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Combining Multiple Sensors for Event Detection
of Older People

Carlos F. Crispim-Junior, Qiao Ma, Baptiste Fosty, Rim Romdhane, Francois
Bremond, Monique Thonnat

Abstract We herein present a hierarchical model-based framework for event de-
tection using multiple sensors. Event models combine a priori knowledge of the
scene (3D geometric and semantic information, such as contextual zones and equip-
ment) with moving objects (e.g., a Person) detected by a video monitoring system.
The event models follow a generic ontology based on natural language, which al-
lows domain experts to easily adapt them. The framework novelty lies on combining
multiple sensors at decision (event) level, and handling their conflict using a proba-
bilistic approach. The event conflict handling consists of computing the reliability of
each sensor before their fusion using an alternative combination rule for Dempster-
Shafer Theory. The framework evaluation is performed on multisensor recording of
instrumental activities of daily living (e.g., watching TV, writing a check, preparing
tea, organizing week intake of prescribed medication) of participants of a clinical
trial for Alzheimer’s disease study. Two fusion cases are presented: the combina-
tion of events (or activities) from heterogeneous sensors (RGB ambient camera and
a wearable inertial sensor) following a deterministic fashion, and the combination
of conflicting events from video cameras with partially overlapped field of view (a
RGB- and a RGB-D-camera, Kinect). Results showed the framework improves the
event detection rate in both cases.

1 INTRODUCTION

Human Behavior (or event) monitoring has experienced continuous advances since
last decade promoted by Computer Vision, Wearable and Ubiquitous Computing
Fields. Examples of applications range from security field, such as video surveil-
lance, crime prevention, and older people monitoring at home, to tools to support
objective assessment of emerging symptoms of diseases (medical diagnosis), and
even as a part of human-machine interfaces for game entertainment.
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Wearable and Pervasive Computing communities have proposed multimodal
event monitoring based on sensors such as, wearable inertial sensors, passive in-
frared presence sensors, change of state sensors, microphones. For instance, Gao et
al. [8] and Rong and Ming [15] have demonstrated the fusion of wearable inertial
sensors at the waist, chest, and sides of a person body for the detection of daily living
activities, where data fusion was carried out by classification methods (e.g., Naı̈ve
Bayes, C4.5). Although wearable inertial sensors provide a rich representation of
body dynamics, they are subjected to problems such as motion noise, inter sensor-
calibration, and in case of large scale research studies, the need of placing sensors
in a relatively similar body position among monitored people, what may introduce
noise in experimental data. Fleury et al. [6] have presented a multi-modal event
monitoring system using actimeters, microphones, PIR (Passive Infrared) presence
sensor, and door contact sensors. Data fusion is performed using a SVM classi-
fier. Medjahed and Boudy [12] have proposed a smart-home setting which performs
event detection relying only on ambient sensors like infrared, change of state sen-
sors, and microphones, and physiological sensors; all fused by a Fuzzy classifier.

Computer Vision approaches for event detection may be summarized in three
categories (adapted from [10]): classification methods, probabilistic graphical mod-
els (PGM), and semantic models, which rely on at least of the following data ab-
straction: pixel-level, feature-level, or event-level. Probabilistic Graphical Models
refer to techniques such as Conditional Random Fields, Dynamic Bayesian Net-
works, and Hidden Markov Models. Kitani et al. [27] has proposed a Hidden Vari-
able Markov Model approach for event forecasting based on people trajectories and
scene features. Examples of classification methods are Artificial Neural Networks,
Support-Vector Machines (SVM), and Nearest Neighbor. In this context, Le et al.
[11] have presented an extension of the Independent Subspace Analysis algorithm
applied for learning invariant spatio-temporal features from unlabeled video data
for event detection. Wang et al. [17] have proposed new descriptors for dense tra-
jectory estimation in action representation as input for non-linear support vector
machines. Although PGMs and classification methods have considerably increased
the event detection performance in benchmark data sets, as they focus on pixel-and
feature-based representations, they have limitations at describing the scene seman-
tics and the temporal dynamics and hierarchical structure of complex events. More-
over, these approaches only focus on video data, ignoring other modalities which
could provide additional information in the presence of ambiguous data.

In the recent domain of video search in internet videos, multimodal event anal-
ysis have investigated event representations consisting of different image cues, like
motion and appearance, combined with other modalities such as audio and text, and
exploring fusion in different data abstraction levels. Jhuo et al. [22] introduced a
feature-level representation which combines audio and video data by mapping the
joint patterns among these two modalities. Myers et al. [24] have learned a set of
base classifiers, each from a single data type/source (low-level vision, motion, au-
dio, high-level visual concepts, or automatic speech recognition), and evaluated their
fusion using different methods at event level (late fusion scheme). They report av-
erage output was one of the most effective fusion schemes. Similarly, Oh et al.,[25]
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have presented a multimodal (audio and video) system, where base classifiers are
learned from different subsets of features, and score fusion are used to combine
them into complex events. Mid-level features, such as object detectors, were em-
ployed to enrich event model semantics. Even though multimedia event analysis
approaches have demonstrated significant advances by seeking to capture the hier-
archical nature of events and incorporating auxiliary sources of information, most
methods rely on learning steps involving large amounts of training data.

Semantic (or Description-based) models make use of a description language and
logical operators to build event representations incorporating knowledge of domain
expert. These languages allows to explicitly model the semantic information and
hierarchical structure of event, besides to not require as much data as PGMs and
classification methods. For instance, Zaidenberg et al. [19] have presented a generic
model-based framework for group behavior detection on surveillance applications
such as airport, subway, and shopping center.

Cao et al. [3] proposed a multimodal event detection where two context model
are defined: the human and the environment contexts. The human context (e.g., body
posture) is obtained from data of a set of cameras, while the environment context
(semantic information about the scene) is based on accelerometer devices attached
to objects of daily living which once manipulated trigger an event, (e.g., TV remote
control or doors use). A rule-based reasoning engine is used for combining both
context types at event detection level. Although semantic models ability to easily
incorporate scene semantics, they are sensitivity to noise of underlying process, like
image segmentation and people tracking in vision systems. To overcome such lim-
itations, probabilistic frameworks may be adopted to handle data uncertainty as in
[20] and [12]. For example, Zouba et al. [20] have evaluated a multimodal monitor-
ing system at the identification of activities of daily living of older people on a model
apartment. Video-camera data was used to track people over the scene and environ-
mental sensor to obtain complementary data on object interaction. Dempster-Shafer
theory was employed for reasoning under imprecise data.

This paper presents hierarchical model-based framework to multiple sensor con-
text. We extend the generic ontology proposed by Vu et al.[18] to describe event
models in terms of elementary (low-level) events coming from different sensors,
as a basis to infer Multimodal Complex Events. Event level fusion is chosen as it
provides a flexible way to deal with sensor heterogeneity, and has been reported
to presented a higher performance than early fusion schemes based on pixel- and
feature-level representations [23] [24]. A Dempster-Shafer-based probabilistic ap-
proach is presented to handle event conflict using an adapted combination rule. The
framework is evaluated on real multisensor recordings of participants of a clinical
protocol for Alzheimer disease study.
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2 HIERARCHICAL MODEL-BASED FRAMEWORK

The proposed framework is composed of two main components: an event ontology
and a temporal event detection algorithm [18]. The temporal algorithm is respon-
sible for event inference based on the event models defined by domain expert and
available input data. The video event ontology proposed in [18] is extended for mul-
tiple sensor scenario (then referred as Event Ontology), and the temporal algorithm
to deal with mutually exclusive conflicting events of different sensors during people
monitoring.

Fig.1 presents the architecture of the extended event detection framework, where
a wearable inertial sensor and two video-cameras are given as examples of sensors.
Sensor data is individually processed and their resulting output is taken as input
for the multisensor framework (Event Detection Module). For instance, inertial sen-
sor data would consist of a set of attribute-based events (e.g., from posture: person
bending, person lying down), while for video camera data it would be a set of people
detected in the scene and/or elementary events provided provided by vision module.
All sensors are assumed to be time-synchronized.

Fig. 1 Overall Architecture of the Video Monitoring System (adapted from [28])
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2.1 Event Ontology or MultiModal

The event models are described using a constraint-based ontology language based
on natural terminology to allow domain experts to easily add and change them. An
event model is composed of up to six parts [18]:

• Physical Objects refer to real objects involved in the recognition of the modeled
event. Examples of physical object types are: mobile objects (e.g. person herein,
or vehicle in another application), contextual objects (equipment) and contextual
zones (chair zone);

• Components refer to sub-events that the model is composed of;
• Forbidden Components refer to events that should not occur in case of the event

model is recognized;
• Constraints are conditions that the physical objects and/or the components

should hold. These constraints could be logical, spatial and temporal;
• Alert describes the importance of a detection of the scenario model for a given

specific treatment; and
• Action in association with the Alert type describes a specific action which will

be performed when an event of the described model is detected (e.g. send a SMS
to a caregiver responsible to check a patient over a possible falling down).

Three types of Physical Object are defined: Mobile, Person, and Contextual Ob-
jects. Mobile class defines a set of attributes which be common to any mobile ob-
ject (e.g., height, width, position, speed). Person class extends Mobile by adding
person-related attributes like body posture, appearance, etc. Contextual Objects re-
fer to a priori knowledge of the scene. A priori knowledge refers to a decomposi-
tion of a 3D projection of the scene floor plan into a set of spatial zones (e.g., TV
zone, Armchair Zone), and equipment, (e.g., home appliances and furniture such
as TV, armchair, Coffee machine) which hold semantic information to the modeled
events. Constraints define conditions that physical object property(-ies) and/or com-
ponents should satisfy. They can be non-temporal, such as spatial and appearance
constraints; or they could be temporal and specify two instances ordering which
should generate a third event, for example, Person crossing f rom Zone1toZone2
is defined as Person in zone1 before Person in zone2. Temporal constraints are ex-
pressed using Allen’s interval algebra (e.g., BEFORE, MEET, and AND) [2].

The ontology hierarchically categorizes models according to their complexity on
(in ascending order):

• Primitive State models an instantaneous value of a property of a physical object
(Person posture, or Person inside a semantic zone).

• Composite State refers to a composition of two or more primitive states.
• Primitive Event models a change in a value of physical object property (e.g.,

Person changes from Sitting to Standing posture).
• Composite Event refers to the composition of two previous event models which

should hold a temporal relationship (Person changes from Sitting to standing
posture before Person in Corridor Zone).
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Fig. 2 presents a description of Primitive State called Person sitting, which checks
whether the attribute posture of a person object assumes the value sitting. Fig. 3
presents an example of Composite Event, called Person sitting and using Office
Desk, which defines a constraint between two sub-events (components). First com-
ponent checks whether the person position lies inside of a priori defined zone rela-
tive to an office desk, while second component verifies whether the person posture is
sitting (using Fig. 2 model). Model constraint defines the model will be valid when
both components should are recognized at the same time (c1 AND c2).

PrimitiveState (Person_sitting,
PhysicalObjects ( ( p1 : Person ) )
Constraints ( ( p1->Posture = sitting) )

)

Fig. 2 Person sitting

CompositeEvent(Person_sitting_and_using_OfficeDesk,
PhysicalObjects( (p1:Person), (z1:Zone) )
Components(

(c1:CompositeEvent P_insideOfficeDeskZone(p1,z1))
(c2:PrimitiveState P_sitting (p1)))

Constraints( (c1->Interval AND c2->Interval) )
)

Fig. 3 Person sitting and using OfficeDesk

2.2 Modeling Events from Different Sensors

Previous section has described how the event ontology categorizes and models
events. We have chosen to model events generated by different sensor data using
Primitive States, since they are the most basic building block of the event ontology.
Handling sensor input at an early stage in hierarchy level avoids the propagation
of noise to high-level events, and also abstracts the derived models from the sensor
data they are conditioned on.

Fig. 4 describes the class Person where an attribute is created for each posture
estimation, e.g., Posture WI for the estimation from wearable inertial sensor, and
Posture V for the estimation of the video-based algorithm.

Fig. 5 illustrates an example of Primitive state using the posture estimation from
a inertial sensor. If one aims to increase system precision over recall, a Compos-
ite Event may be devised to combine (be composed of) both posture estimation
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class Person:Mobile
{

String PostureV;
String PostureWI;

}

Fig. 4 Class Person

(primitive states) and to restrict the targeted posture detection to when all sensor
estimations agree, see Fig. 6 for an example.

PrimitiveState( Person_sitting_WI,
PhysicalObjects ((p1 : Person))
Constraints(

(p1->PostureWI = Sitting)
)

)

Fig. 5 Person sitting WI

CompositeEvent( Person_Sitting_MS,
PhysicalObjects(

(p1:Person), (z1:Zone), (eq1:Equipment))
Components(

(c1: PrimitiveState Person_sitting_V (p1))
(c2: PrimitiveState Person_sitting_WI(p1)))

Constraints( (c1->Interval AND c2->Interval) )
)

Fig. 6 Person Sitting MS

Fig. 7 presents the event model “Person sitting and using Office Desk” which
relies on a multisensor event for the detection of posture sitting. Using an ontology
language for event modeling on multisensor scenarios allows to decompose event
complexity and provides a flexible way to add or change sensor-based events.

The presented model examples described how to combine estimations of multiple
sensor over the same attribute of Person class. But, there is not restriction on how
event models from different sensors are combined. A complex event model may
have a person posture estimated from an inertial sensor (Posture WI) while his/her
localization is provided by a vision system.
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CompositeEvent( Person_sitting_and_using_OfficeDesk,
PhysicalObjects(
(p1:Person), (z1:Zone), (eq1:Equipment))

Components(
(c1: CompositeEvent P_inside_OfficeDeskZone(p1, z1))
(c2: CompositeEvent Person_sitting_MS(p1))

)
Constraints( (c1->Interval AND c2->Interval) )

)

Fig. 7 Person sitting and using OfficeDesk

2.3 Event Conflict Handling

To address conflicting evidence among (mutually exclusive) events generated by
different sensors, a probabilistic framework is proposed to assess event reliability
for event fusion. The conflict handling framework works as follows: firstly, event
instantaneous likelihood is computed; secondly, event temporal reliability is com-
puted from the current and close past event instantaneous likelihood (see [14]); fi-
nally, a variant of Dempster-Shafer rule of combination is used to decide upon event
reliability which of the events is being performed.

The event conflict handling framework is performed at primitive state level to
reduce the propagation of noise from low-level components to hierarchically higher
event models, abstract high-level events from the sensor estimated events, and derive
semantically high-level event only from consolidated information.

2.3.1 Instantaneous likelihood of a Primitive State

The instantaneous likelihood of Primitive States is computed based on the feature(s)
the event constraints are based on. Assuming the Primitive state feature (e.g., height)
follows a Gaussian distribution, a learning step is performed a priori to obtain the
expected feature distribution parameters (mean, µ , and variance, σ2) given a prim-
itive state and a sensor. The learning procedure is performed for each mutually ex-
clusive event model affected by the analyzed feature.

Learned distribution parameters are then used during event inference (detection)
to compute the instantaneous likelihood of an event given the feature value and the
sensor providing it using Equation 1.

Pinst
Ω ,k,i =

exp(−(HeightΩ ,k,i−µ2
Ω ,i))

2σ2
Ω ,i

(1)

where,
k: video frame number (current instant), Ω : event model, i: sensor identifier
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2.3.2 Temporal reliability of a Primitive State

The instantaneous likelihood of the Primitive State considers the probability of a
given primitive state (e.g., sitting, standing) been recognized at the current frame.
But, noise from underlying vision algorithms can compromise the feature value
which a primitive state is based on for a short interval of time, (e.g., problems at
image segmentation can harm the height estimation of a person). To cope with in-
stantaneous deviations of primitive state probabilities we compute the event tempo-
ral reliability which considers the instantaneous likelihood of an event and its pre-
vious values for a given time interval (time window). Equations 2 and 3 present an
adapted computation of temporal reliability using a time window of fixed size [14].
A cooling function is used to reinforce the information of near frames and lessen the
influence of farther ones. The window size parameter used in these equations was
set to match the minimum expected duration of the modeled primitive states.

Ptemp
Ω ,k,i =

Pinst
Ω ,k,i +M

∑
t=k−1
t=k−w exp(−(k− t))

(2)

M =
t=k−1

∑
t=k−w

[exp(−(k− t))(Ptemp
Ω ,k,i−Pinst

Ω ,k,i)] (3)

where,
k: video frame number (current instant), Ω : event model, i: sensor identifier, w:

temporal window size
Primitive State Temporal Reliability is then considered as a belief level value on

“how strongly it is believed that the event generated by the sensor i is true at the
evaluated time instant”. From here on Primitive State Temporal Reliability will be
referred as Primitive State Reliability.

2.3.3 Primitive State Conflict Handling

Once the reliability of all mutually exclusive Primitive States are computed it is
then necessary to decide which events are being actually performed. To perform
such task we have adopted Dempster-Shafer Theory (DS). DS theory was proposed
by Dempster [5] and then improved by Shafer [16]. It extends the Bayesian infer-
ence by allowing uncertainty reasoning based on incomplete information. The major
components of evidence theory are the frame of discernment (Θ , Equation 4), and
the basic probability assignment (BPA). The frame of discernment contains all pos-
sible mutually exclusive hypotheses.

Θ = {Sitting,Standing, ...} (4)

The BPA is a function m: 2Θ → [0,1] related to a proposition satisfying condi-
tions (5) and (6) [1]:
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m( /0) = 0 (5)

∑
A∈Θ

m(A) = 1 (6)

where, A is any subset of the frame of discernment, and refers to the empty set.
For any A ∈ 2Θ , m(A) is considered as the subjective confidence level on the event
A. Accordingly, the whole body of evidence of one sensor is the set of all the BPAs
greater than 0 (zero) under one frame of discernment. The combination of multiple
evidences defined on the same frame of discernment is the combination of the con-
fidence level values based on BPAs (e.g., pre-defined by experts). Given two sensors
(1 and 2), where each sensor has its body of evidence (ms1 and ms2), these are the
corresponding BPA functions of the frame of discernment. The combination rule of
the classical DS theory can be implemented to fuse data from two sensors, but it can
lead to illogical results in the presence of highly conflicting evidence [1]. We herein
adapt the combination rule proposed by Ali et al. [1], as it has been demonstrated to
provide more realistic results than the standard DS rule when combining conflicting
evidence from multiple sources. Equations 7 and 8 present the mass function for
computing Sitting (Sit.) and Standing (Sta.) primitive states, respectively:

(ms1
⊗

ms2)(Sit.) =
(1− (1−ms1(Sit.))(1−ms2(Sit.)))
(1+(1−ms1(Sit.))(1−ms2(Sit.)))

(7)

(ms1
⊗

ms2)(Sta.) =
(1− (1−ms1(Sta.))(1−ms2(Sta.)))
(1+(1−ms1(Sta.))(1−ms2(Sta.)))

(8)

Among a set of mutually exclusive events the framework chooses the event with
the highest probability (mass function). The combination rule can be used on an
iterative fashion to combine more than two body of evidence.

3 EVALUATION

To evaluate the proposed framework we have used multisensor recordings from real
participants of a clinical protocol for Alzheimer disease study. This data set is cho-
sen due to the growing applicability of monitoring systems for older people care,
assisted living, and frailty diagnosis.

The event detection performance is evaluated in two scenarios: firstly, we com-
pare the crisp multisensor approach using data from an 2D-RGB camera and a wear-
able inertial sensor to a mono-sensor (camera) approach. Inertial sensor raw data is
pre-processed using its (proprietary) software to generate the list of postures per-
formed by the participant during the experimentation. Multi-sensor event models
use wearable inertial sensor data for posture-based events and video-based data for
person localization in the scene. Second scenario evaluates the proposed probabilis-
tic approach for event conflict handling on events generated by two vision modules
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(the 2D-RGB camera vision system and a variant of it using a RGBD sensor). For
this scenario, posture data is obtained per vision module and then propagated for
fusion in the form of events.

All sensors are assumed to be time synchronized, but none spatial correspon-
dence is computed among the cameras in the second scenario. Briefly, we assume
the multi-sensor system does not know the transformation function amongst the
coordinate-systems of the cameras.

3.1 Performance Evaluation

Event detection performance is measured using the indexes of sensitivity, precision,
and F-Score described in Equations 9, 10, and 11, respectively. System event detec-
tion is compared to event annotation performed by domain experts.

Sensitivity =
T P

T P+FN
(9)

Precision =
T P

T P+FP
(10)

where, TP: True Positive rate, FP: False Positive rate, FN: False Negative rate.

F−Score =
2∗ (Sensitivity∗Precision)

Sensitivity+Precision
(11)

3.2 Vision Module

The Vision Module used to test the proposed framework is a evaluation platform
locally developed that allows the testing of different algorithms for each step of the
computer vision chain (e.g., video acquisition, image segmentation, physical ob-
jects detection, physical objects tracking, actor identification, and actor events de-
tection). Image segmentation is performed by an extension of the Gaussian Mixture
Model algorithm for background subtraction proposed by [13]. People tracking is
performed by an implementation of the multi-feature tracking algorithm proposed
in [4], using the following features: 2D size, 3D displacement, color histogram, and
dominant color. The vision component is responsible for detecting and tracking mo-
bile objects on the scene. These objects (so-called physical objects) are classified
according to a set of a priori defined classes, e.g., a person, a vehicle. The detected
physical objects are then passed to the event detection module which assess whether
the actions/activities of these actors match the event models defined by the domain
experts.
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3.3 Data set

Participants aged more than 65 years are recruited by the Memory Center (MC)
of Nice Hospital. Inclusion criteria of the Alzheimer Disease (AD) group are: di-
agnosis of AD according to NINCDS-ADRDA criteria and a Mini-Mental State
Exam (MMSE) [7] score above 15. AD participants which have significant motor
disturbances (per the Unified Parkinson’s Disease Rating Scale) are excluded. Con-
trol participants are healthy in the sense of behavioral and cognitive disturbances.
The clinical protocol asks the participants to undertake a set of physical tasks and
Instrumental Activities of Daily Living (IADL) in a Hospital observation room fur-
nished with home appliances. Experimental recordings use a RGB video camera
(AXIS R©, Model P1346, 8 frames per second), a RGB-D camera (Kinect R©sensor),
and a wearable inertial sensor (MotionPod R©).

The set of monitored IADLs is composed as follows:

1. Watch TV,
2. Prepare tea/coffee,
3. Write the shopping list of the lunch ingredients,
4. Write a check to pay the electricity bill,
5. Answer/Call someone on the Phone,
6. Read newspaper/magazine,
7. Water the plant
8. Organize the prescribed drugs inside the drug box according to the weekly intake

schedule.

Fig. 8 shows the recording viewpoint of the 2D-RGB and RGB-D cameras in A
and B, and WI sensor at image B.

3.4 Event Modeling

Each one of the eight focused IADL is modeled using two composite models and
three primitive states. First composite model is composed of two of the primitive
states: one for the recognition of the person position inside a contextual zone (a pri-
ori defined), and another for his/her proximity to a static object (equipment) located
into the respective zone (also a priori defined, e.g., phone table, coffee machine).
Second composite model is composed of the first composite model to include the
recognition a given IADL, and a primitive state model related to the posture of
the person. The primitive states for posture recognition used data from the inertial
sensor only. The activities “writing a check” and “writing a shopping list” are not
differentiated and are referred instead as “Person using Office Desk” due to the lack
of information about the object been manipulated by the patient. The name of the
activity “Organize the prescribed drugs” is shortened as “Person using pharmacy
basket”.
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Fig. 8 Participant’ activities by the point of view of different sensors: (A) RGB camera view
and actimetry provided the inertial sensor (the bottom of image A); (B) RGB-D camera view of
participant, which shows the inertial sensor worn by the participant; and (C) Drawn points on the
ground represent the trajectory information of the participant during the experimentation.

4 RESULTS AND DISCUSSION

Table 1 presents the performance of the framework at recognizing the IADLs a
person is undertaking and his/her posture. Results are presented for mono- and mul-
tisensor approaches (2D-RGB camera and wearable inertial sensor). Average per-
formance is presented for IADLs with and without posture sub-events. The row
“Average of IADL without Posture” refers to event models based only on the person
localization in the scene provided by the video-camera, therefore no difference is
expected between Mono- and multisensor approach in this case.

Table 1 Comparison of Mono and multisensor approaches

F-SCORE Mono- multisensor

IADLs + Sitting posture 52.00 71.00
IADLs + Standing posture 73.15 71.00
Average of IADL with Posture 68.00 71.00
Average of IADL without Posture 81.22 81.22

N: 9; 15 min. each; Total: 64800 frames (135 min).
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The deterministic (or crisp) modeling of multisensor events has improved by ∼
19 % the precision index of IADLs involving sitting posture by the replacement of
the vision system by an inertial sensor for posture estimation. However, the mul-
tisensor event models had a slightly lower performance on the detection of IADL
involving standing posture than the mono-sensor approach. These results point that
none of the two employed sensors can completely replace the other, and limiting the
detection performance to the quality of the individual sensors output.

The difference in performance between IADL detection with and without posture
component shows that by reducing the number of model constraints a higher detec-
tion performance can be achieved at the expenses of less information about how
the event was performed. To tackle this problem, the probabilistic approach should
be used to combine both posture estimations and also make models more robust to
noise.

Table 2 presents the results of the proposed framework for conflict handling
on the recognition of the Person posture using events from two different video-
cameras (2D-RGB and RGB-D). The individual performance of the hierarchical
model-based framework per camera is presented for comparative purposes.

Table 2 Postures Recognition in Physical Tasks

Posture Sitting Standing

Sensor Precision Sensitivity Precision Sensitivity

RGB 84.29 69.41 79.82 91.58
RGB-D 100.00 36.47 86.92 97.89
Fusion 82.35 91.30 91.04 95.31

N: 10. A window of 5 second is used for Temporal Probability.

The results in Table 2 showed the conflict handling framework improves the de-
tection of posture-related primitive states on both posture categories. The precision
achieved at standing recognition is higher than the one achieved by each video cam-
era individually, demonstrating the suitability of the conflict handling framework
for the assessing of event reliability and the combination of multiple sensor events
for a more accurate detection.

5 CONCLUSIONS

We highlight as contributions of this paper a hierarchical model based framework
for multisensor combination and a probabilistic approach for event conflict han-
dling and fusion. The hierarchical model-based framework following a crisp com-
bination of events from different sensors improves the detection of people seated
while undertaking IADLs, and present similar results to the mono-sensor approach
in the other cases. Therefore in the crisp modeling case the detection performance
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is limited to the quality of the output of individual sensors. However, with the event
conflict handling approach we showed it is possible to obtain better results than the
ones individually achieved by the combined sensors by measuring the event reli-
ability before the fusion process. Moreover, the probabilistic approach would also
reduce the influence of errors from low-level sensor in the inference of high-level
events.

The hierarchical model based framework (event ontology + event conflicting han-
dling) is a hybrid approach between the hand-crafted semantic-models and the com-
pletely learned parameters of Probabilistic Graphical Models, but requiring a much
smaller amount of training data. Future work will extend the evaluation of the frame-
work for a larger variety of sensors (heterogeneous and homogeneous) and types of
primitive states, and verify possible alternatives to remove the learning step.
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