity, acceleration and jerkiness of a movement; among
others [42]) still convey relevant motion cues for the perception of the intended emotional states
above chance level. Overall, from this first study, we can conclude that end-effectors and pelvis
trajectories seem not to be as perceptually and visually rich as full-body representations. However,
the impact of this observation is attenuated by the results we obtained from the evaluation of
movements partially synthesized from end-effector trajectories.

In our second and last study, we aimed at evaluating the suitability of end-effectors trajectories
for the synthesis of expressive full-body movements. We hypothesized that although, perceptually
speaking, end-effectors and pelvis trajectories seem not to be as informative as full-body repre-
sentations, numerically they still encode enough expressive content to successfully control the
generation of full-body expressive movements. For this purpose, we measured whether observers’
perception of expressive content would be influenced by the source from which full-body move-
ments were obtained. We considered three possible sources: MoCap data, motions reconstructed
using end-effectors and pelvis trajectories extracted from the MoCap data, and motions generated
from re-sampled control trajectories. The results from this study showed that bodily movements
generated either from observed or synthesized end-effectors and pelvis trajectories are perceived
as being as expressive as the movements produced by a human actor. This indicates that although
emotion perception was impaired when only end-effectors and pelvis trajectories were displayed,
this impairment was not longer present when rating full-body motions generated using these trajec-
tories and our synthesis system. Hence, end-effectors and pelvis trajectories seem to encode most
of motions cues that are necessary for both the numerical analysis and generation of expressive
full-body motions.
The results obtained from this second study are arguable from the point that our synthesis

tasks did not only received end-effectors and pelvis trajectories as input and control signals. As
previously indicated in Section 5.1, due to the redundancy and increased number of DOFs in the
kinematic chains we defined as the characters’ arms, we decided to additionally provide elbows
trajectories. In this case, we employed elbows trajectories as an IK solver constraint analogous
to the commonly used end-effector’s orientation and which main purpose is to limit the space of
possible IK solutions to more natural and humanly plausible postures. However, it is likely that
by providing both hands and elbows trajectories as control signals, our IK solver was implicitly
capable of replicating some of the form and shape cues that were missing in our first study and
that from end-effectors trajectories alone it might not be possible to obtain. Thus, our claim that
end-effectors trajectories are a sufficient representation for the generation of expressive full-body
motions should be revisited. Thus, given our results and the addition of elbow trajectories to
our synthesis framework, we can conclude that as long as expressive end-effectors and elbow
trajectories guide the synthesis process, emotions are still successfully conveyed and perceived in
the resulting synthesized motions.
We are also aware that the significance of the conclusions presented in this article is limited

by the relatively low accuracy rates we obtained for both user studies. Although our participants
mostly showed perception rates above chance level, we still observed that the motion sequences
within or generated using our database were less accurately recognized than movements considered
in other existing databases, e.g., [43] and [39]. We have identified several possible reasons for these
rates. First, our choice of emotional states. Our database includes examples of two emotional
states, i.e., relaxedness and stress, that are not often considered when investigating the perception
of emotions from motion and/or when designing expressive MoCap corpora. It is probable that
additional contextual factors (e.g., who the character is, where she/he is, what her/his current
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task is) and visual cues such as facial expressions, gaze direction, etc., are needed for a more
accurate identification of these two emotional states [29]. Second, our choice of scenario and
motion embodiment. Gunes et al. [29] pointed out that the understanding of the action being
performed is critical for emotion perception from human body motion. It might be possible that
the motion sequences and individual actions contained in our database were not fully understood
by the observers that took part of our studies, which in turn penalized the accuracy rates we
obtained from them. Furthermore, although several studies have shown that humans are capable of
perceiving emotions from less detailed representations and/or embodiments [47], it is still possible
that by presenting participants with stick-figures displays, some of the subtle cues that make
the discrimination between the intended emotions much easier were not longer present in our
video-clips [33]. Finally, our choice of emotion elicitation over emotion portrayal might be critical.
During our MoCap recordings, actors were given a short scenario that helped them to better
contextualize, interpret, and enact each of the intended emotions in the database. This kind of
induction mood procedures privileges more natural and spontaneous expressive motions over more
easily recognized movements [4]. As a result, accuracy rates for this kind of expressive motion
(e.g., Volkova et al. obtained accuracy rates between 20% and 50% [64] while Fourati and colleagues
obtained an average accuracy rate of 40% for their Emilya database [26]) are often lower – and
similar to the rates we have obtained in our user studies – than the ones reported for portrayed
and acted motion databases [2, 39, 52].

9 FUTUREWORK
Future work will be oriented to overcoming the limitations of this study and testing the proposed
motion representation and synthesis approach on different types of motions and emotional states.
For instance, we are interested in applying the perceptual evaluations we presented in this article
to other MoCap databases. It will be indeed interesting to determine whether end-effector tra-
jectories generalize without problem to other types of movements such as daily actions [25] or
dance sequences [1], as well as to other emotional states not initially considered in our database.
Futhermore, by considering databases in which more exaggerated movements were employed to
convey emotional content (e.g., [39, 52]), it will be possible to obtain additional insights about the
nature of the motion data to be used when synthesizing expressive bodily motions. That is, whether
much more exaggerated motion examples should be employed over more naturalistically obtained
motion (e.g., elicited emotions) when animating believable virtual characters.

Another aspect to consider for future work will be the motion retargeting issue, i.e., the usability
of end-effector trajectories for the generation of expressive movements when controlling animated
characters or employing examples from actors with different body proportions and sizes. Indeed,
since we wanted to reduce as much as possible any confounding effect (e.g., differences in acting
style or expressiveness) that might have influenced the results of our second perceptual study, we
decided to test our synthesis system on the data recorded from a single actor. Because of this, it is
unknown whether the adaptation of end-effector trajectories through existing motion retargeting
will result in artifacts during the full-body reconstruction step and changes in the perception of
emotions.

Similarly, we are also interested in improving the function that maps end-effector trajectories to
whole-body motions since it is one of the key elements of the motion synthesis approach proposed
in this article. Although the inverse kinematics controllers we used to approximate this mapping
provides an efficient and flexible control over the resulting motions, additional constraints (joint
limits and elbow trajectories) were needed in order to enhance the solutions provided by this
mapping. Nonetheless, we observed that the generated motions might still suffer from visual
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artifacts inherent to both the redundancy of the articulated chains being controlled and the use
of purely procedural synthesis techniques. We believe that deep learning techniques represent an
interesting direction for the improvement of this mapping function. Specifically, convolutional
networks have shown to successfully encode within the hidden units the bio-mechanical constraints
governing human motion [34, 35]. By combining this type of network and a generation scheme as
the one recently proposed by the deep generative network WaveNet [19], we believe it is possible
to generate biologically correct and visually appealing whole-body motions that closely follow the
control signal and exhibit the intended emotional content.

Overall, the results from both qualitative evaluations show that end-effector trajectories are an
interesting choice of motion representation and have the potential to be sufficient for the generation
of expressive bodily motions. However, when mapping functions with no prior knowledge about
the biomechanical constraints of the human body are used, such as IK kinematics, additional
control signal such as the elbow trajectories we used might be necessary to obtain plausible and
rich expressive full-body movements.
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