
HAL Id: hal-01854418
https://hal.science/hal-01854418

Submitted on 6 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An anatomy of interaction: co-occurrences and
entanglements

Antranig Basman, Philip Tchernavskij, Simon Bates, Michel Beaudouin-Lafon

To cite this version:
Antranig Basman, Philip Tchernavskij, Simon Bates, Michel Beaudouin-Lafon. An anatomy of inter-
action: co-occurrences and entanglements. Programming’18 Companion - Conference Companion of
the 2nd International Conference on Art, Science, and Engineering of Programming, Apr 2018, Nice,
France. pp.188-196, �10.1145/3191697.3214328�. �hal-01854418�

https://hal.science/hal-01854418
https://hal.archives-ouvertes.fr


An Anatomy of Interaction: Co-occurrences and Entanglements
Antranig Basman

Raising the Floor - International
London, England

amb26@ponder.org.uk

Philip Tchernavskij
LRI, Université Paris-Sud, CNRS,
Inria, Universitè Paris-Saclay

Orsay, France
ptcher@lri.fr

Simon Bates
OCAD University
Toronto, Canada
sbates@ocadu.ca

Michel Beaudouin-Lafon
LRI, Université Paris-Sud, CNRS,
Inria, Université Paris-Saclay

Orsay, France
mbl@lri.fr

ABSTRACT
We present a new taxonomy for describing the conditions and im-
plementation of interactions. Current mechanisms for embedding
interaction in software promote a hard separation between the
programmers who produce the software, and the communities who
go on to use it. In order to support open ecologies of function and
fabrication, where this separation is negotiated by communities of
users and designers, we need to reconceive those mechanisms. We
describe interaction in two phases: Co-occurrence, the prerequisite
conditions for an interaction to take place; and entanglement, the
temporary coupling and interplay between elements participating
in the interaction. We then sketch a blueprint of a system where
those phases and their adjacent mechanisms enable communities of
users to build and use interactive software. There are many ways of
conceiving this new design space, and we present three dominant
metaphors which we have employed so far, based on chemical reac-
tions, quantum physics and cooking. We exhibit different systems
which we have implemented based on these metaphors, and sketch
how future systems will further empower citizens to design and
inhabit their own interactions, express ownership over them and
share them with communities of interest.

CCS CONCEPTS
• Human-centered computing→ Interaction paradigms; In-
teractive systems and tools;

KEYWORDS
Interaction models, interaction paradigms, interaction architectures

ACM Reference Format:
Antranig Basman, Philip Tchernavskij, Simon Bates, and Michel Beaudouin-
Lafon. 2018. AnAnatomy of Interaction: Co-occurrences and Entanglements.
In Proceedings of 2nd International Conference on the Art, Science, and Engi-
neering of Programming (Author version <Programming’18> Companion).
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3191697.3214328

Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France
2018. ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00
https://doi.org/10.1145/3191697.3214328

1 INTRODUCTION
To support human activities, what computers do must be about
more than just computation. In a reframing of computational ac-
tivity, Wegner [20] argues that “Interaction is more powerful than
Algorithms”. We support Wegner’s problematisation of computa-
tion, that “Algorithms and Turing Machines, like Cartesian thinkers,
shut out the world during the process of problem solving”. Taking
computers and computation beyond the role of “problem solvers”,
we want to embed their activities in the real world as part of an open
ecology of function [9]. We want to facilitate and empower creative
networks to curate and share artefacts of interest. To reach this goal,
we need to tease apart the nature of what interaction is, what it re-
lies upon, and how its prerequisites can be organised and filtered in
order to allow interactions themselves to take the role of first-class
artefacts of interest. In this paper, we reveal substructure in what
has been traditionally treated as an atomic phenomenon. We begin
by sketching our goals for software artefacts within communities
of interest, then characterise what we are prepared to recognise
as an interaction, and then consider how these goals influence the
structure of what we recognise.

2 ECOLOGIES OF FUNCTION AND
FABRICATION

Basman and Clark [2, 9] introduce the notion that artefacts could
and should take part in open ecologies. The ecology of use or
function reflects how an artefact comes to be recognised and used
amongst a collection of similar artefacts with similar functions —
for example, the ecology of spoons presents obvious and related
affordances based on their relative size, shape and materials.

The ecology of construction or fabrication establishes rela-
tionships amongst creators which may or may not mirror those
amongst the artefacts which are being constructed — different
craftsmen may specialise in spoons of different materials, differ-
ent dimensions or context of use. These ecologies can be more or
less open to the extent they enable new participants to enter or
transition into the ecology, as users or fabricators. Expert users
may have the option to make connections to relevant members of
the fabrication ecology, if it is sufficiently open, and perhaps start
taking on some of their skills. However, what is good for spoons is
not good for software — even the most basic of the skills necessary
to construct or modify acceptable software will remain out of reach

https://doi.org/10.1145/3191697.3214328
https://doi.org/10.1145/3191697.3214328


Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France A. Basman, P. Tchernavskij, S. Bates, and M. Beaudouin-Lafon

of the vast majority of citizenry who could benefit from their use,
because the relevant ecologies are closed.

2.1 Open Authorship
So-called end-user development (EUP) [17] has been a goal of many
communities over decades, but we argue that an important imped-
iment to useful results has been a failure to concentrate on the
material qualities of software that influence the structure of the
above ecologies [2]. Our work in drawing up and materialising
our anatomy of interaction will assist the goals of EUP only indi-
rectly — since as the literature shows, a head-on assault on this
profound problem will not lead to generally useful results. We see
our anatomy as a piece of cognitive and implementational scaffold-
ing on which future EUP systems can be productively built; the code
and artefacts presented in this paper will not be manipulated by
users of the system directly, but are planned to allow the expression
of a future superstructure of tooling to be more harmonious and
amenable.

The form of current software changes radically between the
two ecologies, from brittle and largely textual code to opaque and
largely visual interfaces. Code is changeable by those with the tools
and status of the fabrication ecology, but once it is in use, a piece of
software cannot generally return to a changeable form.Whilst there
are social and economic drivers of this separation, Basman et al.
[3] describe one technological driver as the problem of divergence
between dead and live forms of software.

The purpose of bringing these forms into convergence is to
support the “open authorial principle” described in [4] — that any
expression by any one author of a system can have its effect replaced
via an addition to the design by another author.

Some previous work has approached the goals of open author-
ship: For example, in the Buttons project [16], a community of
users tailored their operating systems as part of normal use by
creating, customising, and sharing buttons containing Lisp scripts.
Notably, MacLean et al. emphasise the parallel project of creating a
tailoring toolkit side-by-side with a tailoring culture. The toolkit
allowed users to progressively unfold and edit buttons, accessing
their representation, then command parameters, then the functions
that define their behaviour. The culture consisted of relationships
among non-programmers and programmers who collaboratively
modified and distributed buttons, e.g., through email.

2.2 Externalisation
Externalising the design of a piece of software is one of the key
quantities that support open authorship. As described in [4, 9],
there are two principal components of externalisation.

Firstly, the elements of the design should take an integral form —
in the language of functional reactive programming, we would say
that they give rise to a signal or behaviour, which has a (in our case
complex, structured) value which is in theory observable at any
instant in time. Secondly, the elements of the design should have
reasonably stable, publicly exposed coordinates which may be used
to address them. Basman et al. [4] explain that an important prop-
erty of these coordinates is that they allow for negotiation between
different communities, by being structured around references to
more or less stable design elements designated as landmarks. This

is similar to the way in which the structure of CSS selectors in a
web document allows for negotiation between code-focused and
design-focused authors.

3 CHARACTERISING INTERACTION
Before we investigate the substructure of the phenomenon of inter-
action, we should try to draw a boundary around the phenomena
we are interested in.

3.1 Interaction in the World
There are many theories of interaction with and through computers,
some of which are reviewed in [14]. For our purposes, we sketch a
broad definition based on Bødker’s adaptation of human activity
theory for the design of user interfaces [8]. We accept as interaction
any situation where a computer is acting as a mediating artefact
in some task the human is performing. This mediation can be de-
scribed at a very high level, such as using computers as tools for
writing, as well as lower levels, such as using the mouse-and-cursor
assemblage to select and manipulate objects on a screen. From
the human user’s perspective, software contains many mediators,
variously suited or unsuited to the user’s goals.

3.2 Interaction as Classically Implemented in
Code

For computers and software to become mediators of human action,
they need to be able to respond to the outside world. This is broadly
the purpose of interactions as implemented in code: To transduce
changes at some locations to changes at other locations. When
one of these locations is an input or output device, an interaction
can involve human users by taking input or producing output and
feedback.

However, abstractions for interaction not only determine the
form of transduction between locations in a system, but also the
means of connecting and disconnecting sources of transduction.
We call this aspect second-order interaction, since it frames the first-
order interactions that mediate elementary changes to a system. In
this paper, we are interested in how abstractions for interaction en-
able modification or addition of interactions throughout a system’s
lifetime. Hence, we focus on second-order interactions.

Listing 1 shows a stereotypical simple interaction as it would
be structured in a mainstream imperative language, rendered in a
JavaScript-like pseudocode. It exhibits all the typical divergent prop-
erties of such code, i.e., it establishes an interaction that is illegible
and unchangeable to future users who wish to author their system.
For example, the design elements corresponding to the scope and
procedure of the interaction (mouselistener); the origin and form
of the user’s operation (mouseEvent); and the preconditions for the
interaction to begin and end (interactionStartsCondition and
interactionStopsCondition) are all unreferenceable from the
point of view of the executing system. Only an author imbued with
the god-like powers to fork the original source code and interpose
their own definitions can enter this ecology.

More modern, or less imperative, schemes for expressing such
interactions, e.g., via functional reactive programming, state ma-
chines, or constraint propagation, address some of the infelicities



An Anatomy of Interaction: Co-occurrences and Entanglements
Author version

<Programming’18> Companion, April 9–12, 2018, Nice, France

1 var element = world.findElement(some arguments from design);
2
3 var mouseListener = function (mouseEvent) {
4 do some stuff with mouseEvent + element
5 }
6
7 if (interactionStartsCondition(some arguments from world) {
8 element.addListener('mouseEvent', mouseListener);
9 } else if (interactionStopsCondition(some arguments from world) {
10 element.removeListener('mouseEvent', mouseListener);
11 }

Listing 1: Classical pseudocode operating an interaction
of expression in this example, but do little to expose the result-
ing system to open authorship without explicit moves towards
externalisation.

3.3 The Need to Reconceive Interaction
The above descriptions in turn address the ends (turning computers
into mediators of human action), and the means (programming
mechanisms such as event listeners) of interaction; but we are
equally interested in how a design process draws up an interaction.
We believe that the major fault of current approaches to program-
ming interactions is that they do not account for how interactions
come to be.

Many decisions have already been made before an interaction
can take place: Someone has decided when and where each partic-
ular action should be available. For example, when using a word
processor of a traditional construction, it is straightforward to edit
the presentation of the document being written, but it is usually
impossible to edit the presentation of the largely text-based in-
terface around the document. It is also settled how each action
can be triggered, whether via a drop-down menu, a toolbar, a key-
board shortcut, etc. Implicitly, interaction is brought into being by
software designers and programmers. The consensus “model” of
interaction with computers assumes that end users can operate
their tools, but that they can only select, organise, combine and
share them in delimited ways. On the one hand, the skills necessary
to assemble these interactions are typically far away from the appli-
cation domain in which they are used; on the other hand, even with
those skills, it is not generally possible to change those decisions.

Related authorial activities occur when communities bring to-
gether various kinds of sub-systems. This integration creates the
possibility for encounters between groups of elements which had
not been part of the design of either system. It may be the task of a
third community to describe and orchestrate such interactions, and
each system must be designed in such a way that this third-party
integration is possible. This requires suitable public coordinates (as
introduced in section 2.2) for each element of both systems that
allow the expression of the rules for activating and operating the in-
teraction. Following Kell [15], we propose that user software should
form an integration domainwhere useful interactive artefacts can be
coupled to construct personal and communal interactive systems.

In the following section, we cut into pieces (anatomise) and
examine the process of triggering and enacting interaction, and
show how each of the elements of listing 1 can be mapped onto an
externalisable design forming a public workflow.

4 ANATOMISING INTERACTION
Meeting our goals of externalisation drives us, at the coarsest level,
to anatomise the process of interaction into two distinct activities.

4.1 Interaction as Co-occurrence +
Entanglement

First, a specific combination of conditions, which we call a co-
occurrence, must occur. Co-occurrence determines what elements
of the design are in a configuration in which an interaction that
involves them may potentially be initiated.

Second, the interaction itself unfolds as an interplay between
the elements, which we call entanglement. An entanglement is both
a process and an object, i.e., a new element that represents the
interaction for the duration of its lifetime.

Both phases are necessary to define any interaction, however
current systems usually do not distinguish them.

We perform this separation in order to segregate the detection of
co-occurrence into its own activity which we expect to be strongly
externalisable, since co-occurrence should be a pure function of
the coordinates of the existing design elements. This gives rise to
a “co-occurrence document” or “co-occurrence signal” which can
easily be transported around the system and be worked on by tools
of a lower level of sophistication. In the other part of the design
we have the entanglements, which will be as externalisable as the
implementation technology of the overall system allows — but by
being grouped together, offer the potential that they may be treated
as first-class elements of the running system, and hence be suitable
for participating in further interactions.

The notion of interaction as co-occurrence + entanglement is
inspired by the philosophical idea that a tool is not so much a thing
in itself as a thing that an agent has brought into a tool-like relation.
Interactions are by their nature boundary-crossing: The ability to
write is not contained within a pencil nor within a piece of paper,
writing is a thing that a person does by tracing a pencil over paper.
Hence, we require the ability to detect co-occurrences of things
that can engage in a collective behaviour, such as drawing a line.

Separating the description of interaction into co-occurrence and
entanglement is necessary in an open ecology of function. The pur-
pose of this separation is to shift away responsibility from program-
mers, by ensuring that it is no longer their job to fully specify all
the entities that will be available in an interactive system through-
out its lifetime. Instead of describing interactions in closed terms,
that is, with reference to “closed world” quantities such as object
handles and event listeners, authors will talk about landmarks in
time and space using an open vocabulary in a shared, authorial
space. These statements about landmarks will demarcate the cre-
ation and destruction of the constituent elements of the interaction,
the co-occurrences and entanglements, which themselves can be
the subject of future statements.

The following is a blueprint describing the function of these
activities in bringing about interaction, and the implementation
requirements for interactions to be brought about in a way that
conforms with the open authorial principle. We will serve the prin-
ciple by making sure that we do not need to know all entities that
will exist in a given software system at the time it is produced,
and furthermore that we do not need to know what interactions
they may participate in. This implies that a software substrate for
an openly authorable interactive systems can be told to oppor-
tunistically recognise the co-occurrence of elements with particular



Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France A. Basman, P. Tchernavskij, S. Bates, and M. Beaudouin-Lafon

properties, and instantiate entanglements that couple the state of
these elements for a time.

In practice, the separation of interaction into co-occurrence and
entanglement leads to further separations — we require further
elements to represent the activity of detecting co-occurrences, and
for instantiating further elements representing entanglements. In
the following sections we consider the design of these activities
themselves, and how their inputs and outputs are described, gen-
erated and consumed. In Figure 1 we illustrate the dataflow in the
process as a whole, and label the elements that we argue should be
externalised with the numbers 1 to 5.

4.2 State of the (or a) World
Starting at the element numbered 1 in Figure 1, we consider the
entanglement workflow to begin with some externalised state, rep-
resenting the world that a particular community of users are in-
terested in. As we explain in section 2.2, opening up the design
process requires this state to have an open structure. Each com-
munity of interest will have different concerns that lead them to
select representations of the world appropriate to their domains.
The direct content of this representation as primary state can be
considered as the Model part of the Model-View-Controller triad as
initially sketched in [19]. However, for an effectively open system,
the selection and representation machinery for this state itself must
also be comprised as secondary state within what we consider the
“state of the world of interest”. This kind of secondary state forms
what is termed “device drivers” at the operating system level but
has other names depending on the kind of system of interest. Both
of these kinds of state should be externalised as openly authorable
documents that are available throughout the lifetime of the system,
not just at an early design phase.

4.3 Co-occurrence
Before an interaction can begin, there is a prerequisite condition
that we call co-occurrence: Certain elements of interest must have
been assembled in a “suitable proximity” — this proximity may be
physical, informational or take some other form that makes the
elements conveniently available to each other or to the user.

Here are some examples of co-occurrences that can trigger com-
mon interactions:

• Two sensors are plugged into the same machine;
• A finger touches a screen;
• A colour-picking instrument is targeting a particular pixel;
• A user’s gaze is being tracked by a camera determining its
intersection with an element shown on screen;

• A group of musical instruments is assembled in a sufficiently
small area that they may mutually communicate wirelessly;

• A user whose wheelchair carries a device which facilitates
communication is brought near a kiosk running an applica-
tion they wish to interact with.

In each case, the conditions for co-occurrence being satisfied
signal that an interaction may potentially begin. The form of co-
occurrence is a signal (labelled 3 in Figure 1) containing refer-
ences to the co-occurring elements, which is emitted while the
co-occurrence is ongoing. This signal is derived from the “state of
the world” document by an element known as the co-occurrence

engine (or function in the typical case that it acts as a pure function
on the document).

4.3.1 Externalisation of Co-occurrence. In order for the co-occurrence
to be successfully externalised (section 2.2), it is necessary for these
references, and the elements they point to, to be externalisable —
this is one of the main drivers leading to the original “state of the
world” taking the form of an externalised document, which can be
stably referenced using these coordinates.

In a straightforward implementation which has good authorial
values, we can then cast the work of the entanglement instantia-
tor as a pure function of the co-occurrence signal, which maps
detected co-occurrences into entanglements for as long as they last,
and subsequently maps them back into non-existence. This could
be described as an “integral” model following the terminology of
section 2.2.

This signal can then be conveniently transported around differ-
ent sites of a distributed system, allowing the instantiation machin-
ery itself to be implemented wherever it is convenient — perhaps
at sites where computation is economically available, or perhaps
where communication with a crucial system element or the user
has particularly low latency. This argument supports the externali-
sation of the co-occurrence signal itself, labelled 3 in Figure 1.

4.4 Entanglement
After a suitable co-occurrence has been recognised and selected for
activation by entering it into the co-occurrence signal, it must be
acted upon to initiate an interaction. At this point there are various
sets of terminology we will use to describe the process, governed by
different sets of metaphors. These are elaborated in section 5, but for
the current discussionwewill refer to the entity created to represent
the interaction process as an entanglement. The entanglement
has a lifetime coextensive with the interaction, and represents it as
an externally addressable element of the system’s runtime.

Whilst the beginning of the lifetimes of the co-occurrence and
entanglement will invariably agree, theremay be interactionmodels
in which the entanglement persists beyond the co-occurrence and
follows the agents as they diverge.

One example of such an interaction is manipulating a slider with
a mouse cursor, where the initiating co-occurrence is that the cursor
and trough overlap, but the drag continues as long as the mouse
button is held, even if the cursor moves away from the trough. Note
that in this case, the entanglement termination condition could still
be best expressed as an externalizable, integral signal, derived from
a pure function of the coordinate of the reactants — just a different
such signal than the one bracketing the parent co-occurrence.

4.4.1 Externalisation of Entanglement. There are some condi-
tions on entanglements (numbered 5 in Figure 1) that result from
our open authorship goals described in sections 2 and 2.1.

Firstly, entanglements themselves must be first-class elements
of the system in their own right — and capable of giving rise to
further co-occurrences and hence entanglements. As a result, the
right-hand side of Figure 1 leads back into the “state of the world”.

Externalisation of entanglements allows us to trace what en-
tanglements affect what elements of the world, and vice versa. It
also allows entanglements to stretch across all of the externalised



An Anatomy of Interaction: Co-occurrences and Entanglements
Author version

<Programming’18> Companion, April 9–12, 2018, Nice, France

Figure 1: Anatomy of the interaction process, illustrated with Bier et al.’s Toolglass interaction technique [7]. Filled arrows
represent dataflow, dotted arrows represent references, and numbered elements are externalised.

world, i.e., they are not bound to only act on the runtime they ex-
ist in. Crucially, externalising entanglements supports integrating
entanglements created by different authors.

4.5 The Co-occurrence and Entanglement
Engines

Our plan caters for a plurality of designs for the co-occurrence
and entanglement process, and there are design choices reflecting
how much of the signal transformation is performed by the two
machines whose descriptions are labelled 2 and 4 in Figure 1.

In the following sections we argue for the externalisation of the
descriptions of these engines themselves. We will present argu-
ments for externalisation of similar design elements at the same
time, given the somewhat flexible division of their work.

4.5.1 Workflow Connecting Co-occurrence to Entanglement. In
any realistically-sized system, such co-occurrences may be detected
with high frequency or even continuously. This may require a
further round of interaction between the user and the system to
detect and transmit the co-occurrences:

The user could select from a menu of available co-occurrences,
perhaps with suggestions emphasising choices that they or mem-
bers of their community of interest have frequently made in the past.
Alternatively, a set of rules, e.g., based on priorities, may choose
the suitable co-occurrence automatically. In simpler, or classical
interactions initiated by means of a dedicated pointing device, it
may be appropriate to make the choice of initiating any available
interactions immediately.

In all cases, an essential component of the descriptions of the
co-occurrence engine and entanglement engine themselves deter-
mines what combinations of elements they recognise and how they
assemble them into an entanglement complex. These parts of their
descriptions could be termed recipes for particular entanglements,
using a metaphor we will discuss further in section 5.

4.5.2 Supporting Open Authorship with Recipes. We wish to
lower the bar to productive use of a community’s tools to members
of that community as much as possible. Within a well-developed
ecology of function, it should be possible to “plug in” known in-
teractions with no programming skills necessary. As a landmark
example of what this could look like, Buttons [16] allowed users to

e-mail each other newly developed tools, which could trivially be
arranged in their respective workspaces. Buttons buttons have slots
for configuring parameters and providing input/targets. When in-
teraction is limited to the button-pressing paradigm, that behaviour
can live within the button, but in our more general idiom, behaviour
does not have a well-defined scope until one is provided by a co-
occurrence. Thus, recipes can engage the elements provided by a
particular co-occurrence in a reusable entanglement.

Edwards et al. [12] provides an instructive example of the value
of such recipes. In the Obje project (formerly known as SpeakEasy),
Edwards et al. [12] develop an infrastructure to let networked de-
vices be integrated in an ad hoc way by letting them exchange
behaviours. For example, the Obje infrastructure allowed users
to control and connect devices on their local network via a PDA
browser. However Edwards et al. did not focus on establishing
an Obje community, or develop infrastructural features for such a
community. Interestingly, they conclude that allowing ad hoc in-
teroperation of devices inherently burdens users with establishing
useful semantics for devices they use.

To reduce this interpretive burden, Edwards et al. experimented
with a recipe format, called task-oriented templates, to combine
networked devices offering particular services in a routine config-
uration [12, p. 3:33]. However, what is a routine configuration de-
pends highly on the particular community of function in which the
configuration takes place. Externalising recipes can enable commu-
nities of users to collaboratively shoulder the interpretive burden of
design, by developing a repository of their useful interactions. This
hypothesis is supported by the success of the tailoring community
approach of MacLean et al. [16].

5 METAPHORS FOR THE INTERACTION
PROCESS

Since this is freshly mapped conceptual territory, several metaphori-
cal structures have been applied to describe the elements operating
the interaction process. The base term “co-occurrence” is fairly
generic and not tightly bound to any particular mapping, but other
metaphors for viewing the nature of the process lead to different
names for its elements. These are described in the following sub-
sections and illustrated in table 1.



Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France A. Basman, P. Tchernavskij, S. Bates, and M. Beaudouin-Lafon

Description Chemical metaphor Quantum metaphor Cookery metaphor

The characterisation and detection of those elements which might participate in
an interaction

Co-occurrence Co-occurrence Co-occurrence

The description of the participating elements, the process which they enter into,
and the identity of the result

Entangler Recipe

Machinery which operates the process Reactor (Co-occurrence engine) Entanglement engine

The elements which potentially or actually participate Reagents Entanglement components Ingredients

The process of combining the elements Reaction Entanglement Cooking

The complex resulting from combination Products Entanglement (Dish)

Table 1: Terminology arising from variant metaphors to describe the entanglement process

5.1 Chemical Metaphor
In this metaphorical structure, we describe the prerequisites for the
interaction as reactants and the resulting structure representing the
live reaction as the product. This metaphor is helpful in aligning us
with the SMIRKS reaction transformation language [11], developed
in order to describe not only the molecules which are required for
a particular chemical reaction to proceed, but also the exact rela-
tionship between atoms in the product and those in the reactants1.
This is helpful as a generalisation of the regular-expression-like
SMARTS language for encoding predicates on molecules, as well
as showing an example of how declarative and publicly intelligible
notations for reactions can be written and operated by a running
system. Areas where this metaphor breaks down for us include that
chemical reactants are typically consumed during reactions, and
the products are fabricated from their components — whereas for
the kinds of reactions we are centrally interested in, the product
typically mounts references to the reactants, which are typically un-
changed by the process of constructing the product itself (although
being put into this relation may mediate changes in the reactants
during the lifetime of the product).

5.2 Quantum Metaphor
In a metaphor taken from quantum physics, we describe the partic-
ipants in the reaction complex as being entangled, and speak of the
resulting complex as an entanglement. The machinery that instanti-
ates and transmits descriptions of these complexes is called an en-
tanglement engine or entangler. This metaphor is helpful in situating
the purpose of the complex as being primarily informational, and
also one that mediates communications and relationships beyond
the timeframe of the co-occurrence: in quantum physics, entangled
particles interact even after they have been separated, until an ex-
ternal event breaks the entanglement. Similarly, two objects may
continue to interact after the co-occurrence has ceased to exist, as
when continuing to drag a slider even when the cursor moves away
from the trough. This metaphor better maps the “reversible con-
struction” aspect of the entanglement complex than the chemical
metaphor, but provides fewer implementation clues.

5.3 Cookery Metaphor
In this metaphor, the available elements are considered as ingre-
dients in a recipe. The co-occurrence of particular groups of in-
gredients may make the cooking of different dishes available. This

1An early precedent for the idea of using chemical reactions as a computational model
appeared in [6]

metaphor is more useful at the level of the user of an overall system,
who may well be familiar with the process of rummaging through
their kitchen cupboards in order to determine what ingredients
have co-occurred there. It may be that the user habitually wishes to
cook particular dishes when faced with a particular co-occurrence,
or instead wishes the system to surprise them through suggesting
a previously unvisited combination. This metaphor suffers from
the same deficiency as the chemical one, in that the ingredients are
considered to be irreversibly consumed through the reaction, which
is an unsuitable disposition in an open informational ecology.

6 EXAMPLES OF ENTANGLEMENT AND
CO-OCCURRENCE ENGINES

We have built several examples of engines operating interactions,
which highlight different aspects of our ultimately desirable idiom
with varying degrees of fidelity.

6.1 The Co-occurrence Engine
This implementation2, simply named “the co-occurrence engine”
since at the time it was the only such implementation, is aimed at
facilitating the use of multiple physical devices and sensors coordi-
nated at or near the same device. As such it currently operates a
relatively coarse-grained co-occurrence criterion based on the si-
multaneous presence of elements advertising particular capabilities,
encoded as namespaced strings.

The goal of the co-occurrence engine is to enable dynamic con-
figuration within an Infusion [13] system, based on the presence
or absence of Infusion components. We have used it with the GPII
Nexus [10] to facilitate exploration of designs for an inclusive sci-
ence lab (see section 7).

The Nexus provides a means for connecting together software
components that may have been implemented using different pro-
gramming languages, toolkits, and frameworks, which may be
running on different devices or processes. The Nexus provides
a means for developers to externalise their application or compo-
nent’s model, enabling it to be observed and modified by other
components. The Nexus is being developed as part of the Pros-
perity4All Project [18], a European Commission-funded project
that aims to reduce the cost and complexity of building assistive
technologies and adaptive user interfaces.

The co-occurrence engine monitors a collection of Infusion com-
ponents and is configured with a set of recipes. Each recipe contains
2Documentation for the co-occurrence engine can be read at
https://github.com/simonbates/co-occurrence-engine/blob/master/documentation/
CoOccurrenceEngine.md

https://github.com/simonbates/co-occurrence-engine/blob/master/documentation/CoOccurrenceEngine.md
https://github.com/simonbates/co-occurrence-engine/blob/master/documentation/CoOccurrenceEngine.md


An Anatomy of Interaction: Co-occurrences and Entanglements
Author version

<Programming’18> Companion, April 9–12, 2018, Nice, France

1 {
2 "type": "gpii.nexus.recipe",
3 "reactants": {
4 "phSensor": {
5 "match": {
6 "type": "gradeMatcher",
7 "gradeName": "gpii.nexus.atlasScientificDriver.phSensor"
8 }
9 },
10 "collector": {
11 "match": {
12 "type": "gradeMatcher",
13 "gradeName": "gpii.nexus.scienceLab.collector"
14 }
15 }
16 },
17 "product": {
18 "path": "sendPhSensor",
19 "options": {
20 "type": "gpii.nexus.scienceLab.sendPhSensor"
21 }
22 }
23 }

Listing 2: A Co-Occurrence Engine Recipe from the Nexus Science Lab
two sections: a set of reactants and instructions for constructing
a product. Each reactant has a name and a match rule. The reac-
tant name may be used within the product to refer to the matched
component. In the current implementation, a single match rule is
available: match components based on namespaced strings (called
“grade names”) present on the components. An example recipe from
the Nexus Science Lab is shown in Listing 2.

The co-occurrence engine constructs and maintains product
components based on the co-occurrence of reactants. If compo-
nents are added that bring into being new co-occurrence situations
with matching recipes, the corresponding products are constructed.
If components are destroyed that remove previously present co-
occurrences, the affected products are also destroyed — it is thus
an implementation of the integral co-occurrence model described
in section 4.3.1.

6.2 The Entanglement Engine
This implementation is intended to demonstrate the quantummetaphor
as a general-purpose substrate for user software. It focuses on repre-
senting interaction techniques in a form that can can be dynamically
integrated into a running system. The Entanglement Engine mim-
ics the role of the CSS engine in a web browser, transposed from
managing the presentation of content to managing its behaviours.

Rather than operate on web documents, the Entanglement En-
gine is implemented to operate on a structured data world inspired
by the Document Object Model (DOM), extended to also represent
browser-external elements, such as mouse cursors and input de-
vices. The engine is configured with entanglers, which are similar
to Co-Occurrence Engine recipes, with a few notable exceptions:

Firstly, if an entangler is triggered, the engine produces an entan-
glement, a relationship coupling the state of the entangled elements,
which are called components. These relationships currently take the
form of programming abstractions appropriate to the concrete in-
teraction, e.g., event listeners, reactive functions, state machines [1],
etc.

Secondly, entanglers include a list of predicate functions that
must hold before an entanglement is created. These predicates are
used to flexibly define different kinds of co-occurrence. For exam-
ple, one entangler may require that its components geometrically
overlap, while another may require that one component contains a
reference to another.

The set of available co-occurence signals is currently small, but
our intent is that entanglers can be configured to trigger based on
the signals appropriate to various interaction paradigms, e.g., geo-
metric overlap for conventional mouse pointer-based interaction,
device proximity for cross-device systems, or gesture detection for
gestural interaction.

Listing 3 shows two entanglers. mousemove entangles a mouse
and another element which should contain a two-dimensional po-
sition. The entanglement it creates adds the relative movements
produced by the mouse to the position of the moved component. If
triggered opportunistically, this entangler would connect all mice to
all position elements. Instead, it is operated by the second entangler
in listing 3, makecursor. makecursor triggers when a mouse exists
that does not already have a mousemove entanglement. As mice are
added to the system, this entangler creates a new cursor for each
mouse and instantiates a new mousemove entanglement with them
as components. Other entanglers allow the created cursors to, e.g.,
target and move around elements they overlap.

Figure 2: Screenshot of in-browser embranglement engine
at the point where an embranglement has been instantiated

6.3 The Embranglement Engine
This is a proof-of concept implementation (using the term “em-

branglement” in place of “entanglement”) which operates in a toy
world of three agents in a web browser3. It was designed to clearly
exhibit the signalised form of the co-occurrence condition, which
is displayed as a JSON document in the right pane of the UI, up-
dated at each frame of the interaction. Figure 2 shows a screenshot
where the three agents have been deemed to co-occur and an em-
branglement has been instantiated coupling them together. In this
case the co-occurrence condition is geared through “focus/nimbus”
relations. Benford and Fahlén [5] describe a model of interaction
where an agent has multiple zones of perception — the “focus” of
an agent is the region of its own perception, and its “nimbus” is the
region from which it can be perceived.

This illustration shows three point agents, coloured red, green
and blue which each have a focus and nimbus which are circu-
lar and concentric, with the focus nested within the nimbus. The
agents enter a 3-way entanglement when the focus of each inter-
sects the nimbuses of the other two. The construction state of the
3The engine may be viewed live at https://amb26.github.io/embranglement/src/html

https://amb26.github.io/embranglement/src/html


Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France A. Basman, P. Tchernavskij, S. Bates, and M. Beaudouin-Lafon

entanglement is illustrated by a white triangle joining the agents,
with the unique identifier of this particular entanglement instance
annotating it. This implementation was made in the Infusion sys-
tem [13] developed by the Fluid project, a configuration dialect
which makes substantial use of JSON structures and the natural
alignment and coordinate system they induce in order to support
the aims of open authorship. As a result, the entanglement is indeed
on an even footing with the original agents, and meets the criteria
in section 4.4 for being the basis of further co-occurrences, as well
as being signalised in a form that could easily be advertised and
manipulated outside the browser process hosting it.

In this model of interaction, we can simplify the transmission of
the state of co-occurrence and entanglement, since this state is sim-
ply a function of the position and orientation of all the agents. This
state can then be easily transmitted through a distributed system in
the form of the JSON document (“embranglement signal”) shown
in the right pane. As we note in section 4.3, not all interactions may

1 // An entangler for wiring up something with a position to move with a mouse.
2 export const mousemove = {
3 name: 'mousemove',
4 // we will entangle two elements:
5 // 'mouse', which must have the mouse type,
6 // and 'moved', which must have an attribute named 'position'
7 // that has the type '2d-coordinate'
8 components: {
9 mouse : ':mouse',
10 moved : '[position:2d-coordinate]'
11 },
12 on_start: 'reaction getHash -> moveCursor',
13 actions: {
14 getHash: function() {
15 return hashCode(this.find('mouse'));
16 },
17 moveCursor: function(hash) {
18 // function body omitted
19 }
20 },
21 }
22
23 // An entangler that spawns a cursor for each mouse that connects to the system.
24 export const makecursor = {
25 name: 'makecursor',
26 // we will entangle one element, 'mouse', which must have the type 'mouse'
27 components: {
28 mouse: ':mouse'
29 },
30 // the 'mouse' element should not already be entangled with a cursor
31 configuration: ['mouse hasNoCursor'],
32 on_start: 'makeCursor',
33 actions: {
34 hasNoCursor: function(components) {
35 // function body omitted
36 },
37 makeCursor: function(components) {
38 // create a cursor
39 let cursor =
40 d(':circle.mousemove-moved.shapefocus-focus.dragging-leader', {
41 fill : d(':color', 'transparent'),
42 stroke : d(':color', '#000000'),
43 strokewidth: d(':number', 2),
44 radius : d(':number', 8),
45 position : d(':2d-coordinate', {x: 0, y: 0}),
46 targets : d(':id-list', [])
47 });
48 // add it to the document
49 let cursorMountPoint =
50 findFromNode(components.mouse, ':root', ':renderables')[0];
51 cursorMountPoint.get('content').push(cursor);
52 // entangle the cursor and the mouse using the mousemove entangler
53 this.entangle({
54 mouse: components.mouse,
55 moved: cursor
56 }, mousemove);
57 }
58 }
59 }

Listing 3: Two Entanglement Engine entanglers

be signalised straightforwardly in this way, although an Infusion
component tree as a whole enjoys a natural externalisation which
could still be relied on in the case of interactions that lack a natural
signal form.

7 CONCRETE APPLICATION EXAMPLE
Here we will describe how one of our engines, the co-occurrence
engine of section 6.1, has been employed to construct a system
and interaction meaningful to end users in a physical context, the
Nexus Science Demo4. The demo implementation is not at a stage
where it substantially meets the goals of open authorship described
in section 2.1, but we describe how our factoring of the interaction
process leads to an open, flexible design supporting variant presen-
tations of data collected from dynamic sources and how we plan to
extend the design towards more open authoring of interactions.

7.1 The Nexus Science Demo
The goal of the Nexus Science Demo is to explore designs that make
science labs more inclusive. We use the GPII Nexus [10] to connect
lab sensors to a range of different presentations and interactions.
This helps a student pick the interaction that works best for them.
For some students this might be a visualisation and for others it
might be a sonification, or a combination of different presentations.

Drivers for three sensors were developed: a USB pH sensor,
a USB electrical conductivity sensor, and a Raspberry Pi based
temperature sensor. Six presentations were developed: a numeric
dashboard showing the values of all connected sensors, a bar-graph
visualisation, a coloured pH visualisation annotated with the values
of common substances, a coloured temperature visualisation, a
general ranged-value sonification, and a pH sonification.

The sensor drivers work by maintaining peers within the Nexus.
When a sensor becomes available (for example by connected a
USB based sensor to a computer running a suitable driver, or by
adding a Raspberry Pi to the network), a peer is constructed within
the Nexus, and a WebSockets connection is established to stream
sensor value updates. When a sensor becomes unavailable, the peer
is destroyed. In this way, the availability of each sensor is indicated
by the presence or absence of a peer within the Nexus.

7.2 Co-occurrence for Open Designs
The needs of open authorship are a superset of those which lead to
open, configurable application designs.We describe how the current
science demo supports flexible aggregation of an open collection
of live data sources, and then how we plan to extend such designs
into systems supporting authorship of such demos supporting the
needs of individual learners.

The co-occurrence engine is used to decouple the sensor drivers
from the presentations that students use to interact with the data.
The sensor drivers need only make their data available and the co-
occurrence engine recipes organise the data for the presentations.
Presentations expect a central data store with an entry for each
sensor, together with metadata such as name and value range. The
co-occurrence engine is configured with one recipe per sensor
type, each with 2 reactants: the sensor that the recipe is for, and the
4A video of the demo in action can be found at https://www.youtube.com/watch?v=
NNwc0VYRhUU

https://www.youtube.com/watch?v=NNwc0VYRhUU
https://www.youtube.com/watch?v=NNwc0VYRhUU


An Anatomy of Interaction: Co-occurrences and Entanglements
Author version

<Programming’18> Companion, April 9–12, 2018, Nice, France

presentation collection data store. When these reactants are present,
the recipe constructs a product that relays the sensor data to the
collection data store, in a format expected by the presentations.

The co-occurrence engine facilitates dynamic connection and
disconnection of sensors, as student needs change. When a new
sensor is connected, the driver will construct a peer for the sensor.
The co-occurrence engine will then construct any product compo-
nents needed to make the sensor data available for presentation.
Once the sensor data is available, the student may then select from
the available data presentations. When they are finished, they may
disconnect the sensor. The driver will destroy the peer and the co-
occurrence engine will tear down the products that it had previously
set up.

7.3 Extending the Design
The goal of the design work underlying the Science Demo, to feed
into the education activities in the FLOE project5, is to support one-
to-one learner customisation. We will build tools not only to allow
content authors to author multimodal content for consumption by
learners, learners themselves will make custom visualisations and
sonifications, presentations of data that are meaningful to them,
that they can share and remix with other users. This will form a
substrate that we term the “Materialisation Toolkit”.

8 CONCLUSION
We have introduced a new taxonomy for the constituents of inter-
action, and set new goals that must be met by systems offering it,
in order to support open ecologies of use and construction through
open authorship. We have argued that our reconception of the pro-
cess of interaction can support more externalised designs, and a
more open set of choices for who can make decisions about how a
system should be, and how it is mapped onto the world. We have
exhibited variant metaphors and variant concrete implementations
for such systems, contrasting the relevance of each for different
tasks and contexts.

Our goal has been to develop an anatomy of interactions that
conforms to the open authorial principle. If interactive software is
to truly support open ecologies of function and fabrication, inter-
actions should be constructed as additions to an already-existing
system. Our implementations are currently at various stages from
proof of concept to early prototype. The true test of these imple-
mentations is going to be integrating them into communities of
practice. We will continue to refine this proposed anatomy and
pursue the elusive goals of open authorship.

ACKNOWLEDGMENTS
This work was partially supported by European Research Council
(ERC) grant n° 695464 ONE: Unified Principles of Interaction.

REFERENCES
[1] Caroline Appert and Michel Beaudouin-Lafon. 2006. SwingStates: Adding State

Machines to the Swing Toolkit. In Proceedings of the 19th Annual ACM Symposium
on User Interface Software and Technology (UIST ’06), Jeff Pierce (Ed.). ACM, New
York, NY, USA, Article 1. https://doi.org/10.1145/1166253.2180954

[2] Antranig Basman. 2016. Building Software is Not a Craft. In Proceedings of the
Psychology of Programming Interest Group.

5https://floeproject.org/

[3] Antranig Basman, Luke Church, Clemens Klokmose, and Colin Clark. 2016.
Software and How it Lives On - Embedding Live Programs in the World Around
Them. In Proceedings of the Psychology of Programming Interest Group.

[4] Antranig Basman, Clayton Lewis, and Colin Clark. 2018. The Open Autho-
rial Principle: Supporting Networks of Authors in Creating Externalizable De-
signs. In Submitted to Onward ’18. https://github.com/amb26/papers/blob/master/
onward-2016/onward-2016.pdf

[5] Steve Benford and Lennart Fahlén. 1993. A Spatial Model of Interaction in
Large Virtual Environments. In Proceedings of the Third Conference on European
Conference on Computer-Supported Cooperative Work (ECSCW’93). Kluwer Aca-
demic Publishers, Norwell, MA, USA, 109–124. http://dl.acm.org/citation.cfm?
id=1241934.1241942

[6] Gérard Berry and Gérard Boudol. 1992. The chemical abstract machine. Theoreti-
cal computer science 96, 1 (1992), 217–248.

[7] Eric A. Bier, Maureen C. Stone, Ken Pier, Ken Fishkin, Thomas Baudel, Matt
Conway, William Buxton, and Tony DeRose. 1994. Toolglass and Magic
Lenses: The See-through Interface. In Conference Companion on Human Fac-
tors in Computing Systems (CHI ’94). ACM, New York, NY, USA, 445–446.
https://doi.org/10.1145/259963.260447

[8] Susanne Bødker. 1991. Through the Interface - a Human Activity Approach to User
Interface Design. Vol. 16. Lawrence Erlbaum Associates, Hillsdale, NJ.

[9] Colin Clark and Antranig Basman. 2017. Tracing a Paradigm for Externalization:
Avatars and the GPII Nexus. In Companion to the First International Conference on
the Art, Science and Engineering of Programming (Programming ’17). ACM, New
York, NY, USA, Article 31, 5 pages. https://doi.org/10.1145/3079368.3079410

[10] Colin Clark, Antranig Basman, and Simon Bates. 2016. The GPII Nexus. (2016).
https://wiki.gpi.net/w/the_Nexus

[11] Inc. Daylight Chemical Information Systems. 2008. SMIRKS - A Reaction Trans-
form Language. (2008). http://www.daylight.com/dayhtml/doc/theory/theory.
smirks.html

[12] W. Keith Edwards, Mark W. Newman, Jana Z. Sedivy, and Trevor F. Smith. 2009.
Experiences with Recombinant Computing: Exploring Ad Hoc Interoperability
in Evolving Digital Networks. ACM Trans. Comput.-Hum. Interact. 16, 1, Article
3 (April 2009), 44 pages. https://doi.org/10.1145/1502800.1502803

[13] Fluid. 2018. Fluid Infusion Documentation. (2018). http://docs.fluidproject.org/
infusion/development/

[14] Kasper Hornbæk and Antti Oulasvirta. 2017. What Is Interaction?. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17).
ACM, New York, NY, USA, 5040–5052. https://doi.org/10.1145/3025453.3025765

[15] Stephen Kell. 2009. The Mythical Matched Modules: Overcoming the Tyranny
of Inflexible Software Construction. In Proceedings of the 24th ACM SIGPLAN
Conference Companion on Object Oriented Programming Systems Languages and
Applications (OOPSLA ’09). ACM, New York, NY, USA, 881–888. https://doi.org/
10.1145/1639950.1640051

[16] Allan MacLean, Kathleen Carter, Lennart Lövstrand, and Thomas Moran. 1990.
User-tailorable Systems: Pressing the Issues with Buttons. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’90). ACM, New
York, NY, USA, 175–182. https://doi.org/10.1145/97243.97271

[17] Fabio Paternò and Volker Wulf. 2017. New Perspectives in End-User Development.
Springer.

[18] Matthias Peissner, Gregg C. Vanderheiden, Jutta Trevinarus, and Gianna Tsakou.
2014. Prosperity4All – Setting the Stage for a Paradigm Shift in Inclusion. In
International Conference on Universal Access in Human-Computer Interaction.
Springer, 443–452.

[19] Trygve Reenskaug. 1979. THING-MODEL-VIEW-EDITOR - an Example from a
planningsystem. Technical note, Xerox PARC. (May 1979). http://heim.ifi.uio.no/
~trygver/1979/mvc-1/1979-05-MVC.pd

[20] Peter Wegner. 1997. Why interaction is more powerful than algorithms. Commun.
ACM 40, 5 (1997), 80–91. https://doi.org/10.1145/253769.253801

https://doi.org/10.1145/1166253.2180954
https://floeproject.org/
https://github.com/amb26/papers/blob/master/onward-2016/onward-2016.pdf
https://github.com/amb26/papers/blob/master/onward-2016/onward-2016.pdf
http://dl.acm.org/citation.cfm?id=1241934.1241942
http://dl.acm.org/citation.cfm?id=1241934.1241942
https://doi.org/10.1145/259963.260447
https://doi.org/10.1145/3079368.3079410
https://wiki.gpi.net/w/the_Nexus
http://www.daylight.com/dayhtml/doc/theory/theory.smirks.html
http://www.daylight.com/dayhtml/doc/theory/theory.smirks.html
https://doi.org/10.1145/1502800.1502803
http://docs.fluidproject.org/infusion/development/
http://docs.fluidproject.org/infusion/development/
https://doi.org/10.1145/3025453.3025765
https://doi.org/10.1145/1639950.1640051
https://doi.org/10.1145/1639950.1640051
https://doi.org/10.1145/97243.97271
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pd
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pd
https://doi.org/10.1145/253769.253801

	Abstract
	1 Introduction
	2 Ecologies of function and fabrication
	2.1 Open Authorship
	2.2 Externalisation

	3 Characterising Interaction
	3.1 Interaction in the World
	3.2 Interaction as Classically Implemented in Code
	3.3 The Need to Reconceive Interaction

	4 Anatomising Interaction
	4.1 Interaction as Co-occurrence + Entanglement
	4.2 State of the (or a) World
	4.3 Co-occurrence
	4.4 Entanglement
	4.5 The Co-occurrence and Entanglement Engines

	5 Metaphors for the interaction process
	5.1 Chemical Metaphor
	5.2 Quantum Metaphor
	5.3 Cookery Metaphor

	6 Examples of Entanglement and Co-Occurrence Engines
	6.1 The Co-occurrence Engine
	6.2 The Entanglement Engine
	6.3 The Embranglement Engine

	7 Concrete Application Example
	7.1 The Nexus Science Demo
	7.2 Co-occurrence for Open Designs
	7.3 Extending the Design

	8 Conclusion
	References

