Philip Tchernavskij
email: ptcher@lri.fr

Critique of 'Files as Directories: Some Thoughts on Accessing Structured Data within Files' (1)

Keywords: Human-centered computing → Interaction paradigms; Programming, Interaction Paradigms, File Systems, APIs ACM Reference Format:

In this critique of Files as Directories (FAD) by Raphael Wimmer, I argue that FAD as presented applies primarily to traditional programming tasks, consider FAD as a broader subversion of app-like software, and speculate about the hypothetical design space of FAD beyond programming.

SUMMARY OF THE PAPER

Files as Directories by Raphael Wimmer1 presents and discusses the concept of file-as-directory (FAD), i.e. representing files as hierarchically structured data that can be navigated and manipulated with the same tools as folders. The paper sketches how FAD could extend the Unix shell scripting paradigm from its current domains to those covered by graphical applications. It argues that this paradigm shift would provide control and configurability relative to the desktop computing paradigm, and improve on current end user programming paradigms by supporting modular, integratable tools over domain-specific APIs.

FAD AS A SUBVERSION OF THE APP MODEL

Wimmer proposes that i) a set of modular, configurable, integratable tools can support tailorable workspaces and workflows, ii) the Unix shell scripting environment provides such a set of tools, and iii) FAD could extend that environment to the kinds of tasks we currently use domain-specific applications for. This characterization of the Unix scripting paradigm emphasizes how it subverts the model of software exemplified by desktop, mobile, and web applications, in which most data takes the form of files that can only be modified inside the closed environments of apps. Since each app generally encompasses the complete life cycle of the particular type of content it deals with, users must adapt to the workflow of the app, rather than adapt the tools provided by the app to individual use situations. If two apps offer related or similar features, it is generally inelegant or impossible to make them work together, i.e. in the best case, they can be used in sequence by passing a file from one to the other.

Olsen has similarly praised Unix as an explorable and customizable work environment [START_REF] Olsen | Interacting in chaos[END_REF]. He focuses on the design choice of unifying Unix commands around the "human-centric" intermediate format of ASCII text, which makes the effects of commands generally comprehensible, and enables economic combination of commands.

Conceptually, software populated by many small tools operating in a shared environment lets people summon the capabilities they need when they are needed. Given mechanisms for organizing and combining tools, e.g., packaging sequences of commands in scripts and wiring them together with pipes, users can tailor their environment to fit their needs. By contrast to the difficulty of making apps work together, it is possible to use scripts created by different authors in combination, or to customize them for one's own needs.

However, the details of how tools are operated, organized, and combined matter to who make effective use of them, and for what. Next, I summarize some inherent limitations of the Unix shell scripting as a replacement for graphical user interfaces (GUIs).

ALGORITHMS AND INTERACTION

The proposed practical implications of FAD are that it would become possible to manipulate domain-specific data stored in files in the Unix shell scripting paradigm. Wimmer writes "A major benefit of FAD is that it allows end-user programmers to interactively explore the data they work with, use their preferred tools and programming languages, and focus on the algorithmic aspects of a problem instead of learning how to use specific APIs. "

Author version <Programming'18> Companion, April 9-12, 2018, Nice, France Philip Tchernavskij This example task is chosen to align well with the expressive possibilities of the shell scripting language. Other kinds of graphics editing tasks go against the grain of imperative languages built to deal with lists, strings, and numbers. To a human user, it is simple to highlight and annotate interesting elements in an image by free-hand drawing on top of it. Theoretically, this task consists in changing pixel values in an image, just like the example in figure 1. However, expressing it as a program requires developing routines to identify interesting elements, to determine the shape of the area to highlight, to pick appropriate spots in the image for annotations, etc. By contrast, performing it with a stylus or mouse simply requires looking and drawing, perhaps typing with a keyboard.

Jalal and Tziova have investigated how expert professional designers manipulate visual properties in software [5, p. 63]. In a study where 12 designers recreated two posters in Adobe Illustrator, they analyzed the tools and tactics applied by the designers. The posters were specifically chosen to support powerful programmingadjacent tools, i.e., they contained structurally repeating elements that were excellent use cases for Illustrator's pattern creation tool, which repeats shapes in a pattern, and is operated by configuring a dialog box (figure 2). The overwhelming majority of designers stuck with direct manipulation tools over indirect, cognitively heavy tools such as the pattern tool.

This distinction between programming and direct manipulation tools brings to mind Suchman's distinction between the cognitive assumptions of user interfaces into planning and situated action [START_REF] Suchman | Plans and situated actions: The problem of human-machine communication[END_REF]. The former assumes that users come to the interface with a goal and a corresponding sequence of actions in mind, while the latter assumes that users continuously re-evaluate short-term actions as their environment changes. Suchman documents in detail the failures of interfaces designed under the assumption of a planning user.

Shell scripting can theoretically support the tactics of situated action, but they require repeated "boilerplate work" in the commandline interface: data is only ever represented as static logs, so one must repeatedly query the working data with ls, cat, grep, etc. to monitor how it changes. Undoing actions may be impossible, so one must work on test data or do non-mutating trial runs of commands 2 . Anecdotally, my personal shell scripting practice is based on these situated tactics, despite the boilerplate work involved.

By contrast, the principles of Direct Manipulation [START_REF] Shneiderman | Direct Manipulation: A Step Beyond Programming Languages[END_REF] interfaces -continuous representation of the object of interest; operation by physical actions rather than complex syntax; and rapid, incremental, reversible operations with immediate feedback -guide the design of interfaces that do not require these compensatory tactics. Critically, interfaces can be graphical without taking advantage of Direct Manipulation. For example, Illustrator's dialog box-based pattern tool is similar to a powerful shell command that takes several parameters: It provides a general solution to a repetitive task, but it must be fully configured and executed to produce any feedback, and it may be difficult to predict the relationship between parameters and results.

The operational details of tools affect the barriers to effective use found by Ko et al. in investigating end-user programming tools [START_REF] Andrew | Six learning barriers in end-user programming systems[END_REF]. Particularly the barriers of use (operating a tool correctly), understanding (predicting the results of an action), and information (getting feedback about what changes an action caused). Direct manipulation tools and corresponding representations help avoid these barriers by graphically guiding user operation, having small predictable effects, and continuously producing feedback.

FAD AS AN INTERACTION PARADIGM

I do not see FAD as inherently a programming paradigm. Broadly, files-as-directories can be interpreted to mean that the documents that populate an operating system have an internal structure 3 that Figure 3: A mockup of files-as-graphical-directories. On the left, a picture's internal representations are shown as sub-folders in an Apple Finder-like interface. On the right, the pixels of the picture are shown as a grid inside the same folder interface, offering both folder-like actions, such as copying and moving, and graphical actions, such as modifying a pixel with the operation system-provided color picking tool.

Hence, we do not just need a set of power tools, but an openended set of diverse representations and tools. Creating environments in which many tools and representations can be manipulated, organized, and combined is a challenge for software architecture and user interface design. I am part of the five-year research project ONE [START_REF] Beaudouin-Lafon | Towards Unified Principles of Interaction[END_REF] 4 , which takes up this challenge. We are developing a conceptual and technical basis for powerful tools and representations in the form of interaction instruments and information substrates [START_REF] Beaudouin-Lafon | Towards Unified Principles of Interaction[END_REF]. Interaction instruments mediate physical action by users into specialized actions on domain objects [START_REF] Beaudouin-Lafon | Instrumental interaction: an interaction model for designing post-WIMP user interfaces[END_REF]. Information substrates hold information, and apply constraints, transformations, and relationships to it. Crucially, substrates can be layered, so that what appears as a bar chart to the user may be manipulated as a bitmap picture, a set of shapes, or the numeric source data of the chart (figure 4). Wimmer's vision of pluggable virtual file systems that provide directory representions of files can be seen as one kind of -fairly generic -information substrate.

ALGORITHMS + INTERACTION

The scenarios in figure 1 and figure 3 are toy illustrations of the strenghts and weaknesses of programming and GUIs: Roughly, we can say that programming-like tools represent and manipulate processes, whereas GUIs are characterized by visual representations of domain objects and direct manipulation of those representations. There is a somewhat populated design spectrum between these two points, as noted by Maudet [9, figure 49]5 in her dissertation on the design of tools for designers. Nearer to programming, there are live and visual programming tools. Nearer to GUIs, there are macro systems and interaction techniques such as surrogate objects [START_REF] Bum Chul Kwon | Direct Manipulation Through Surrogate Objects[END_REF] and macro recording 6 , which respectively let users apply direct operations to groups of elements at once or store a sequence of operations as a repeatable command. Beyond directly user-operated tools, computation enables semiautonomous tools that can be configured to automate routine or continuous tasks. This brings to mind an aspect of Unix scripting that Wimmer does not consider: daemons. Daemons are background processes that provide some continuous service, e.g., the cron job scheduler can be configured to execute scripts according to a schedule. Combining the notion of daemons with FAD leads one to speculate about using background processes to augment arbitrary files with dynamic or interactive behavior. As a trivial example, one could reroute system logs into a bitmap file to create visualizations of system activity.

CONCLUSION

Wimmer's vision of FAD has a strong conceptual starting point in seeking to expose files to diverse, modular tools as public, structured data. To go beyond this starting point, we must interrogate the cognitive and operational details of such tools and data representations, to determine whether they are likely to be helpful, and to whom. I have hinted at a larger interaction design space in which FAD is one point, which encompasses both programming, direct manipulation, and designs in-between. These analyses further motivate the research agenda for software infrastructure that can expose structured data to inspection and manipulation by freely coordinated tools, rather than locking data inside the walled workspaces of apps.

Figure 1 :

 1 Figure 1: Files-as-directories as a Unix scripting extension. The user is manipulating a picture by navigating its internal structure and changing its internal values.

Figure 2 :

 2 Figure 2: One version of Adobe Illustrator's pattern creation tool.

Figure 4 :

 4 Figure 4: A rich substrate and associated instruments.Figure reused with permission from [2].

Appearing in this volumeAuthor version <Programming'18> Companion,

2018, Nice, France 2018. ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00 https://doi.org/10.1145/3191697.3214324

Greenberg [4] gives an example of another tactic necessitated by the lacking undo functionality in the shell: typed commands may be unpredictably expanded to their full forms before execution, so one may insert echo in front of a complex command to see its post-expansion form before executing it.

Or many possible internal structures, provided by virtual file systems in Wimmer's vision.

Further information about this project is available at http://erc.one

Dissertation available at http://www.designing-design-tools.nolwennmaudet.com/

Such as in Microsoft Excel office.microsoft.com/en-us/excel

ACKNOWLEDGEMENTS

This work was partially supported by European Research Council (ERC) grant nº 695464 ONE: Unified Principles of Interaction.