
HAL Id: hal-01854295
https://hal.science/hal-01854295

Submitted on 6 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Critique of ‘files as directories: some thoughts on
accessing structured data within files’ (1)

Philip Tchernavskij

To cite this version:
Philip Tchernavskij. Critique of ‘files as directories: some thoughts on accessing structured data
within files’ (1). Conference Companion of the 2nd International Conference on Art, Science, and
Engineering of Programming, Apr 2018, Nice, France. �10.1145/3191697.3214324�. �hal-01854295�

https://hal.science/hal-01854295
https://hal.archives-ouvertes.fr

Critique of ‘Files as Directories: Some Thoughts on Accessing
Structured Data within Files’ (1)

Philip Tchernavskij
LRI, Univ. Paris-Sud, CNRS
Inria, Université Paris-Saclay

Orsay, France
ptcher@lri.fr

ABSTRACT
In this critique of Files as Directories (FAD) by Raphael Wimmer, I
argue that FAD as presented applies primarily to traditional pro-
gramming tasks, consider FAD as a broader subversion of app-like
software, and speculate about the hypothetical design space of FAD
beyond programming.

CCS CONCEPTS
• Human-centered computing→ Interaction paradigms;

KEYWORDS
Programming, Interaction Paradigms, File Systems, APIs
ACM Reference Format:
Philip Tchernavskij. 2018. Critique of ‘Files as Directories: Some Thoughts
on Accessing Structured Data within Files’ (1). In Proceedings of 2nd Inter-
national Conference on the Art, Science, and Engineering of Programming
(Author version <Programming’18> Companion). ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3191697.3214324

1 SUMMARY OF THE PAPER
Files as Directories by Raphael Wimmer1 presents and discusses
the concept of file-as-directory (FAD), i.e. representing files as hier-
archically structured data that can be navigated and manipulated
with the same tools as folders. The paper sketches how FAD could
extend the Unix shell scripting paradigm from its current domains
to those covered by graphical applications. It argues that this par-
adigm shift would provide control and configurability relative to
the desktop computing paradigm, and improve on current end user
programming paradigms by supporting modular, integratable tools
over domain-specific APIs.

2 FAD AS A SUBVERSION OF THE APP
MODEL

Wimmer proposes that i) a set of modular, configurable, integratable
tools can support tailorable workspaces and workflows, ii) the Unix
shell scripting environment provides such a set of tools, and iii) FAD
could extend that environment to the kinds of tasks we currently
use domain-specific applications for.

This characterization of the Unix scripting paradigm emphasizes
how it subverts the model of software exemplified by desktop,
1Appearing in this volume

Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France
2018. ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00
https://doi.org/10.1145/3191697.3214324

mobile, and web applications, in which most data takes the form of
files that can only be modified inside the closed environments of
apps. Since each app generally encompasses the complete life cycle
of the particular type of content it deals with, users must adapt
to the workflow of the app, rather than adapt the tools provided
by the app to individual use situations. If two apps offer related or
similar features, it is generally inelegant or impossible to make them
work together, i.e. in the best case, they can be used in sequence by
passing a file from one to the other.

Olsen has similarly praised Unix as an explorable and customiz-
able work environment [10]. He focuses on the design choice of
unifying Unix commands around the “human-centric” intermedi-
ate format of ASCII text, which makes the effects of commands
generally comprehensible, and enables economic combination of
commands.

Conceptually, software populated by many small tools operating
in a shared environment lets people summon the capabilities they
need when they are needed. Given mechanisms for organizing and
combining tools, e.g., packaging sequences of commands in scripts
and wiring them together with pipes, users can tailor their envi-
ronment to fit their needs. By contrast to the difficulty of making
apps work together, it is possible to use scripts created by different
authors in combination, or to customize them for one’s own needs.

However, the details of how tools are operated, organized, and
combined matter to who make effective use of them, and for what.
Next, I summarize some inherent limitations of the Unix shell script-
ing as a replacement for graphical user interfaces (GUIs).

3 ALGORITHMS AND INTERACTION
The proposed practical implications of FAD are that it would be-
come possible to manipulate domain-specific data stored in files in
the Unix shell scripting paradigm. Wimmer writes

“A major benefit of FAD is that it allows end-user
programmers to interactively explore the data they
work with, use their preferred tools and programming
languages, and focus on the algorithmic aspects of a
problem instead of learning how to use specific APIs.”

It is taken as a given that “focusing on the algorithmic aspects
of a problem” is positive. However, algorithms are a specialized
method of problem solving with inherent trade-offs.

Figure 1 recreates one of Wimmer’s examples of a FAD inter-
action. In this case, the user modifies the color in an image by
combining iteration over a list with a command that applies to
single pixels, and applying the composed command to the directory
picture.jpg/pixels/.

https://doi.org/10.1145/3191697.3214324
https://doi.org/10.1145/3191697.3214324

Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France Philip Tchernavskij

Figure 1: Files-as-directories as a Unix scripting extension.
The user is manipulating a picture by navigating its internal
structure and changing its internal values.

Figure 2: One version of Adobe Illustrator’s pattern creation
tool.

This example task is chosen to align well with the expressive
possibilities of the shell scripting language. Other kinds of graphics
editing tasks go against the grain of imperative languages built
to deal with lists, strings, and numbers. To a human user, it is
simple to highlight and annotate interesting elements in an image
by free-hand drawing on top of it. Theoretically, this task consists in
changing pixel values in an image, just like the example in figure 1.
However, expressing it as a program requires developing routines to
identify interesting elements, to determine the shape of the area to
highlight, to pick appropriate spots in the image for annotations, etc.
By contrast, performing it with a stylus or mouse simply requires
looking and drawing, perhaps typing with a keyboard.

Jalal and Tziova have investigated how expert professional de-
signers manipulate visual properties in software [5, p. 63]. In a

study where 12 designers recreated two posters in Adobe Illustra-
tor, they analyzed the tools and tactics applied by the designers. The
posters were specifically chosen to support powerful programming-
adjacent tools, i.e., they contained structurally repeating elements
that were excellent use cases for Illustrator’s pattern creation tool,
which repeats shapes in a pattern, and is operated by configuring a
dialog box (figure 2). The overwhelming majority of designers stuck
with direct manipulation tools over indirect, cognitively heavy tools
such as the pattern tool.

This distinction between programming and direct manipulation
tools brings to mind Suchman’s distinction between the cognitive
assumptions of user interfaces into planning and situated action [12].
The former assumes that users come to the interface with a goal
and a corresponding sequence of actions in mind, while the latter
assumes that users continuously re-evaluate short-term actions
as their environment changes. Suchman documents in detail the
failures of interfaces designed under the assumption of a planning
user.

Shell scripting can theoretically support the tactics of situated ac-
tion, but they require repeated “boilerplate work” in the command-
line interface: data is only ever represented as static logs, so one
must repeatedly query the working data with ls, cat, grep, etc. to
monitor how it changes. Undoing actions may be impossible, so one
must work on test data or do non-mutating trial runs of commands2.
Anecdotally, my personal shell scripting practice is based on these
situated tactics, despite the boilerplate work involved.

By contrast, the principles of Direct Manipulation [11] interfaces
– continuous representation of the object of interest; operation
by physical actions rather than complex syntax; and rapid, incre-
mental, reversible operations with immediate feedback – guide the
design of interfaces that do not require these compensatory tactics.
Critically, interfaces can be graphical without taking advantage of
Direct Manipulation. For example, Illustrator’s dialog box-based
pattern tool is similar to a powerful shell command that takes sev-
eral parameters: It provides a general solution to a repetitive task,
but it must be fully configured and executed to produce any feed-
back, and it may be difficult to predict the relationship between
parameters and results.

The operational details of tools affect the barriers to effective use
found by Ko et al. in investigating end-user programming tools [7].
Particularly the barriers of use (operating a tool correctly), un-
derstanding (predicting the results of an action), and information
(getting feedback about what changes an action caused). Direct
manipulation tools and corresponding representations help avoid
these barriers by graphically guiding user operation, having small
predictable effects, and continuously producing feedback.

4 FAD AS AN INTERACTION PARADIGM
I do not see FAD as inherently a programming paradigm. Broadly,
files-as-directories can be interpreted to mean that the documents
that populate an operating system have an internal structure3 that

2Greenberg [4] gives an example of another tactic necessitated by the lacking undo
functionality in the shell: typed commands may be unpredictably expanded to their
full forms before execution, so one may insert echo in front of a complex command to
see its post-expansion form before executing it.
3Or many possible internal structures, provided by virtual file systems in Wimmer’s
vision.

Critique of ‘Files as Directories’
Author version

<Programming’18> Companion, April 9–12, 2018, Nice, France

Figure 3: A mockup of files-as-graphical-directories. On the left, a picture’s internal representations are shown as sub-folders
in an Apple Finder-like interface. On the right, the pixels of the picture are shown as a grid inside the same folder interface,
offering both folder-like actions, such as copying and moving, and graphical actions, such as modifying a pixel with the
operation system-provided color picking tool.

can be exposed and manipulated through generic operations offered
by the operating system.

In figure 3, I have speculated on how FAD might be interpreted
as a graphical interaction paradigm. This scenario has the same
starting point as the one in figure 1, but takes place in a Finder-like
graphical file manager. The picture.jpg/pixels/ folder inside
an image has a graphical representation as a grid of individual
pixels. The scenario user then applies the generic color picking and
manipulation tool offered by OSX to individually adjust pixels. As
shown, this scenario is not materially different from using a graph-
ical editing app to change the image. That is the point: The right
representations and tools make a task that would be cumbersome
by programming trivial by direct manipulation.

This reinterpretation of FAD echoes Olsen’s 1999 proposal that
operating systems should be unified around five different human-
centered data types; text, 2d images, audio, video, and 3d scenes [10].
Olsen argues that we need “a set of power tools” for these formats
akin to those offered by Unix for ASCII text files. As with Unix
commands, these tools should have small, self-contained functions,
and be trivial to integrate with each other.

No particular set of data representations and tools could feasibly
satisfy all users, or even one user all the time. Jalal et al. give
color as an example of a data type that is conceptually basic, but
is manipulated in diverse ways according to the visual design task
it appears in [6]. Rather than one standard color manipulation
tool, they argue that the diversity of color manipulation tactics
motivates diverse reifications [3] – objects with representational
and interactive properties – of color specialized for different design
tasks, such as generating interesting palettes or leaving traces of
activity.

Hence, we do not just need a set of power tools, but an open-
ended set of diverse representations and tools. Creating environ-
ments in which many tools and representations can be manipulated,
organized, and combined is a challenge for software architecture
and user interface design. I am part of the five-year research project
ONE [2]4, which takes up this challenge. We are developing a con-
ceptual and technical basis for powerful tools and representations
in the form of interaction instruments and information substrates [2].
Interaction instruments mediate physical action by users into spe-
cialized actions on domain objects [1]. Information substrates hold
information, and apply constraints, transformations, and relation-
ships to it. Crucially, substrates can be layered, so that what appears
as a bar chart to the user may be manipulated as a bitmap picture,
a set of shapes, or the numeric source data of the chart (figure 4).
Wimmer’s vision of pluggable virtual file systems that provide di-
rectory representions of files can be seen as one kind of – fairly
generic – information substrate.

5 ALGORITHMS + INTERACTION
The scenarios in figure 1 and figure 3 are toy illustrations of the
strenghts and weaknesses of programming and GUIs: Roughly,
we can say that programming-like tools represent and manipulate
processes, whereas GUIs are characterized by visual representations
of domain objects and direct manipulation of those representations.
There is a somewhat populated design spectrum between these two
points, as noted by Maudet [9, figure 49]5 in her dissertation on
the design of tools for designers. Nearer to programming, there are
live and visual programming tools. Nearer to GUIs, there are macro

4Further information about this project is available at http://erc.one
5Dissertation available at http://www.designing-design-tools.nolwennmaudet.com/

http://erc.one
http://www.designing-design-tools.nolwennmaudet.com/

Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France Philip Tchernavskij

Figure 4: A rich substrate and associated instruments. Figure
reused with permission from [2].

systems and interaction techniques such as surrogate objects [8]
and macro recording6, which respectively let users apply direct
operations to groups of elements at once or store a sequence of
operations as a repeatable command.

Beyond directly user-operated tools, computation enables semi-
autonomous tools that can be configured to automate routine or
continuous tasks. This brings to mind an aspect of Unix script-
ing that Wimmer does not consider: daemons. Daemons are back-
ground processes that provide some continuous service, e.g., the
cron job scheduler can be configured to execute scripts according
to a schedule. Combining the notion of daemons with FAD leads
one to speculate about using background processes to augment
arbitrary files with dynamic or interactive behavior. As a trivial
example, one could reroute system logs into a bitmap file to create
visualizations of system activity.

6Such as in Microsoft Excel office.microsoft.com/en-us/excel

6 CONCLUSION
Wimmer’s vision of FAD has a strong conceptual starting point in
seeking to expose files to diverse, modular tools as public, struc-
tured data. To go beyond this starting point, we must interrogate
the cognitive and operational details of such tools and data repre-
sentations, to determine whether they are likely to be helpful, and
to whom. I have hinted at a larger interaction design space in which
FAD is one point, which encompasses both programming, direct
manipulation, and designs in-between. These analyses further moti-
vate the research agenda for software infrastructure that can expose
structured data to inspection and manipulation by freely coordi-
nated tools, rather than locking data inside the walled workspaces
of apps.

ACKNOWLEDGEMENTS
This work was partially supported by European Research Council
(ERC) grant nº 695464 ONE: Unified Principles of Interaction.

REFERENCES
[1] Michel Beaudouin-Lafon. 2000. Instrumental interaction: an interaction model

for designing post-WIMP user interfaces. In Proceedings of the SIGCHI conference
on Human Factors in Computing Systems. ACM, 446–453.

[2] Michel Beaudouin-Lafon. 2017. Towards Unified Principles of Interaction. In
Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter (CHItaly
’17). ACM, New York, NY, USA, Article 1, 2 pages. https://doi.org/10.1145/
3125571.3125602

[3] Michel Beaudouin-Lafon and Wendy E. Mackay. 2000. Reification, Polymorphism
and Reuse: Three Principles for Designing Visual Interfaces. In Proceedings of the
Working Conference on Advanced Visual Interfaces (AVI ’00). ACM, New York, NY,
USA, 102–109. https://doi.org/10.1145/345513.345267

[4] Michael Greenberg. 2018. Word Expansion Supports POSIX Shell Interactivity.
In Companion to the Second International Conference on the Art, Science and
Engineering of Programming (Programming ’18). ACM, New York, NY, USA.

[5] Ghita Jalal. 2016. Reification of visual properties for composition tasks. Ph.D.
Dissertation. Université Paris-Saclay.

[6] Ghita Jalal, Nolwenn Maudet, and Wendy E. Mackay. 2015. Color Portraits: From
Color Picking to Interacting with Color. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (CHI ’15). ACM, New York,
NY, USA, 4207–4216. https://doi.org/10.1145/2702123.2702173

[7] Andrew J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six learning barriers
in end-user programming systems. In Visual Languages and Human Centric
Computing, 2004 IEEE Symposium on. IEEE, 199–206.

[8] Bum chul Kwon, Waqas Javed, Niklas Elmqvist, and Ji Soo Yi. 2011. Direct
Manipulation Through Surrogate Objects. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’11). ACM, New York, NY, USA,
627–636. https://doi.org/10.1145/1978942.1979033

[9] Nolwenn Maudet. 2017. Designing Design Tools. Ph.D. Dissertation. Université
Paris-Saclay.

[10] Dan R Olsen Jr. 1999. Interacting in chaos. Interactions 6, 5 (1999), 42–54.
[11] B. Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Lan-

guages. Computer 16, 8 (Aug. 1983), 57–69. https://doi.org/10.1109/MC.1983.
1654471

[12] Lucy A Suchman. 1987. Plans and situated actions: The problem of human-machine
communication. Cambridge university press.

office.microsoft.com/en-us/excel
https://doi.org/10.1145/3125571.3125602
https://doi.org/10.1145/3125571.3125602
https://doi.org/10.1145/345513.345267
https://doi.org/10.1145/2702123.2702173
https://doi.org/10.1145/1978942.1979033
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471

	Abstract
	1 Summary of the paper
	2 FAD as a subversion of the app model
	3 Algorithms and interaction
	4 FAD as an interaction paradigm
	5 Algorithms + interaction
	6 Conclusion
	References

