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I. INTRODUCTION

H YPERSPECTRAL IMAGING SENSORS capture data, usually from the visible through the near-infrared wavelength ranges, consisting of hundreds of (narrow) spectral channels with continuous spectral information, which can accurately discriminate diverse materials of interest on the immediate surface of the Earth. Therefore, hyperspectral images (HSIs) are considered to be a valuable source of information for object identification and classification [START_REF] Benediktsson | Spectral-Spatial Classification of Hyperspectral Remote Sensing Images[END_REF].

An HSI is a stack of n pixel vectors, where n indicates the number of pixels in the image. The length of each pixel vector is equal to the number of bands or spectral channels. Supervised classification plays a vitally important role for the analysis of HSIs, and is utilized to differentiate between diverse land-covers of interest available in the scene [START_REF] Benediktsson | Spectral-Spatial Classification of Hyperspectral Remote Sensing Images[END_REF]. A classification technique assigns unknown pixels to one of the available classes, according to a set of representative samples for each class which are known as training samples. Detailed information about advanced supervised classifiers for HSI can be found in [START_REF] Ghamisi | Advanced spectral classifiers for hyperspectral images: A review[END_REF].

The first attempts dedicated to HSI classification were based on techniques developed for multispectral images which only have a few spectral channels, usually less than thirteen. However, most of the commonly used methods designed for the analysis of gray scale, color, or multispectral images are inappropriate and even useless for HSIs. As a matter of fact, in spite of all similarities between HSIs and other optical images (panchromatic, RGB, and multispectral) the analysis of HSI turns out to be more challenging due to a number of reasons including: the high dimensionality of HSI data, the existence of extreme redundancy within HSIs, the existence of different types of noise and uncertainty sources observed.

Hyperspectral imaging often deals with inherently nonlinear relations between captured spectral information and the corresponding material. This nonlinear relation is the result of a wide variety of reasons such as: [START_REF] Benediktsson | Spectral-Spatial Classification of Hyperspectral Remote Sensing Images[END_REF] Undesired scattering from other objects in the acquisition process, (2) different atmospheric and geometric distortions, and (3) intraclass variability of similar objects. On the other hand, training samples are usually collected by manual labeling of a small number of pixels in an image or based on some field measurements, which is either expensive or time demanding. As a result, the number of available training samples is usually limited compared to the available number of bands in HSIs, which makes the supervised classification of HSIs extremely challenging.

In addition, neighborhood pixels in HSIs are highly correlated since remote sensors acquire considerable amount of energy from adjacent pixels. Moreover, homogeneous structures in an image scene are generally larger than the size of a pixel [START_REF] Benediktsson | Spectral-Spatial Classification of Hyperspectral Remote Sensing Images[END_REF]. This is particularly evident for images of very high spatial resolution (VHR). This fact has triggered the research area of spectral-spatial classification since the integration of these two sources of information can substantially improve the discrimination power of classifiers in complex scenes. To this end, spatial and contextual information can provide useful information about the shape of different structures. Moreover, such information reduces the labeling uncertainty that exists when only spectral information is taken into account, and also helps to address the salt and pepper appearance of the resulting classification map.

In order to extract spatial information from HSIs, most methodological approaches can be broadly related to two common strategies: the crisp neighborhood system [START_REF] Ghamisi | Spectral-spatial classification of hyperspectral images based on hidden Markov random fields[END_REF][START_REF] Moser | Land-cover mapping by Markov modeling of spatialcontextual information in very-high-resolution remote sensing images[END_REF][START_REF] Chen | Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[END_REF] and the adaptive neighborhood system [START_REF] Benediktsson | Spectral-Spatial Classification of Hyperspectral Remote Sensing Images[END_REF][START_REF] Ghamisi | A survey on spectral-spatial classification techniques based on attribute profiles[END_REF][START_REF] Fauvel | Advances in spectral-spatial classification of hyperspectral images[END_REF]. Methodologies based on the crisp neighborhood system extract spatial and contextual information using a neighborhood of predefined shape. On the other hand, methodologies based on the adaptive neighborhood system are conceptually more flexible and make use of neighborhoods of variable shape. In this context, 2D convolutional neural networks [START_REF] Chen | Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[END_REF] and the Markov random field family [START_REF] Ghamisi | Spectral-spatial classification of hyperspectral images based on hidden Markov random fields[END_REF][START_REF] Moser | Land-cover mapping by Markov modeling of spatialcontextual information in very-high-resolution remote sensing images[END_REF][START_REF] Zhong | A support vector conditional random fields classifier with a Mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery[END_REF] are mostly categorized as spectral-spatial classification approaches using the crisp neighborhood system. In contrast, methodologies based on segmentation [START_REF] Ghamisi | Multilevel image segmentation approach for remote sensing images based on fractionalorder Darwinian particle swarm optimization[END_REF][START_REF] Tarabalka | Multiple spectral-spatial classification approach for hyperspectral data[END_REF], morphological profiles [START_REF] Pesaresi | A new approach for the morphological segmentation of high-resolution satellite imagery[END_REF][START_REF] Fauvel | Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles[END_REF], attribute profiles [START_REF] Ghamisi | A survey on spectral-spatial classification techniques based on attribute profiles[END_REF][START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF], and extinction profiles [START_REF] Ghamisi | Extinction profiles for the classification of remote sensing data[END_REF][START_REF] Ghamisi | Hyperspectral data classification using extended extinction profiles[END_REF] can extract spatial and contextual information using adaptive neighborhood systems.

Fig. 1 demonstrates the dynamic of the important subject of hyperspectral image classification in our community. The number of papers is obtained by checking the keywords of "hyperspectral" and "classification" used in the abstract of published journal and conference papers appeared in IEEE Xplore. To highlight the growth in the number of published papers, the time period has been divided into a few equal time slots [i.e., 1998[i.e., -2001[i.e., , 2002[i.e., -2005[i.e., , 2006[i.e., -2009[i.e., , 2010[i.e., -2013[i.e., , 2014[i.e., -2017 (March 1st) (March 1st)]. As can be seen, the number of papers, which demonstrates the popularity of this subject, has been increasing dramatically.

Due to the fast-growth and importance of HSI classification in the remote sensing community, this paper attempts to critically and systematically review the latest advances in spectralspatial hyperspectral image classification. The focus is on the methodological foundations of the considered families of techniques and on their mutually complementary methodological rationales, in order to provide the reader with a comprehensive picture on the current evolution of HSI spectral-spatial classifiers. To this end, computational properties are also recalled and examples of experimental results are discussed for all considered algorithms. Three benchmark data sets, which include both widely known long-used data and a recent data set released within the 2013 IEEE GRSS Data Fusion Contest, are used for this purpose. In this context, we review more than 25 methods categorized into five branches, i.e., mathematical morphology-based techniques, Markov random fields (MRFs), segmentation approaches, sparse representation methods, and deep learning-based classifiers. For each category, the main methodological ideas are recalled and a few key techniques are detailed and exemplified using the aforementioned data sets. Finally, several possible future directions are highlighted. Several codes and libraries as well as the training and test sets used in this paper are shared and made publicly available. It should be noted that this paper dedicates a particular emphasis on methodologies which have been developed since 2013 (after the publication of a previous survey paper on spectralspatial classification [START_REF] Fauvel | Advances in spectral-spatial classification of hyperspectral images[END_REF]).

It should be noted that HSI classification is the key for a wide variety of real-world applications such as ecological science (e.g., estimating biomass and carbon, studying biodiversity in dense forest zones, and monitoring land-cover changes), geological science (e.g., recovering physico-chemical mineral properties such as composition and abundance), mineralogy (e.g., identifying a wide range of minerals), hydrological science (e.g., determining changes in wetland characteristics, water quality, monitoring estuarine environments and coastal zones), precision agriculture (e.g., categorizing agricultural classes and extracting nitrogen content for the purpose of precision agriculture), and military applications (e.g., target detection and classification). However, this paper puts emphasis on the methodological aspects of recent publications on spectral-spatial classification.

The rest of the paper is organized as follows. Section II highlights the main notations used in this paper. Section III describes the three studied data sets. Sections IV, V, VI, VII, and VIII are devoted to spectral-spatial classification approaches based on mathematical morphology, MRFs, seg-mentation, sparse representation, and deep learning, respectively. Section IX wraps up the whole paper and provides potential research directions. Finally, Section X shares the utilized codes, libraries, and training/test samples.

II. NOTATIONS

In this paper, matrices are denoted by bold and capital letters. The comma (,) and the semicolon (;) are used for horizontal and vertical concatenation of the elements in a matrix, respectively. X stands for the estimate of the variable X, and X m denotes the estimate of the variable X at the mth iteration of some iterative method. |.| is the absolute value,

. F is the Frobenius norm and . n is the n norm. The Kronecker product is denoted by ⊗. The identity matrix of size p × p is denoted by I p .

A hyperspectral data cube which consists of d spectral channels and n ( = n 1 × n 2 ) pixels in each spectral channel is denoted with an n × d matrix X = {x 1 , x 2 , ..., x n } where x i refers to the spectral vector of the ith pixel. A classification approach tries to assign unknown pixels to one of the classes in Ω = {ω 1 , ω 2 , ..., ω C }, where C represents the number of classes, using a set of training samples for these classes. Vector Y = {y 1 , y 2 , ..., y n } collects the classification labels of all the pixels.

III. DATA SETS

Three benchmark data sets have been used to illustrate the considered spectral-spatial methods through examples of experimental results. Two of them are very well-known and have been used for long by the hyperspectral community. The third one is quite recent and was made available to the remote sensing community within the 2013 IEEE GRSS Data Fusion Contest [START_REF] Debes | Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest[END_REF].

The first data set was acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over the agricultural Indian Pines test site in northwestern Indiana. The spatial dimensions of this data set are 145 × 145 pixels. The spatial resolution is 20 m. This data set originally includes 220 spectral channels but 20 water absorption bands (104-108, 150-163, 220) have been removed, and the rest (200 bands) has been taken into account for the experiments. The reference data contains 16 classes of interest, which represent mostly different types of crops and are detailed in Table I. Fig. 2 shows a three-band false color image and its corresponding reference samples.

The second data set was captured on the city of Pavia, Italy, by the ROSIS-03 (Reflective Optics Spectrographic Imaging System) airborne instrument. The flight over the city of Pavia, Italy, was operated by the Deutschen Zentrum für Luft-und Raumfahrt (DLR, the German Aerospace Agency) within the context of the HySens project, managed and sponsored by the European Union. The ROSIS-03 sensor has 115 data channels with a spectral coverage ranging from 0.43 to 0.86 µm. Twelve channels have been removed due to noise. The remaining 103 spectral channels are processed. The spatial resolution is 1. as the nDSM and intensity images were concatenated into a stacked vector. In order to explore the capabilities of different classifiers, we have investigated SVM, RF and RBFNN to produce the final classification map. Based on the experiments drawn in this paper, the following main observations can be made:

1) When the number of training samples is limited both SVM and RF can provide acceptable results in terms of classification accuracies in both situations, i.e., with or without considering spatial information. In contrast, RBFNN has demonstrated the worst performance compared to SVM and RF. 2) SVM has provided the most stable results in terms of kappa coefficient over a number of independent Monte Carlo runs while RBFNN has shown the worst performance in terms of stability.

3) The proposed classification approach is fully automatic and there is no need to initialize any parameters for the approach. 4) The use of ESDAP can improve the results of SVM, RF and RBFNN in terms of classification accuracies. 5) The increase in the classification accuracy obtained by the LiDAR data as complementary information is mainly because of the nDSM image whereas the improvement by considering the intensity image itself does not significantly influence the obtained results.

As a conclusion, the proposed approach can accurately classify urban areas including both LiDAR and hyperspectral data even if a very limited number of training samples is available.

In addition, the proposed methodology is fast. For example, the CPU processing time for the methodology by considering SVM is 239 seconds (111 seconds for KPCA, 112 seconds for ESDAP, and 16 seconds for SVM of ESDAP). The proposed classification system is fully automatic. Furthermore, the use of SVM along with ESDAP is suggested for the classification of urban areas when the number of training samples is limited since: 1) SVM is able to handle high dimensionality with limited number of training samples, and 2) they build up an efficient approach which is able to classify a high volume of urban data quite effectively from the viewpoint of both classification accuracy and computational performance. As a possible future work and in order to decrease the confusion between different classes such as grass and trees, one may consider more advanced data fusion approaches or put more emphasis on the LiDAR data.
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2) ROSIS-03 Pavia University: This data set was captured on the city of Pavia, Italy by the ROSIS-03 (Reflective Optics Spectrographic Imaging System) airborne instrument. The flight over the city of Pavia, Italy, was operated by the Deutschen Zentrum für Luft-und Raumfahrt (DLR, the German Aerospace Agency) within the context of the HySens project, managed and sponsored by the European Union. The ROSIS-03 sensor has 115 data channels with a spectral trees, asphalt, bitumen, gravel, metal sheet, shadow, bricks, meadow and soil. This data set comprises 640 × 340 pixels. Fig. 3 presents a false color image of the ROSIS-03 Pavia University data and its corresponding reference samples. The third data set (named "grss dfc 2013" [START_REF]2013 IEEE GRSS Data Fusion Contest[END_REF]) was captured by the Compact Airborne Spectrographic Imager (CASI) It is worth noting that, in this paper, we have used a split of the ground truth of each considered data set into the training and the test sets that is rather common in the hyperspectral community to make the results fully comparable with several studies in the literature. The sets of training and test samples utilized in this paper can be found at https://pghamisi.wixsite. com/mysite.

IV. MATHEMATICAL MORPHOLOGY-BASED SPECTRAL-SPATIAL CLASSIFIERS

A. Brief Background

The concept of morphological profiles (MPs) was introduced in 2001 [START_REF] Pesaresi | A new approach for the morphological segmentation of high-resolution satellite imagery[END_REF] and since then, it has been used as a powerful approach to model spatial information (e.g., contextual relations) of the image by extracting structural features (e.g., size, geometry, etc.). MPs are constructed using a successive use of opening/closing operations with a structuring element (SE) of an increasing size led to the creation of a "morphological spectrum" for each pixel. In [START_REF] Benediktsson | Classification of hyperspectral data from urban areas based on extended morphological profiles[END_REF], the concept of MPs was successfully generalized to deal with HSI [i.e., known as extended MPs (EMPs)]. A detailed survey of the MP and its extensions can be found in [START_REF] Benediktsson | Spectral-Spatial Classification of Hyperspectral Remote Sensing Images[END_REF][START_REF] Fauvel | Advances in spectral-spatial classification of hyperspectral images[END_REF]. Although the MP can improve the discrimination ability of a spectral-spatial classification framework, its concept has a few limitations: (i) the shape of SEs is fixed which make MPs unable to precisely model the shape of different objects and (ii) SEs are only able to extract information w.r.t. the size of existing objects and are unable to characterize information on the gray-level characteristics of the regions. In order to address the above-mentioned shortcomings of the MP, the morphological attribute profile (AP) was introduced in [START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF] as a generalization of the MP, which provides a multilevel characterization of an image by using the sequential use of morphological attribute filters (AFs). Compared to MPs, AP is a more flexible tool since it can extract spatial and contextual features based on multiple attributes, which can be purely geometric, or related to the spectral values of the pixels, or based on different characteristics such as spatial relations to other connected components. In [START_REF] Dalla Mura | Extended profiles with morphological attribute filters for the analysis of hyperspectral data[END_REF], the concept of the AP was generalized and applied to HSIs [i.e., known as extended AP (EAP) or extended multi-AP (EMAP) if multiple types of attributes are taken into account]. A detailed survey about AP and its extensions can be found in [START_REF] Benediktsson | Spectral-Spatial Classification of Hyperspectral Remote Sensing Images[END_REF][START_REF] Ghamisi | A survey on spectral-spatial classification techniques based on attribute profiles[END_REF]. This section takes a closer look to a very recent variant of MPs known as extinction profiles (EPs) [START_REF] Ghamisi | Extinction profiles for the classification of remote sensing data[END_REF]. Therefore, in this section, we first briefly discuss the so-called tree-representation (maxtree), which is a crucial step for the efficient implementation of the EPs. Then, a brief discussion on attribute and extinction filters is given to highlight the main differences between these two filtering approaches. Furthermore, we discuss extinction profiles and evaluate the performance of different mathematical morphology-based spectral-spatial classifiers through experiments on three widely used hyperspectral data sets.

B. Max-tree

Max-tree is a data structure that represents a gray scale image as a tree based on the hierarchical property of threshold decomposition. It was proposed by Salembier et al. [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF] as an efficient structure to implement anti-extensive, and extensive by duality1 , connected filters. There are algorithms that allow the max-tree construction in quasi-linear time [START_REF] Géraud | A Quasi-linear Algorithm to Compute the Tree of Shapes of nD Images[END_REF][START_REF] Carlinet | A comparative review of component tree computation algorithms[END_REF]. The max-tree processing pipeline is depicted by the black path in Fig. 5. The max-tree filtering and image reconstruction processing times are usually negligible compared to the construction time, therefore the max-tree is even more efficient when performing a succession of filtering steps, such as the ones used to construct the extinction profiles [START_REF] Ghamisi | Extinction profiles for the classification of remote sensing data[END_REF]. In [START_REF] Souza | An overview of max-tree principles, algorithms and applications[END_REF], the principles of the max-tree representation along with the corresponding algorithms and applications were reviewed. 

C. Attribute Filters

A gray-scale image can be seen as a stack of binary images obtained at different upper threshold (X ≥ t) ranging from the minimum to the maximum gray-level of the image. Using this interpretation, the image gray-level is given by the sum of the binary images in the stack. An informal definition of attribute filters is that they are connected filters that remove the connected components of each image in the stack which do not meet the threshold criteria. Attribute filters may either use a single attribute or a set of attributes to decide which connected components should be removed. There is a wide variety of attribute filters, such as area-open [START_REF] Vincent | Morphological area openings and closings for grey-scale images[END_REF], hmax [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF], vmax [START_REF] Vachier | Extinction value: a new measurement of persistence[END_REF], ultimate opening [START_REF] Fabrizio | Fast Implementation of the Ultimate Opening[END_REF], statistical attribute filters [START_REF] Teeninga | Improved Detection of Faint Extended Astronomical Objects Through Statistical Attribute Filtering[END_REF] and vector attribute filters [START_REF] Kiwanuka | Cluster Based Vector Attribute Filtering[END_REF]. These filters can be efficiently implemented on the max-tree structure [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF]. The attribute filter procedure on the max-tree is the following:

1) Build the max-tree, if implementing anti-extensive filters, or the min-tree, if implementing extensive filters, of the image. 2) Mark all nodes that do not meet the threshold criteria based on the attribute being analyzed. 3) Filter the nodes marked in the previous steps. 4) Reconstruct the image from the filtered tree. Attribute profiles (APs) are constructed by the sequential application of attribute thinning and thickening2 with a set of progressively stricter threshold values, which were proposed by Dalla Mura et al. [START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF]. Since then, APs have been investigated intensively for the classification of hyperspectral images. A detailed survey paper on the use of APs for the classification of hyperspectral images can be found in [START_REF] Ghamisi | A survey on spectral-spatial classification techniques based on attribute profiles[END_REF].

D. Extinction Values

Extinction values are a measure of persistence of extrema (minima or maxima) proposed by Vachier [START_REF] Vachier | Extinction value: a new measurement of persistence[END_REF]. The measure of persistence is related to an attribute, which initially (when defined by Vachier) had to be increasing. Extinction values of the height attribute are also known as dynamics [START_REF] Grimaud | New measure of contrast: the dynamics[END_REF]. Extinction values can be formally defined. Let M be a regional maximum of a gray scale image X, and Ψ = (ψ λ ) λ be a family of decreasing connected anti-extensive transformations. The extinction value corresponding to M with respect to Ψ and denoted by ε Ψ (M ) is the maximal λ value, such that M still is a regional maxima of ψ λ (X). This definition can be expressed through the following equation:

ε Ψ (M ) = sup{λ ≥ 0|∀µ ≤ λ, M ⊂ M ax(ψ µ (X))}. (1)
Extinction values of minima can be defined similarly. The height extinction values of maxima of a 1D signal are illustrated in Fig. 6. It is important to emphasize that extinction values are not directly related to the amplitude of the peak, but they also depend on the adjacent extrema. In this illustration, the six most relevant maxima are not necessarily the six highest peaks in the signal. There are algorithms with linear complexity to compute extinction values [START_REF] Bertrand | On the dynamics[END_REF][START_REF] Silva | New extinction values from efficient construction and analysis of extended attribute component tree[END_REF] from the max-tree [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF][START_REF] Breen | Attribute openings, thinnings, and granulometries[END_REF].

E. Extinction Filters for Increasing Attributes

Extinction filters (EF) for increasing attributes are connected idempotent filters, i.e. do not blur the image and only alter the image the first time they are applied. They are extrema oriented. They have three parameters to be set: the kind of extrema it is going to filter (minima or maxima), the attribute being analyzed, and the number of extrema to be preserved.

Natural (real) images are contaminated by noise. Therefore, they contain many irrelevant extrema, i.e. extrema with low Fig. 6: Height extinction values of maxima of a 1D signal. The six maxima with highest extinction are highlighted. extinction values. For example, a satellite high resolution panchromatic image of an urban area of the city of Rome, Italy acquired by the QuickBird satellite is depicted in Fig. 7(a). The image is 972 × 1188 pixels and has 67960 regional maxima. More than 50% of the maxima has an area extinction value of one (Fig. 7(b)), therefore if we apply an area-open [START_REF] Vincent | Morphological area openings and closings for grey-scale images[END_REF] filter set to filter structures smaller or equal to one, more than 50% of the image maxima would be filtered. The formal definition of EF for increasing attributes when filtering maxima is the following: consider that M ax(X) = to define a connectivity rule, which is usually connectivity (vertical and horizontal neighbors o or 8-connectivity (all neighbors of the pixel) T max-tree construction takes us to the space of allowing the creation of a novel class of connecte from the leveling family and more complex mo analysis, such as the computation of extinction non-increasing attributes. This methodology wa blood vessels segmentation, a generalization of connectivity [START_REF] Monasse | Fast computation of a contrast-invariant image representation[END_REF], and hierarchical segmentation space of shapes fluxogram is depicted in the r Fig. 5. An example of the second max-tree constru the aspect ratio attribute of the initial max-tree no second max-tree construction on a synthetic image in Fig. 8. The nodes marked in blue are going to b The result of the filtering procedure in the space o depicted in Fig. 9. The formal definition of EF for increasing attributes when filtering maxima is the following: consider that M ax(X) = {M 1 , M 2 , ..., M N } denotes the set of regional maxima of to define a connectivity rule, which is usually connectivity (vertical and horizontal neighbors of or 8-connectivity (all neighbors of the pixel) T max-tree construction takes us to the space of s allowing the creation of a novel class of connecte from the leveling family and more complex mo analysis, such as the computation of extinction non-increasing attributes. This methodology was blood vessels segmentation, a generalization of c connectivity [START_REF] Monasse | Fast computation of a contrast-invariant image representation[END_REF], and hierarchical segmentation space of shapes fluxogram is depicted in the re Fig. 5. An example of the second max-tree constru the aspect ratio attribute of the initial max-tree no second max-tree construction on a synthetic image in Fig. 8. The nodes marked in blue are going to be The result of the filtering procedure in the space o depicted in Fig. 9. EFs can be efficiently implemented using the max-tree structure [START_REF] Souza | A comparison between extinction filters and attribute filters[END_REF]. The general description of the EF operation on the max-tree is the following:

1) Build the image max-tree if filtering maxima (antiextensive) or min-tree if filtering minima (extensive). 2) Compute the leaves extinction values of the increasing attribute being analyzed. 3) Mark all nodes on the paths starting from the n maxtree leaves with highest extinction values to the root. 4) Filter the nodes that were not marked in the previous step. 5) Reconstruct the image from the filtered tree. The formal definition of EF for increasing attributes when filtering maxima is the following: consider that M ax(X) = {M 1 , M 2 , ..., M N } denotes the set of regional maxima of the image X. M i is an image the same size as X with zero everywhere except in the positions of the pixels that compose the regional maximum M i , where the gray-value is the value of the maximum. Each regional maxima M i has an extinction value i corresponding to the increasing attribute being analyzed. The EF of X that preserves the n maxima with highest extinction values, EF n (X), is given as follows:

EF n (X) = R δ X (G), (2) 
where R δ X (G) is the reconstruction by dilation [START_REF] Soille | Morphological Image Analysis: Principles and Applications[END_REF] of the mask image X from marker image G. The marker image G is given by:

G = n max i=1 {M i }, (3) 
where max is the pixel-wise maximum operation. M 1 is the maximum with the highest extinction value, M 2 has the second highest extinction value, and so on.

F. Space of Shapes

Xu et al. [START_REF] Xu | Morphological filtering in shape spaces: Applications using tree-based image representations[END_REF] proposed to build max-trees of tree-based image representations, i.e. build a max-tree of a max-tree or a max-tree of a tree of shapes [START_REF] Monasse | Fast computation of a contrast-invariant image representation[END_REF]. This second max-tree construction takes into account a shape attribute threshold on the first tree nodes as opposed to thresholding image gray-levels. Moreover, the connectivity rule is already defined by the initial tree, while in the first tree construction it is necessary to define a connectivity rule, which is usually either 4-connectivity (vertical and horizontal neighbors of the pixel) or 8-connectivity (all neighbors of the pixel). The second max-tree construction takes us to the space of shapes [START_REF] Xu | Morphological filtering in shape spaces: Applications using tree-based image representations[END_REF] allowing the creation of a novel class of connected operators from the leveling family and more complex morphological analysis, such as the computation of extinction values for non-increasing attributes. This methodology was used for blood vessels segmentation, a generalization of constrained connectivity [START_REF] Xu | Two applications of shape-based morphology: blood vessels segmentation and a generalization of constrained connectivity[END_REF], and hierarchical segmentation [START_REF] Xu | Hierarchical segmentation using tree-based shape space[END_REF]. The space of shapes fluxogram is depicted in the red path of Fig. 5. An example of the second max-tree construction using the aspect ratio attribute of the initial max-tree nodes for the second max-tree construction on a synthetic image is depicted in Fig. 8. The nodes marked in blue are going to be preserved. The result of the filtering procedure in the space of shapes is depicted in Fig. 9. rmalized tes when ax(X) = axima of X with ixels that ray-value a M i has attribute maxima follows:

(2)

3] of the image G (3) 
. M 1 is 2 has the ree-based x-tree or max-tree eshold on age grayd by the necessary in Fig. 8. The nodes marked in blue are going to be preserved. The result of the filtering procedure in the space of shapes is depicted in Fig. 9. 

G. Extinction Filters for Non-increasing Attributes

After building the max-tree of the initial tree representation (max-tree or min-tree in our case), using a non-increasing attribute and, therefore, working on the space of shapes, the height of the attribute used to compute the second max-tree becomes increasing in this space. Therefore, it is possible Fig. 8: (a) Synthetic image (b) its max-tree and (c) second max-tree using aspect ratio as the attribute for the second tree construction.

G. Extinction Filters for Non-increasing Attributes

After building the max-tree of the initial tree representation (max-tree or min-tree in our case), using a non-increasing attribute and, therefore, working on the space of shapes, the height of the attribute used to compute the second max-tree becomes increasing in this space. Therefore, it is possible to compute extinction values and extinction filters for nonincreasing attributes. The procedure for computing extinction filters for non-increasing attributes using the max-tree is the following:

1) Build the image max-tree if filtering maxima (antiextensive) or min-tree if filtering minima (extensive). 2) Compute the second tree (max-tree) of the initial tree representation using the non-increasing attribute chosen. 3) On the second tree, compute the height extinction values for the non-increasing attribute. 4) On the second tree, mark all nodes on the paths starting from the n max-tree leaves with highest extinction values to the root. 5) On the second tree, filter the nodes that were not marked in the previous step. 6) Recover the initial tree (max-tree or min-tree) from the second tree. 7) Reconstruct the image. filters for non-increasing attributes using the max-tree is the following: 1) Build the image max-tree if filtering maxima (antiextensive) or min-tree if filtering minima (extensive). 2) Compute the second tree (max-tree) of the initial tree representation using the non-increasing attribute chosen. 3) On the second tree, compute the height extinction values for the non-increasing attribute. 4) On the second tree, mark all nodes on the paths starting from the n max-tree leaves with highest extinction values to the root. 5) On the second tree, filter the nodes that were not marked in the previous step. 6) Recover the initial tree (max-tree or min-tree) from the second tree. 7) Reconstruct the image. Extinction filters for non-increasing attributes do not have the same extrema preservation property as extinction filters for increasing attributes. They can also be seen as second max-tree increasing attribute extinction filters. They belong to a class of filters known as shape-based filters [START_REF] Soille | Morphological Image Analysis: Principles and Applications[END_REF].

H. Extinction Profiles for Gray-scale Images

In order to obtain extinction profiles (EPs), several extinction filters are used which are a sequence of thinning and thickening transformations, with progressively higher threshold values. In this manner, one can extract spatial and contextual informatio the EP for EP(X) = where Π φ thinning e criterion λ of thresho λ = {λ 1 , λ λ i ≤ λ j ho is a hierar by the EP Extinction filters for non-increasing attributes do not have the same extrema preservation property as extinction filters for increasing attributes. They can also be seen as second max-tree increasing attribute extinction filters. They belong to a class of filters known as shape-based filters [START_REF] Xu | Morphological filtering in shape spaces: Applications using tree-based image representations[END_REF].
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H. Extinction Profiles for Gray-scale Images

In order to obtain extinction profiles (EPs), several extinction filters are used which are a sequence of thinning and thickening transformations, with progressively higher threshold values. In this manner, one can extract spatial and contextual information of the input data comprehensively [START_REF] Ghamisi | Extinction profiles for the classification of remote sensing data[END_REF]. Therefore, the EP for the input gray scale image, X, is constructed by

EP(X) = Π φ λs , s = (s -i + 1), ∀i ∈ [1, s]; Π γ λs , s = (i -s), ∀i ∈ [s + 1, 2s]. . (4) 
where Π φ λ is the thickening extinction profile and Π γ λ is the thinning extinction profile computed with a generic ordered criterion λ (also called threshold or criteria). s is the number of thresholds (i. e., criteria). The set of ordered thresholds λ = {λ 1 , λ 2 , . . . , λ s } for λ i , λ j ∈ λ and j ≥ i the relation λ i ≤ λ j holds for thickening and λ i ≥ λ j for thinning. 3 There is a hierarchical relationship between the images generated by the EP, i.e., Π

φ λ 1 ≥ Π φ λ 2 ≥ ... ≥ Π φ λs ≥ Π γ λs ≥ Π γ λ s-1 ≥ ... ≥ Π γ λ 1 .

I. Extinction Profiles for Hyperspectral Images

MPs, APs, and EPs, as discussed above, produce several additional features from a single gray scale image (i.e., the input image). It is possible to apply such profiles to all the bands of the hyperspectral data individually and concatenate them. However, this results in producing many redundant features but all the features need to be handled by the subsequent classifier. As a result, if the number of training samples is limited and the classification approach is not capable of handling high dimensional data, the accuracies of the classification step will be downgraded due to the Hughes phenomenon [START_REF] Hughes | On the mean accuracy of statistical pattern recognizers[END_REF]. This is the main reason why the number of bands is first reduced by using a dimensionality reduction approach. Then, a few informative features are fed to MP, AP, or EP to produce spatial and contextual features. In more detail, in order to generalize MPs, APs, and EPs from a gray scale image to HSI, we first need to reduce the dimensionality of the data from E ⊆ Z d1 to E ⊆ Z d2 (d 2 ≤ d 1 ) with a generic transformation Ψ : E → E [(e.g., independent component analysis (ICA)]. Then, the EP can be performed on the most informative features Q i (i = 1, . . . , d 2 ) among the extracted ones, which can mathematically be given as:

EEP(Q) = {EP(Q 1 ), EP(Q 2 ), . . . , EP(Q d2 )}. (5) 
Another extension of the EPs on HSI is the extended multi-EP (EMEP) [START_REF] Ghamisi | Hyperspectral data classification using extended extinction profiles[END_REF], which concatenates different EEPs (e.g., area, height, volume, diagonal of bounding box, and standard deviation on different extracted features) into a single stacked vector as follows:

EMEP = {EEP a1 , EEP a2 , ..., EEP aw }, (6) 
where a k , k = {1, ..., w} denotes different types of attributes.

It is easy to understand that due to the fact that different extinction attributes provide complementary spatial and contextual information, the EMEP has a greater capability in extracting spatial information than a single EP [START_REF] Ghamisi | Extinction profiles for the classification of remote sensing data[END_REF][START_REF] Ghamisi | Hyperspectral data classification using extended extinction profiles[END_REF]. In [START_REF] Xia | Random forest ensembles and extended multiextinction profiles for hyperspectral image classification[END_REF], random forest (RF) ensembles and EMEPs are integrated to shape a spectral-spatial classification framework. In [START_REF] Du | Multiple composite kernel learning for hyperspectral image classification[END_REF][START_REF] Fang | Extinction profiles fusion for hyperspectral images classification[END_REF], EMEP were used along with composite kernel (CK) learning to perform spectral-spatial classification on HSIs. EMEP was also investigated to fuse spectral and spatial features of hyperpectral and LiDAR data using total variation [START_REF] Rasti | Hyperspectral and lidar fusion using extinction profiles and total variation component analysis[END_REF], composite kernel learning [START_REF] Zhang | Classification of hyperspectral and lidar data using extinction profiles with feature fusion[END_REF], deep CNN [START_REF] Ghamisi | Hyperspectral and lidar data fusion using extinction profiles and deep convolutional neural network[END_REF], and sparse and low-rank feature fusion [START_REF] Rasti | Fusion of hyperspectral and lidar data using sparse and low-rank component analysis[END_REF].

J. Some Notes on Computational Time

EMEP and EP demand approximately the same computational time since the most time demanding part is the construction of the max-tree and min-tree, which are computed only once for each gray scale image [START_REF] Ghamisi | Extinction profiles for the classification of remote sensing data[END_REF][START_REF] Ghamisi | Hyperspectral data classification using extended extinction profiles[END_REF].

In terms of increasing attributes (i.e., a, bb, v, and h), the computation of both EPs and APs with the same size and for the same attribute lead to similar processing time. The only difference is that EFs need to compute the extinction values for the attribute, but this can be done simultaneously with the number of nodes, and consequently, it does not add much to the processing time. In terms of non-increasing attributes (std), however, EPs need to construct a second max-tree (mintree), which is not a case for APs. It should be noted that the second max-tree (min-tree) can be constructed much faster since its complexity is proportional to the number of nodes (m) of the first tree instead of the number of pixels (n) in the original image (m << n) [START_REF] Souza | An array-based node-oriented max-tree representation[END_REF]. For detailed analysis of the computational complexity, please see [START_REF] Ghamisi | Extinction profiles for the classification of remote sensing data[END_REF].

K. Experimental Results

1) Experimental Setup:

For the experiments, RF, with 200 trees, is used to classify input features (see Figs. 14(b), 15(b), and 16(b)). Since EMP only considers attribute area (a), in order to have a fair comparison with EMP, we designed two scenarios: (1) EAP a and EEP a which only consider attribute area and (2) EMAP and EMEP which consider five attributes (i.e., area, height, volume, diagonal of the bounding box, and standard deviation) described in [START_REF] Ghamisi | Extinction profiles for the classification of remote sensing data[END_REF] and in the previous subsections. EMP is composed of seven opening/closing by reconstruction with a circular SE of size 2, 4, 6, 8, 10, 12, and 14. EMAP is generated using the following attributes and thresholds:

• λ a = [100, 500, 1000, 2000, 3000, 4000, 5000],

• λ h = [100, 500, 1000, 2000, 3000, 4000, 5000],

• λ v = [100, 500, 1000, 2000, 3000, 4000, 5000],

• λ bb = [START_REF] Tarabalka | Multiple spectral-spatial classification approach for hyperspectral data[END_REF][START_REF] Vachier | Extinction value: a new measurement of persistence[END_REF][START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF][START_REF] Zhao | Spectral-spatial classification of hyperspectral imagery with cooperative game[END_REF][START_REF] Szeliski | A comparative study of energy minimization methods for Markov random fields with smoothness-based priors[END_REF][START_REF] Chen | Hyperspectral image classification using dictionary-based sparse representation[END_REF][START_REF] Aptoula | Deep learning with attribute profiles for hyperspectral image classification[END_REF], and • λ std = [START_REF] Tarabalka | Multiple spectral-spatial classification approach for hyperspectral data[END_REF][START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF][START_REF] Bertrand | On the dynamics[END_REF][START_REF] Xia | Random forest ensembles and extended multiextinction profiles for hyperspectral image classification[END_REF][START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF][START_REF] Li | Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning[END_REF][START_REF] Zhong | Jointly learning the hybrid CRF and MLR model for simultaneous denoising and classification of hyperspectral imagery[END_REF]. For the EMEP (see Fig. 14(f) and Fig. 15(f)), the threshold values for all attributes are automatically set using λ = 3 j , j = 0, 1, ..., s -1, where s is set to 7 to produce the same number of features as EMAP and EMP for each profile.

Producer's accuracy has been used as class specific accuracy and its average value is reported as average accuracy (AA). Kappa and OA represent the kappa coefficient and overall accuracy, respectively.

In terms of the CASI Houston University data, we have also run one extra experiments using a Support Vector Machine (SVM) with CK [START_REF] Camps-Valls | Composite kernels for hyperspectral image classfication[END_REF] with weighted summation kernel (see Fig. 16(f)). The weight parameter for both spectral and spatial kernels were simply set to 0.5).

2) Results and Discussions: With reference to Tables IV, V, and VI the following conclusions can be obtained:

• Although EMP, EAP a , and EEP a include the same attribute (i.e, area) and number of features, EEP a leads to the highest classification accuracies. The main reason is that, as shown in [START_REF] Ghamisi | Extinction profiles for the classification of remote sensing data[END_REF], EPs are more effective than APs in terms of simplification for recognition. The main reason that EEP a can improve EMP in terms of classification accuracies is that the shape of the structuring element to produce EMPs is fixed, which imposes a constraint to model spatial structures within a scene.

• As can be seen, one needs to adjust a number of threshold values for EMAP, which is a time consuming procedure.

However, for MPs and EMEPs, one only needs to adjust the number of features.

• As discussed in Section IV-F, the advantage of using AP over EP can be pointed out for non-increasing attributes (standard deviation). In this case, the EP needs to produce the second tree based on the space of the shapes.

• All EMP, EAP a , and EEP a can provide results very swiftly. Table VII schematically compares EMP, EAP, and EEP in terms of classification accuracy, simplicity, and being closer to automatic. The best performance is shown using three bullets while the worst performance is represented by one bullet. 

•• •• • • • EAP •• • • • • EEP • • • • • • • • •
pipeline, a relevant family of methods for incorporating spatial information into the classification stage is based on random fields and probabilistic graphical models. A random field is a stochastic process defined on some multidimensional domain such as, most remarkably, a 2D pixel lattice. A probabilistic graphical model for an image makes use of a topological description based on graphs and a probabilistic description based on random fields to characterize dependency properties of the image, usually involving suitable Markovianity conditions [START_REF] Koller | Probabilistic Graphical Models[END_REF]. These methodological tools make it possible to capture spatial dependencies in a HSI on a probabilistic basis. Conventional image classifiers drawn from the pattern recognition literature (e.g., neural networks, RF, or SVM) are usually formalized under the assumption of independent and identically distributed (i.i.d.) pixels [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF][START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF]. While this noncontextual approach was found effective for remote sensing data at moderate spatial resolutions, it is generally inadequate in the VHR case, including VHR HSI [START_REF] Moser | Land-cover mapping by Markov modeling of spatialcontextual information in very-high-resolution remote sensing images[END_REF]. Probabilistic graphical models allow non-i.i.d. pixels to be characterized in a Bayesian framework. From a signal processing perspective, this is equivalent to moving from a white stationary model to a correlated and possibly nonstationary (or piecewise stationary) model for the spatial image behavior [START_REF] Moser | Land-cover mapping by Markov modeling of spatialcontextual information in very-high-resolution remote sensing images[END_REF][START_REF] Fauvel | Advances in spectral-spatial classification of hyperspectral images[END_REF]. From a machine learning viewpoint, classifiers based on probabilistic graphical models belong to the area of structured output learning, which includes algorithms whose output is supposed to exhibit dependency structures [START_REF] Nowozin | Structured learning and prediction in computer vision[END_REF].

The main family of probabilistic graphical models that have been extensively applied to HSI classification is given by Markov random fields (MRF), which provide powerful and flexible spatial-contextual models for the prior distribution in Bayesian image analysis [START_REF] Kato | Markov random fields in image segmentation[END_REF][START_REF] Li | Markov random field modeling in image analysis[END_REF][START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF]. They have been recently used for HSI classification in conjunction with SVM [START_REF] Ghamisi | Spectral-spatial classification of hyperspectral images based on hidden Markov random fields[END_REF][START_REF] Khodadadzadeh | Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization[END_REF][START_REF] Yu | Spectral-spatial hyperspectral image classification using subspace-based support vector machines and adaptive Markov random fields[END_REF][START_REF] Moser | Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[END_REF], active learning [START_REF] Sun | An MRF model-based active learning framework for the spectralspatial classification of hyperspectral imagery[END_REF], multinomial logistic regression (MLR) [START_REF] Khodadadzadeh | Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization[END_REF][START_REF] Li | Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning[END_REF], subspace projections [START_REF] Yu | Spectral-spatial hyperspectral image classification using subspace-based support vector machines and adaptive Markov random fields[END_REF], hierarchical statistical region merging [START_REF] Golipour | Integrating hierarchical segmentation maps with MRF prior for classification of hyperspectral images in a bayesian framework[END_REF], blind source separation and meanfield approximations [START_REF] Bali | Bayesian approach with hidden markov modeling and mean field approximation for hyperspectral data analysis[END_REF], multidimensional wavelets [START_REF] Cao | Integration of 3-dimensional discrete wavelet transform and markov random field for hyperspectral image classification[END_REF], sparse modeling and Dirichlet distributions [START_REF] Chen | Toward a sparse Bayesian Markov random field approach to hyperspectral unmixing and classification[END_REF], and ensemble classifiers [START_REF] Xia | Spectralspatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields[END_REF][START_REF] Damodaran | Dynamic ensemble selection approach for hyperspectral image classification with joint spectral and spatial information[END_REF]. In [START_REF] Golipour | Integrating hierarchical segmentation maps with MRF prior for classification of hyperspectral images in a bayesian framework[END_REF] and [START_REF] Eches | Adaptive markov random fields for joint unmixing and segmentation of hyperspectral images[END_REF], MRF-based methods were also developed for HSI segmentation. A further class of probabilistic graphical models is given by conditional random fields (CRF), which model as Markovian the posterior distribution directly [START_REF] Sutton | An introduction to conditional random fields[END_REF]. HSI image classification methods have recently been developed using CRFs along with SVM and Mahalanobis distances [START_REF] Zhong | A support vector conditional random fields classifier with a Mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery[END_REF][START_REF] Yang | Higher order support vector random fields for hyperspectral image classification[END_REF], MLR [START_REF] Zhong | Jointly learning the hybrid CRF and MLR model for simultaneous denoising and classification of hyperspectral imagery[END_REF], decision tree ensembles [START_REF] Li | Hyperspectral image classification with limited labeled training samples using enhanced ensemble learning and conditional random fields[END_REF], extreme learning machines [START_REF] Zhang | Hyperspectral image classification using extreme learning machine and conditional random field[END_REF], deep belief networks [START_REF] Zhong | A hybrid DBN and CRF model for spectral-spatial classification of hyperspectral images[END_REF], segmentation and object-based image analysis [START_REF] Zhong | A hybrid objectoriented conditional random field classification framework for high spatial resolution remote sensing imagery[END_REF], game theory [START_REF] Zhao | Spectral-spatial classification of hyperspectral imagery with cooperative game[END_REF], and adaptive differential evolution for decision fusion with LiDAR data [START_REF] Zhong | Optimal decision fusion for urban landuse/land-cover classification based on adaptive differential evolution using hyperspectral and lidar data[END_REF]. Here, we shall focus on MRFs, first reviewing the basics and then discussing advanced methods that integrate the MRF and SVM approaches to HSI classification.

B. Key ideas of MRF modeling

MRF models formalize spatial interactions on a local basis using neighborhoods. A neighborhood system is defined on the 2D regular lattice of the n image pixels if for every ith pixel, a subset ∂i of neighboring pixels is specified (i = 1, 2, . . . , n). The neighborhood relation is supposed to be symmetric (i.e., if a pixel is neighbor to another, then the vice versa holds as well) and irreflexive (i.e., no pixel is neighbor to itself) [START_REF] Li | Markov random field modeling in image analysis[END_REF]. Classical examples include the first-and secondorder neighborhood systems, in which ∂i is the set of the four pixels adjacent to the ith pixel and the eight pixels surrounding it, respectively. Higher-order or adaptive neighborhoods can be defined as well [START_REF] Li | Markov random field modeling in image analysis[END_REF]. Setting a neighborhood system on the pixel lattice is equivalent to constructing an undirected graph in which each node is a pixel and each edge is determined by a pair of neighboring pixels. Given this topological structure, the random field of the labels of all pixels is an MRF if its joint probability distribution is strictly positive and if the following Markovianity property holds (i = 1, 2, . . . , n) [START_REF] Kato | Markov random fields in image segmentation[END_REF][START_REF] Li | Markov random field modeling in image analysis[END_REF]:

P (y i |y j , j = i) = P (y i |y j , j ∈ ∂i). (7) 
While the strict positivity of the joint distribution is a technical assumption meant to ensure mathematical tractability [START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF], [START_REF] Fauvel | Advances in spectral-spatial classification of hyperspectral images[END_REF] means that the distribution of the label of each pixel, given the labels of all other pixels, is equivalent to only conditioning to the labels of the neighbors -a condition that extends to 2D images the analogous properties of 1D Markov chains [START_REF] Derin | Discrete-index Markov-type random processes[END_REF].

In a HSI classification problem, establishing an MRF model for the labels has a remarkable impact on Bayesian decision rules. Collecting all HSI data in the n × d matrix X and all labels in the n-dimensional discrete vector Y (see Section II), it is possible to prove through the Hammersley-Clifford theorem that, under mild assumptions, the joint posterior distribution P (Y|X) of all the labels given all image data is a Gibbs distribution and is proportional to exp[-U (Y|X)], where U , named energy, is defined locally according to the neighborhood system [START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF]. Focusing for the sake of clarity on a common subclass of MRF models (namely, the MRFs with "only nonzero pairwise clique potential"), the functional form of the energy is [START_REF] Li | Markov random field modeling in image analysis[END_REF][START_REF] Kolmogorov | What energy functions can be minimized via graph cuts?[END_REF]:

U (Y|X) = n i=1 D i (x i , y i ) + β n i=1 j∈∂i V ij (y i , y j ), (8) 
where D i (x i , y i ) is a pixelwise (or unary) term associated with the spectral feature vector x i and the label of the ith pixel, V ij (y i , y j ), named pairwise potential, determines the spatial relation among the ith and jth pixels and their labels, and β is a parameter (i = 1, 2, . . . , n; j ∈ ∂i).

Based on [START_REF] Zhong | A support vector conditional random fields classifier with a Mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery[END_REF], the Bayesian maximum a-posteriori rule is equivalent to minimizing the energy U (Y|X) with respect to Y, given the input HSI X. Within this minimization, the pixelwise spectral information described by D i and the spatial interactions encoded by V ij are fused for spectralspatial classification purposes, while β weighs the tradeoff between the two contributions.

The unary term generally comes from the pixelwise negative class-conditional log-likelihood of the spectral data, estimated through parametric [START_REF] Ghamisi | Spectral-spatial classification of hyperspectral images based on hidden Markov random fields[END_REF][START_REF] Chen | Toward a sparse Bayesian Markov random field approach to hyperspectral unmixing and classification[END_REF][START_REF] Jackson | Adaptive Bayesian contextual classification based on Markov random fields[END_REF][START_REF] Li | Hyperspectral image classification using Gaussian mixture models and Markov random fields[END_REF] or non-parametric algorithms [START_REF] Sun | An MRF model-based active learning framework for the spectralspatial classification of hyperspectral imagery[END_REF][START_REF] Cao | Integration of 3-dimensional discrete wavelet transform and markov random field for hyperspectral image classification[END_REF][START_REF] Xia | Spectralspatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields[END_REF]. The pairwise potential determines the adopted MRF model and is defined to favor the desired spatial behavior. Well-known models can be used to favor smooth, edge-preserving, isotropic or anisotropic, stationary or nonstationary behaviors [START_REF] Kato | Markov random fields in image segmentation[END_REF][START_REF] Li | Markov random field modeling in image analysis[END_REF][START_REF] Xia | Spectralspatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields[END_REF][START_REF] Li | Hyperspectral image classification using Gaussian mixture models and Markov random fields[END_REF]. More advanced MRFs also allow multiscale, multiresolution, multisensor, and multitemporal fusion, hierarchical structures, segmentation results, or textures to be incorporated [START_REF] Moser | Land-cover mapping by Markov modeling of spatialcontextual information in very-high-resolution remote sensing images[END_REF][START_REF] Golipour | Integrating hierarchical segmentation maps with MRF prior for classification of hyperspectral images in a bayesian framework[END_REF][START_REF] Rallier | Texture feature analysis using a Gauss-Markov model in hyperspectral image classification[END_REF][START_REF] Schistad Solberg | A Markov random field model for classification of multisource satellite imagery[END_REF][START_REF] Melgani | A Markov random field approach to spatio-temporal contextual image classification[END_REF]. This remarkable flexibility is among the reasons for the current prominence of MRF approaches to spectral-spatial classification.

Another major reason is the availability of computationally efficient energy minimization methods, which rely on graph cut and belief propagation concepts and have attracted increasing interest during the last decade. In the case of binary classification, graph cuts make use of a reformulation based on the min-flow/max-cut theorem to reach, with low-order polynomial complexity, a global energy minimum, provided the pairwise potential satisfies a suitable condition [START_REF] Greig | Exact maximum a posteriori estimation for binary images[END_REF]. In the multiclass case, graph cut algorithms iteratively define a sequence of suitable binary problems, and under appropriate assumptions on the pairwise potential, converge to local minima with strong optimality properties [START_REF] Kolmogorov | What energy functions can be minimized via graph cuts?[END_REF][START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF][START_REF] Boykov | An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[END_REF].

Belief propagation-type methods formalize the intuitive idea of passing messages along the graph to decrease the energy [START_REF] Ihler | Loopy belief propagation: Convergence and effects of message errors[END_REF]. In particular, the max-product loopy belief propagation (LBP) technique operates on graphs with loops, such as those that are usually associated with MRF neighborhoods. It may generally not converge, but when it does, it obtains a local minimum with good optimality properties [START_REF] Ihler | Loopy belief propagation: Convergence and effects of message errors[END_REF][START_REF] Tappen | Comparison of graph cuts with belief propagation for stereo, using identical mrf parameters[END_REF]. The complexity of efficient formulations of LBP is linear with respect to the numbers of pixels and classes [START_REF] Felzenszwalb | Efficient graphbased image segmentation[END_REF]. The tree re-weighted message passing (TRW) method combines belief propagation with the construction of suitable spanning trees [START_REF] Wainwright | Map estimation via agreement on trees: Messagepassing and linear programming[END_REF], and can be endowed with specific convergence properties by using an appropriate sequential formulation (TRW-S) [START_REF] Kolmogorov | Convergent tree-reweighted message passing for energy minimization[END_REF]. The complexity of this formulation is linear with respect to the numbers of edges in the graph, of classes, and of iterations [START_REF] Kolmogorov | Convergent tree-reweighted message passing for energy minimization[END_REF].

Among earlier methods, which have been consolidated since the Eighties, we recall simulated annealing (SA) and iterated conditional mode (ICM). SA makes use of Gibbs or Metropolis random sampling, and converges to a global minimum under certain conditions although with long computation times [START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF]. ICM is a deterministic algorithm that has much lower computational burden but converges to a generic local minimum and may be sensitive to initialization [START_REF] Besag | Statistical analysis of dirty pictures[END_REF].

Recent applications of energy minimization methods to HSI can be found, e.g., in [START_REF] Moser | Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[END_REF][START_REF] Li | Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning[END_REF][START_REF] Chen | Toward a sparse Bayesian Markov random field approach to hyperspectral unmixing and classification[END_REF][START_REF] Xia | Spectralspatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields[END_REF][START_REF] Damodaran | Dynamic ensemble selection approach for hyperspectral image classification with joint spectral and spatial information[END_REF]. For more details on MRF and energy minimization, we refer the reader to [START_REF] Kato | Markov random fields in image segmentation[END_REF][START_REF] Li | Markov random field modeling in image analysis[END_REF].

C. Bringing together SVM, MRF, and energy minimization

Among the non-contextual classifiers, SVMs are known for their remarkable generalization capability even in the application to high-dimensional feature spaces -a property that justifies their consolidated use for spectral HSI classification. Hence, the opportunity to combine SVM with contextual MRF models nicely fits the requirements of spectralspatial HSI classification and has received substantial attention lately [START_REF] Yu | Spectral-spatial hyperspectral image classification using subspace-based support vector machines and adaptive Markov random fields[END_REF][START_REF] Moser | Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[END_REF][START_REF] Golipour | Integrating hierarchical segmentation maps with MRF prior for classification of hyperspectral images in a bayesian framework[END_REF][START_REF] Cao | Integration of 3-dimensional discrete wavelet transform and markov random field for hyperspectral image classification[END_REF]. Here, we shall not review the basics of SVM, for which we refer the reader to well-known textbooks such as [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF][START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF], and we only note that merging SVMs and MRFs is not straightforward because the latter are framed within probabilistic Bayesian modeling, whereas the former are non-Bayesian learning machines.

A common workaround is to postprocess the SVM discriminant function through the algorithms in [START_REF] Platt | Advances in Large Margin Classiers[END_REF][START_REF] Wu | Probability estimates for multi-class classification by pairwise coupling[END_REF], which use parametric modeling, maximum-likelihood, and numerical analysis concepts to approximate pixelwise posteriors. The resulting probabilistic output is plugged into the unary energy. This approach is computationally efficient and has recently led to accurate results with HSI (e.g., [START_REF] Yu | Spectral-spatial hyperspectral image classification using subspace-based support vector machines and adaptive Markov random fields[END_REF][START_REF] Golipour | Integrating hierarchical segmentation maps with MRF prior for classification of hyperspectral images in a bayesian framework[END_REF][START_REF] Cao | Integration of 3-dimensional discrete wavelet transform and markov random field for hyperspectral image classification[END_REF]). However, it methodologically mixes i.i.d. and non-i.i.d. assumptions in the parameter estimation and MRF modeling stages, respectively.

An alternate approach, which aims at merging the analytical formulations of SVM and MRF, has been proposed in [START_REF] Moser | Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[END_REF] and [START_REF] De Giorgi | Contextual remote-sensing image classification through support vector machines, Markov random fields and graph cuts[END_REF]. Focusing on binary classification and denoting the two classes as +1 and -1, let the random field of the class labels be an MRF with pairwise potential V ij and weight parameter β, and let K be a kernel. By definition, this means that computing K(x, x ) (x, x ∈ R d ) is equivalent to evaluating an inner product in some transformed space F [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF]. The key idea of the approach in [START_REF] Moser | Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[END_REF][START_REF] De Giorgi | Contextual remote-sensing image classification through support vector machines, Markov random fields and graph cuts[END_REF] is to apply the MRF minimumenergy rule directly in the space F implied by the kernel. On one hand, this is not straightforward, because F may be infinite-dimensional (it is a separable Hilbert space [START_REF] Stein | Real Analysis: Measure Theory, Integration, and Hilbert Spaces[END_REF]) and is normally not even specified explicitly in a kernel machine [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF]. On the other hand, this approach leads to integrating SVM and MRF into a unique framework, in which energy minimization algorithms can be formulated for spectral-spatial classification.

More precisely, two main results have been proven in this framework. First, under mild assumptions, the difference ∆U i between the energy contribution associated with the ith pixel and with label y i = -1 and that associated with y i = 1 can be expressed as an SVM-like kernel expansion (i = 1, 2, . . . , n):

∆U i = s∈S α s y s K MRF (x i , ε i ; x s , ε s ) + b, (9) 
provided that a case-specific Markovian kernel K MRF and a spatial additional feature

ε i are used (x, x ∈ R d ; ε, ε ∈ R; i = 1, 2, . . . , n) [58]: K MRF (x, ε; x , ε ) = K(x, x ) + βεε ε i = j∈∂i [V ij (-1, y j ) -V ij (1, y j )] , (10) 
and that the set S of support vectors and the coefficients α s (s ∈ S) and b are computed by training an SVM with kernel K MRF [START_REF] Moser | Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[END_REF]. The labels of the support vectors in ( 9) are obviously known from the training set.

Secondly, if the pairwise potential satisfies the additional condition that, for each ith pixel, the sum

j∈∂i [V ij (-1, y j ) + V ij (1, y j )
] is a constant independent on the labels of the neighbors, then the energy U (Y|X) can be written asn i=1 y i ∆U i , or equivalently, in terms of the following unary and pairwise terms (i = 1, 2, . . . n; j ∈ ∂i) [START_REF] De Giorgi | Contextual remote-sensing image classification through support vector machines, Markov random fields and graph cuts[END_REF]:

D SVM i (x i , y i ) = -y i s∈S α s y s K(x i , x s ) -by i V SVM ij (y i , y j ) = V ij (y i , y j ) -V ij (-y i , y j ), (11) 
and of a suitable weight parameter. In general, the aforementioned condition on the pairwise potential is a restriction. Nevertheless, it is satisfied by several popular MRF models, such as the widely used spatial Potts model [START_REF] Kato | Markov random fields in image segmentation[END_REF] or the multitemporal model in [START_REF] Schistad Solberg | A Markov random field model for classification of multisource satellite imagery[END_REF][START_REF] Melgani | A Markov random field approach to spatio-temporal contextual image classification[END_REF][START_REF] Serpico | Weight parameter optimization by the Ho-Kashyap algorithm in MRF models for supervised image classification[END_REF]. In ( 9) and ( 10), the additional feature ε i is determined by the adopted spatial MRF, as described by the related pairwise potential, and the Markovian kernel merges spectral and spatial terms in a linear combination. In [START_REF] Pesaresi | A new approach for the morphological segmentation of high-resolution satellite imagery[END_REF], this formulation even provides a full representation of the Markovian energy associated with a classification problem in the transformed space implied by the kernel. Comments on the assumptions behind these theorems and the related proofs can be found in [START_REF] Moser | Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[END_REF][START_REF] De Giorgi | Contextual remote-sensing image classification through support vector machines, Markov random fields and graph cuts[END_REF].

Given the integration of SVM and MRF in ( 9) and ( 11), energy minimization algorithms can be formulated to design spectral-spatial classifiers. Several such algorithms (e.g., SA and ICM) can be entirely expressed in terms of the energy difference ∆U i , so they can be combined with the kernel expansion (9) [START_REF] Moser | Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[END_REF]. More generally, [START_REF] Pesaresi | A new approach for the morphological segmentation of high-resolution satellite imagery[END_REF] provides a full representation of the global energy U , which makes it possible to apply arbitrary energy minimization methods, including graph cuts [START_REF] De Giorgi | Contextual remote-sensing image classification through support vector machines, Markov random fields and graph cuts[END_REF], LBP, and TRW. The resulting classifiers iteratively alternate: (i) the update of the additional spatial feature as a function of the current classification map; (ii) the training of an SVM with the Markovian kernel; and (iii) the update of the classification map through the considered energy minimization algorithm. We recall that the complexity of current algorithms for SVM training is generally at least quadratic with respect to the number of training samples [START_REF] Chang | LIBSVM: A library for support vector machines[END_REF], and that the complexity of the calculation of D SVM i on the entire image is linear with respect to the numbers of pixels and of support vectors.

The resulting classification methods will be collectively named Markovian support vector classifiers (MSVC) in the following. More algorithmic details as well as comments on the automatic optimization of the parameters of the methods (i.e., β and the SVM hyperparameters) can be found in [START_REF] Moser | Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[END_REF] and [START_REF] De Giorgi | Contextual remote-sensing image classification through support vector machines, Markov random fields and graph cuts[END_REF].

D. Experimental results

1) Experimental setup:

The MSVC framework is experimented with the considered data sets in conjunction with three energy minimization algorithms, i.e., graph cuts, LBP, and TRW. Multiclass labeling is accomplished using the one-vsone approach [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF], i.e., each minimization method is applied to a separate energy of the form [START_REF] Pesaresi | A new approach for the morphological segmentation of high-resolution satellite imagery[END_REF] with regard to each pair of distinct classes. Accordingly, the graph cut (GC) approach is applied to binary subproblems in its max-flow/min-cut formulation. Regarding LBP, for each iteration of the MSVC approach, both variants discussed in [START_REF] Szeliski | A comparative study of energy minimization methods for Markov random fields with smoothness-based priors[END_REF], which differ in the schedules for exchanging messages among the pixels, are used, and the solution with the lower energy is selected. In the case of TRW, TRW-S is used to favor a convergent behavior.

The results of MSVC are discussed in comparison with those of state-of-the-art contextual HSI classification methods based on MRF or kernel concepts: (i) the MRF-and kernelbased method in which approximate pixelwise posteriors are derived from the output of a purely spectral SVM through the algorithm in [START_REF] Wu | Probability estimates for multi-class classification by pairwise coupling[END_REF] and are plugged into the unary term (MRF-SVM-Post in the following); (ii) the MRF-but not kernel-based classifier in which unaries are computed through a Gaussian class-conditional model (MRF-Gauss in the following); and (iii) the kernel-but not MRF-based Contextual SVM (CSVM) technique in [START_REF] Gurram | Contextual SVM using Hilbert space embedding for hyperspectral classification[END_REF]. CSVM incorporates spatial information into an SVM for HSI classification using suitable embeddings in a reproducing kernel Hilbert space. A partly similar analytical formulation can be achieved using graphkernel concepts [START_REF] Camps-Valls | Spatio-spectral remote sensing image classification with graph kernels[END_REF]. Alternately, as discussed in Section IV, if spatial information is characterized in the feature extraction rather than the classification stage, composite kernels can be used to fuse spectral and spatial features [START_REF] Du | Multiple composite kernel learning for hyperspectral image classification[END_REF][START_REF] Fang | Extinction profiles fusion for hyperspectral images classification[END_REF][START_REF] Zhang | Classification of hyperspectral and lidar data using extinction profiles with feature fusion[END_REF][START_REF] Camps-Valls | Composite kernels for hyperspectral image classfication[END_REF].

Before applying (ii), dimensionality reduction is performed through nonparametric weighted feature extraction [START_REF] Kuo | Nonparametric weighted feature extraction for classification[END_REF] to prevent the impact of the Hughes' phenomenon on Gaussian density estimation. In all kernel methods, the Gaussian radial basis function kernel is used, and the hyperparameters of the SVM are automatically optimized by using the method in [START_REF] Moser | Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[END_REF], which numerically minimizes the span bound on the SVM error [START_REF] Vapnik | Bounds on error expectation for support vector machines[END_REF]. In all Markovian methods, the Potts model is used, i.e., V ij (y i , y j ) = -1 if y i = y j and V ij (y i , y j ) = 0 otherwise. We recall that, with this choice, both conditions for the applicability of ( 11) and for the convergence of graph cuts to a global minimum hold true. The parameter β is automatically optimized using the method in [START_REF] Serpico | Weight parameter optimization by the Ho-Kashyap algorithm in MRF models for supervised image classification[END_REF], which is based on the Ho-Kashyap's algorithm.

2) Results and discussion: The accuracies obtained by the aforementioned methods on the test samples of the three data sets are collected in Tables VIII-X. For the state-of-the-art MRF-SVM-Post and MRF-Gauss methods, for brevity only the results of the energy minimization algorithm that provides the highest OA are shown in these tables.

The MSVC framework obtains values of OA around 91-92%, 82-87%, and 85-87% in the cases of AVIRIS Indian Pines, ROSIS-03 Pavia University, and CASI Houston University, respectively. Accurate results are also generated by the two previous contextual kernel methods. Yet, MSVC obtains higher OA values than MRF-SVM-Post in the case of all three data sets, and than CSVM in the application to two data sets using all energy minimization algorithms and to the third data set using one of these algorithms. MRF-Gauss, which is based on a parametric Gaussian model for the class-conditional statistics, achieves lower accuracies than all aforementioned nonparametric kernel methods.

On one hand, all the considered Markovian approaches yield improvements over purely spectral classifiers (e.g., see RF and SVM in Tables IV-VI and XI-XIII), an expected conclusion that has been largely demonstrated in the literature (e.g., [START_REF] Fauvel | Advances in spectral-spatial classification of hyperspectral images[END_REF][START_REF] Moser | Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images[END_REF][START_REF] Camps-Valls | Advances in hyperspectral image classification: Earth monitoring with statistical learning methods[END_REF]). On the other hand, the experimental results confirm that MRF models, and especially their combination with kernel machines, are powerful tools for HSI classification. In particular, these results point out the ability of the MSVC framework to simultaneously benefit from the spatial modeling capability of MRFs, from the flexible nonparametric formulation of kernel learning, and from its effectiveness in high-dimensional feature spaces. This comment is also confirmed by previous experiments, which indicated that no feature reduction was generally necessary prior to MSVC (see [START_REF] Moser | Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[END_REF]), and by a visual analysis of the classification maps, which points out the spatial regularity favored by MRF modeling (Figs. 14(g), 15(g), and 16(g)).

The three considered energy minimization algorithms overall exhibit similar behaviors. They obtain very similar accuracies in the cases of the AVIRIS Indian Pines and CASI Houston University data sets, while in the case of ROSIS-03 Pavia, TRW-S reaches 3-4% higher OA than graph cuts and LBP. On one hand, the high accuracies achieved confirm the effectiveness of current advanced graph cut and message passing techniques for MRF energy minimization in a HSI classification task -a conclusion that has been drawn in numerous image processing and computer vision applications [START_REF] Szeliski | A comparative study of energy minimization methods for Markov random fields with smoothness-based priors[END_REF]. On the other hand, the performances obtained using all three methods also confirm the flexibility of the MSVC framework in incorporating arbitrary energy minimization algorithms. This flexibility also comes together with the opportunity to fully automate the resulting classifiers through the aforementioned parameter optimization methods in [START_REF] Moser | Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[END_REF][START_REF] Serpico | Weight parameter optimization by the Ho-Kashyap algorithm in MRF models for supervised image classification[END_REF]. We also recall that a previous MSVC formulation using ICM was originally developed in [START_REF] Moser | Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[END_REF] and experimentally validated with various data modalities, including HSI.

VI. SEGMENTATION

An important family of methods involves the segmentation of images and the classification of each of the individual segments. Segmentation methods partition an image into nonoverlapping homogeneous regions with respect to some criterion of interest or homogeneity criterion (e.g., based on the intensity or on the texture) [START_REF] Gonzalez | Digital Image Processing[END_REF]. Hence, each region in the segmentation map can be seen as a connected spatial neighborhood for all the pixels within this region. One of the pioneering spectral-spatial techniques belongs to this category: the wellknown ECHO (Extraction and Classification of Homogeneous Objects) classifier [START_REF] Kettig | Classification of multispectral image data by extraction and classification of homogeneous objects[END_REF], which has been extensively used by the remote sensing community. It is based on region growing to find homogeneous groups of adjacent pixels, which are then classified as single objects by a Gaussian maximum likelihood [START_REF] Tarabalka | Segmentation and classification of hyperspectral images using watershed transformation[END_REF][START_REF] Tarabalka | Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques[END_REF][START_REF] Tarabalka | Classification of hyperspectral data using support vector machines and adaptive neigh-borhoods[END_REF]. From a segmentation map, any pixelwise classifier and majority voting can be applied to combine spectral and spatial information: for every region in the segmentation map, all the pixels are assigned to the most frequent class within this region, based on pixelwise classification results [START_REF] Tarabalka | Classification of hyperspectral data using support vector machines and adaptive neigh-borhoods[END_REF].

It is however a challenging task to perform HSI segmentation automatically. The performance is highly dependent both on the measure of region homogeneity and on the algorithm parameters. Several alternatives have been proposed to deal with this challenge. Tarabalka et al. [START_REF] Tarabalka | Multiple spectral-spatial classification approach for hyperspectral data[END_REF][START_REF] Tarabalka | Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers[END_REF] proposed to perform a marker-controlled segmentation for this purpose. The classification probabilities are used to automatically select the most reliably classified pixels (i.e., pixels belonging with the high probability to the assigned class). The classification map is then obtained by building a minimum spanning forest from the image graph rooted on the selected markers. This method has a similar principle as the widely used MRF-based graph cut approach [START_REF] Tarabalka | Graph-cut-based model for spectral-spatial classification of hyperspectral images[END_REF] presented in the previous section, in the sense that the classification probabilities serve as the basis for the following spatial regularization process.

The second widely-used class of approaches for automatic segmentation consists in building first a hierarchy of segmentations at different levels of details, and then selecting from this hierarchy the regions at different scales that correspond to the objects of interest. Valero et al. proposed to use a binary partition tree (BPT) model for this purpose [START_REF] Valero | Hyperspectral image representation and processing with binary partition trees[END_REF]. In this method, a BPT is first constructed by iteratively clustering similar regions based on a criterion specifically designed for hyperspectral images. Each BPT node is then modeled by its mean spectrum and classified by using an SVM. A so-called misclassification rate is computed for each node, which can be understood as the error incurred by assigning the entire node to Fig. 10: A binary partition tree (BPT) is a hierarchical subdivision of an image. An exhaustive partitioning can be extracted by "cutting" branches at different scales. the wrong class. A spectral-spatial classification map is finally built in a bottom-up traversal of the tree by extracting regions with a low misclassification rate. Another BPT-based model has been recently proposed in [START_REF] Maggiori | Improved partition trees for multi-class segmentation of remote sensing images[END_REF] and extended in [START_REF]Optimizing partition trees for multi-object segmentation with shape prior[END_REF], where the object-based classification problem is formulated as an energy minimization task. While the graph-cut-based approach has been mentioned in the previous section, we detail in the following the BPT-based segmentation method and demonstrate its performances for the hyperspectral data sets.

A. Binary Partition Tree Model

BPTs were studied by Salembier and Garrido [START_REF] Salembier | Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval[END_REF] as a way of representing a set of meaningful image regions in a compact and structured manner. A BPT is a hierarchical partition of an image: the root node represents the entire image, the following level partitions the image into two nonoverlapping regions, and so on. The construction of a BPT is done in a bottom-up fashion, by iteratively clustering pairs of similar regions together. The starting point is an initial subdivision of the image represented by a region adjacency graph (RAG), where every node conveys a region and the edges link spatial neighbors. The typical initial RAG is the pixel grid, though nothing prevents the approach to be used with other inputs too. Every edge in the RAG is labeled with a dissimilarity value that compares the two associated regions. BPTs are typically constructed by using a global mutual best fitting region merging approach [START_REF] Lassalle | A scalable tile-based framework for regionmerging segmentation[END_REF]: at each iteration, the two most similar regions in the current subdivision are merged together. When a merge occurs, a new region is added to the BPT, connected to its two corresponding children. The process finishes when there are no more edges left in the RAG.

Once a tree is constructed, an exhaustive segmentation of the image can be obtained by performing a horizontal "cut" on the structure (see Fig. 10). In this procedure, commonly referred to as pruning, branches can be selected at different scales, an inherent advantage of such hierarchical structure.

The key elements to define the behavior of a BPT are the region model, i.e. how regions are represented, and the dissimilarity function, i.e., the function to compare the region models, used to define the priority of the merges during tree construction.

Region model. There are essentially two alternatives to represent the spectrum of each region: parametric and nonparametric models. Non-parametric models (e.g., per-band histograms of the pixel values) have proven to be a better approach than the parametric counterpart (e.g., average spectrum), since they represent the real observed distributions and can thus describe the internal variability of a region [START_REF] Valero | Hyperspectral image representation and processing with binary partition trees[END_REF].

In addition to spectral data, the model usually stores the area of the region, since it is commonly used in the dissimilarity function. Other shape descriptors such as solidity, rectangularity index, elongatedness and compactness can also be efficiently stored and computed from the children nodes [START_REF] Maggiori | Optimizing partition trees for multi-object segmentation with shape prior[END_REF].

Dissimilarity function. To establish a priority for merging during BPT construction, it is required to provide a means to compare models of two regions. A dissimilarity function O(R 1 , R 2 ) typically used for this purpose comprises two factors as follows:

O(R 1 , R 2 ) = min(|R 1 |, |R 2 |) β D(R 1 , R 2 ), (12) 
where |R i | denotes the area of region R i . The first part of [START_REF] Fauvel | Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles[END_REF], min(|R 1 |, |R 2 |) β , is the so-called area-weighting factor. This is an agglomerative force intended to cluster regions that are very small compared to the rest of the elements in the RAG. The second factor, D(R 1 , R 2 ), compares both regions based on their spectra. Kullback-Leiber divergence and Bhattacharyya distance are popular choices to compute D [START_REF] Valero | Hyperspectral image representation and processing with binary partition trees[END_REF][START_REF] Calderero | Region merging techniques using information theory statistical measures[END_REF]. However, using cross-bin measures, which go beyond individual bins, has proven to be more robust [START_REF] Valero | Hyperspectral image representation and processing with binary partition trees[END_REF]. The average of Earth Mover's Distances [START_REF] Rubner | A metric for distributions with applications to image databases[END_REF] among histograms of all bands can be used as a robust and efficient cross-bin dissimilarity function.

To better face the internal class variability issue, Maggiori et al. [START_REF] Maggiori | Improved partition trees for multi-class segmentation of remote sensing images[END_REF] proposed to include within the dissimilarity function an additional force that clusters regions belonging to the same class, despite being spectrally dissimilar:

O(R 1 , R 2 ) = min(|R 1 |, |R 2 |) β (1 -α)D(R 1 , R 2 ) -α log P (ω R1 =ω R2 |R 1 , R 2 ) . ( 13 
)
As in [START_REF] Fauvel | Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles[END_REF], there is an area-weighting factor and an unsupervised term D(R 1 , R 2 ), which is computed by comparing spectral histograms of regions. Equation ( 13) adds a supervised term P (ω R1 =ω R2 |R 1 , R 2 ), the probability of assigning the same label to both regions. This way, while the unsupervised term penalizes spectral dissimilarity, the supervised term will encourage merging regions that are likely to belong to the same class. The trade-off between both terms is controlled by parameter α.

The term P (ω R1 =ω R2 |R 1 , R 2 ) is computed by marginalizing over the classes as follows: [START_REF] Ghamisi | Extinction profiles for the classification of remote sensing data[END_REF] where P (ω j |R k ), with k ∈ {1, 2}, represents the probability of assigning a certain label L j to segment R k . To compute P (ω j |R k ), the authors proposed to estimate first per-pixel class probabilities P (ω j |x i ), j = 1, ..., C with an SVM, and then average these individual probabilities within each region:

P (ω R1 = ω R2 |R 1 , R 2 ) = K j=1 P (ω j |R 1 )P (ω j |R 2 ),
P (ω j |R k ) = 1 |R k | xi∈R k P (ω j |x i ). (15) 

B. Object-Based Classification with Binary Partition Trees

Let X = {x i ∈ R d , i = 1, 2, ..., n} be a d-band image seen as a set of n pixel vectors. Object-based classification consists in an exhaustive partitioning of the pixels into a non-overlapping set of regions R = (R j ), with associated labels Ω = (ω j ), where every label ω j belongs to the set Ω of available information classes. For each class, we suppose we are given training examples from which we can derive posterior probabilities P (ω j |x i ) of assigning a certain label ω j after the spectral observation x i is taken into account. Such posterior probability may be derived from an SVM [START_REF] Wu | Probability estimates for multi-class classification by pairwise coupling[END_REF]. The negative log-likelihoodlog P (ω j |x i ) is typically used to express a cost that penalizes the assignment of label ω j to pixel x i .

As proposed in [START_REF] Maggiori | Improved partition trees for multi-class segmentation of remote sensing images[END_REF], a classification task consists in finding the labeled partitioning (R, Ω) from a BPT that minimizes the energy:

E(R, Ω) = λ||R|| - Rj ∈R xi∈Rj log P (ω j |x i ). (16) 
The first term is a regularizer on the number of regions in the partition ||R||, which controls the coarseness of the output through parameter λ. The regularization term can be either set manually or directly learned from training samples [START_REF] Maggiori | Optimizing partition trees for multi-object segmentation with shape prior[END_REF]. From a BPT, the best possible labeled segmentation with respect to ( 16) can be extracted efficiently, by searching for a minimal horizontal s-t cut on the tree with a source at every leaf and a sink at the root [START_REF] Salembier | Lowlevel processing of PolSAR images with binary partition trees[END_REF]. Let us denote C(R) the energy of the cut on R with minimal ( 16) among all possible cuts. Considering that the branches in the tree are independent, the globally optimal cut can be found by a dynamic programming algorithm. Let us denote E(R) = min ω∈Ω E({R}, {ω}) the lowest possible energy of a region R (by assigning the label that incurs the lowest cost). The tree is traversed in a bottom-up manner. Whenever a region R is visited, the following property is evaluated:

E(R) C(R lef t ) + C(R right ), (17) 
where R lef t and R right are the children of R. If the property does not stand, we set C(R) = C(R lef t )+C(R right ) and keep the best cuts of both children. Otherwise, we set C(R) = E(R) and replace the cuts by R with label L. The traversal finishes when C(root) is computed, i.e. the optimal partition of the whole image.

C. Experimental Results

1) Experimental Setup:

In these experiments, SVMs are used to classify the samples. We train multi-class one-vs-one SVMs with Gaussian kernels on the CASI Houston University, the AVIRIS Indian Pines, and the ROSIS-03 Pavia University data sets, and derive posterior probabilities from them [START_REF] Wu | Probability estimates for multi-class classification by pairwise coupling[END_REF]. The SVM training hyperparameters are set by using 5-fold cross-validation (Houston University: c = 10, γ = 0.1; Indian Pines: c = 1024, γ = 2 -7 ; Pavia University: c = 128, γ = 0.125).

A BPT is built for each of the data sets. We first set α = 0 in (13), thus ignoring the class probabilities during BPT construction (see Figs. 14(c), 15(c), and 16(c)). Alternatively, we set α = 0.5, assigning equal importance to the SVM probabilities and the spectral similarity terms (see Figs. 14(d), 15(d), and 16(d)). In this case, the BPT is constructed in a supervised manner. To extract the segmentation, we choose in every case the scale λ in ( 16) that optimizes the overall accuracy. The BPTs are constructed with mild area weighting (β = 0.1) and using a non-parametric model to represent regions, with 30 bins per histogram. The dissimilarity measure used to compare the histograms is based on the Earth Mover's Distance, as described in the previous section.

2) Results and Discussions: The numerical results are summarized in Tables XI, XII, and XIII. The unsupervised BPT construction (α = 0) significantly improves the results over the initial SVM classification in the AVIRIS Indian Pines data set. This data set contains large homogeneous areas with similar spectral characteristics, which are grouped together by the BPT, enhancing the classification. However, for the much more cluttered scene in the CASI Houston University data set, the BPT fails at clustering semantically significant objects, downgrading the SVM performance in certain individual classes and overall. When the supervised BPT building strategy is used (α = 0.5), the BPT clusters significant objects together by combining spectral similarity with class probabilities, outperforming both the SVM and the unsupervised BPT. The results on the ROSIS-03 Pavia University data set confirm the benefits of the supervised BPT construction. In this data set we observe a consistently good performance of the BPT approach for most classes but a lower performance in the case of meadow and shadow classes (2 and 9, respectively). This is expected, since BPTs particularly exploit the notion of objects, while these two classes define vague areas without precise boundaries. To illustrate the relevance of BPTs for object-based classification, in Fig. 11 we show visual close-ups of results on the Pavia Center data set [START_REF] Maggiori | Improved partition trees for multi-class segmentation of remote sensing images[END_REF], under a similar experimental setup. This data set shows a cluttered urban scene, where single objects are composed of dissimilar parts, challenging the construction of BPTs with a purely spectral dissimilarity criterion. A random color is assigned to each segmented region of the tile building class, as extracted by the BPTbased classification method described in this section. In the unsupervised BPT construction case, while most of the tile surfaces are satisfactorily detected, the objects that compose those regions hardly coincide with real objects. However, the supervised BPT construction better clusters objects into single nodes of the BPT, enabling the extraction of significant objects

Color composition BPT (α = 0) BPT (α = 0.5) Fig. 11: Supervised BPT construction (α = 0.5) clusters significant objects in single tree nodes.

as entire segments from the tree.

VII. SPARSE REPRESENTATION

A. An Overview of the Sparse Representation-Based Classifiers

Sparse representation (SR) has been demonstrated to be a powerful tool for many computer vision problems (e.g., face recognition, image super-resolution, and data segmentation) [START_REF] Wright | Robust face recognition via sparse representation[END_REF][START_REF] Wright | Sparse representation for computer vision and pattern recognition[END_REF]. Recently, the SR has also been successfully extended to the hyperspectral image classification [START_REF] Chen | Hyperspectral image classification using dictionary-based sparse representation[END_REF][START_REF] Srinivas | Exploiting sparsity in hyperspectral image classification via graphical models[END_REF][START_REF] Chen | Hyperspectral image classification via kernel sparse representation[END_REF]. In [START_REF] Chen | Hyperspectral image classification using dictionary-based sparse representation[END_REF], Chen et al. firstly proposed a pixel-wise sparse classification model, which is based on the observation that the spectral pixels approximately lie in a low-dimensional subspace spanned by dictionary atoms from the same class. Specifically, let x ∈ R d×1 be one spectral pixel of HSI, with d denoting the number of spectral bands. A sparse dictionary can be denoted as

D = [D 1 , D 2 , • • • , D C ] ∈ R d×N where D j ∈ R d×Nj
is the j-th class subdictionary whose columns (atoms) are directly drawn or trained from the training pixels, C is the number of classes, N j is the number of atoms in subdictionary D j , and N = C j=1 N j is the total number of atoms in D. Given an unknown test pixel x test , the pixelwise SR classification model obtains its sparse coefficient α test ∈ R N by solving the following problem:

αtest = argmin x test -Dα test 2 subject to α test 0 S 0 (18) 
where S 0 is the predefined sparsity level, denoting the number of nonzero coefficients in α test . The above problem can be effectively solved by orthogonal matching pursuit (OMP) [START_REF] Pati | Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[END_REF]. Finally, the class label of test pixel x test can be determined by the minimal residual between x test and its approximation from each class subdictionary:

class(x test ) = arg min j=1,••• ,C x test -D j α test j 2 . ( 19 
)
Since the pixel-wise sparse model does not consider the spatial information of the HSI, the obtained classification map usually appears very noisy. To incorporate the spatial context, a joint sparse model (JSM) was proposed in [START_REF] Chen | Hyperspectral image classification using dictionary-based sparse representation[END_REF] to utilize the spatial information within a fixed size region for HSI classification. Assuming the region consists of T pixels and all these pixels can constitute a test matrix X test , while the center pixel is denoted by x test , JSM aims to obtain the sparse matrix of X test by addressing the following problem:

Âtest = argmin X test -DA test F subject to A test row,0 S 0 , (20) 
where A test row,0 denotes the joint sparse norm, which can select a number of the most representative nonzero rows in A test . A variant of the OMP algorithm termed as simultaneous OMP (SOMP) [START_REF] Tropp | Algorithms for simultaneous sparse approximation. part i: Greedy pursuit[END_REF] can be used to solve the above problem. Then, the class label of the pixel centered on the region T is determined by the minimal total residuals between X test and the approximations obtained from each class subdictionary:

class(x test ) = argmin j=1,••• ,C X test -D j A test j F . (21) 
Compared with the pixel-wise SRC, the JSM can provide a better classification performance. However, the pixels within the fixed size region may be from a different class, and thus, the spatial information of the HSI cannot be effectively exploited using this fixed scale and size region.

To sufficiently exploit spectral-spatial information of the HSI, some recent works incorporated different kinds of spatial information into the sparse model [130][START_REF] Fu | Hyperspectral image classification via shape-adaptive joint sparse representation[END_REF][START_REF] Fang | Spatial classification of hyperspectral images with a superpixel-based discriminative sparse model[END_REF][START_REF] Li | Efficient superpixellevel multitask joint sparse representation for hyperspectral image classification[END_REF]. In [130], since regions of different scales contain complementary yet correlated information (as discussed in the previous section), Fang et al. used multiple scale regions for each pixel, and proposed a multiscale adaptive sparse representation model to adaptively utilize information among regions of different scales for HSI classification. In [START_REF] Fu | Hyperspectral image classification via shape-adaptive joint sparse representation[END_REF], Fu et al. adaptively selected the neighboring similar pixels to construct shape adaptive regions and then used the SOMP algorithm to jointly exploit the correlations within the adaptive region for the classification. The above multiscale and shape adaptive sparse models can deliver much higher performance than the original JSM, but still require high computational cost. This is because although the spatial correlations among several scales or shape adaptive regions are effectively utilized, the above two sparse models only aim to classify its centered pixel. In [START_REF] Fang | Spatial classification of hyperspectral images with a superpixel-based discriminative sparse model[END_REF][START_REF] Li | Efficient superpixellevel multitask joint sparse representation for hyperspectral image classification[END_REF], instead of classifying each pixel, the HSI was directly segmented into many superpixels and a discriminative sparse model was used to classify the whole superpixel, thus greatly enhancing the efficiency.

On the other hand, some effective spectral-spatial feature extraction methods were combined with the sparse model to improve the classification performance [START_REF] Song | Remotely sensed image classification using sparse representations of morphological attribute profiles[END_REF][START_REF] Roscher | Shapelet-based sparse representation for landcover classification of hyperspectral images[END_REF][START_REF] Tang | Manifold-based sparse representation for hyperspectral image classification[END_REF][START_REF] Jia | Gabor cube selection based multitask joint sparse representation for hyperspectral image classification[END_REF][START_REF] Fang | Hyperspectral image classification via multiple-featurebased adaptive sparse representation[END_REF]. In [START_REF] Song | Remotely sensed image classification using sparse representations of morphological attribute profiles[END_REF], Song et al. first adopted the morphological attribute profiles discussed in Section IV to extract the spatial features and then used the OMP algorithm to classify the extracted features. In [START_REF] Roscher | Shapelet-based sparse representation for landcover classification of hyperspectral images[END_REF], Roscher et al. first introduced a shapelet strategy to extract the spectral-spatial features from the local region and then proposed a shapelet feature based sparse model for the classification. In [START_REF] Tang | Manifold-based sparse representation for hyperspectral image classification[END_REF], Tang et al. transformed the original HSI into the high dimensional manifold feature space, and then, the sparse model could be used to effectively reflect the local structures of HSI, which provided promising classification results. In [START_REF] Jia | Gabor cube selection based multitask joint sparse representation for hyperspectral image classification[END_REF], a series of Gabor wavelet filters with different scales and frequencies was first applied on the original HSI to extract the spectral-spatial features, and then, a multi-task sparse model was proposed to exploit the correlations among the features for classification. The above methods only extracted one kind of feature from the HSI. Since different features can reflect the spectral-spectral information of the HSI from different perspectives, Fang et al. [START_REF] Fang | Hyperspectral image classification via multiple-featurebased adaptive sparse representation[END_REF] first extracted multiple features (e.g., Gabor texture, morphological profile, and differential morphological profile) from the HSI, and then proposed a multiple feature adaptive sparse classification model to exploit the correlations among different features. This approach achieved excellent classification performance.

B. Experimental Results

1) Experimental Setup: In this section, seven well-known sparse representation-based classification methods are used for comparisons. We denote the pixel-wise sparse representation method as SRC [START_REF] Chen | Hyperspectral image classification via kernel sparse representation[END_REF]. The fixed region based sparse representation method is denoted as the JSRC [START_REF] Chen | Hyperspectral image classification via kernel sparse representation[END_REF]. The region sizes for the JSRC are set to 5 × 5, 3 × 3, and 5 × 5 for the AVIRIS Indian Pines, the ROSIS-03 Pavia University, and the CASI Houston University images, respectively. The EMAP+SRC [START_REF] Tang | Manifold-based sparse representation for hyperspectral image classification[END_REF] performs the SRC classifier on the EMAP extracted features. MASR is the multiscale adaptive sparse representation method [START_REF] Fang | Spatial classification of hyperspectral images with a superpixel-based discriminative sparse model[END_REF], which utilizes seven different scales ranging from the 3 × 3 to 15 × 15 (see Figs. 14(e), 15(e), and 16(e)). SBSDM [START_REF] Song | Remotely sensed image classification using sparse representations of morphological attribute profiles[END_REF] stands for the superpixel based sparse classifier and the superpixel numbers are chosen to be 200, 1000, 2000 for the AVIRIS Indian Pines, the ROSIS-03 Pavia University, and the CASI Houston University images, respectively. SAS [START_REF] Li | Efficient superpixellevel multitask joint sparse representation for hyperspectral image classification[END_REF] is the shape adaptive sparse classifier. MFASR [START_REF] Fang | Hyperspectral image classification via multiple-featurebased adaptive sparse representation[END_REF] is the multiple features-based sparse classifier, where four features (including the spectral pixel, Gabor texture, morphological profile, and differential morphological profile) are used. The sparsity level for the above seven classifiers is set to 3 for the three test images. The classification accuracies for the above seven methods on three test images are tabulated in Table XIV-XVI, respectively.

2) Results and Discussions: From Tables XIV-XVI, the following points can be observed: By only utilizing the spectral information, SRC generally delivers the worst classification result. By further considering the spatial information within a fixed-size region, JSRC can achieve a slight improvement on the three test images. In addition, by adjusting the spatial region according to the HSIs structures, the MASR, SBSDM, and SAS methods can perform much better than the SRC and JSRC methods, demonstrating the effectiveness of the adopted multiple scales, superpixel, and shape adaptive pixel strategy. Furthermore, by utilizing the information among multiple features, MFASR generally achieves the best classification results on the AVIRIS Indian Pines and the CASI Houston University images. This shows that combining the sparse classifier with multiple features is an effective way to obtain high accuracy. In addition, to analyze if the unmixing treatment has any effects on the performance, an unmixing-based sparse method (called Unmixing+SRC), which first utilizes a well-known unmixing technique [START_REF] Iordache | Sparse unmixing of hyperspectral data[END_REF] to extract the feature of each pixel, and then, applies SRC to the features for classification, is used. As reported in [START_REF] Lu | From subpixel to superpixel: A novel fusion framework for hyperspectral image classification[END_REF], the dimension for each unmixing feature vector is 2C × 1.

Indeed, spectral information is the most important characteristic available in HSI, and with such rich spectral information, HSI can be effective for land-cover classification. However, due to the external interferences, the spectral vectors from different classes may be mixed with each other, and thus, they are hard to be distinguished. On the one hand, utilizing the unmixing technique is an effective way to reduce the spectral mixture problem for HSI classification. As can be observed in Tables XIV and XV, Unmixing+SRC generally outperforms SRC in most of the classes of the Indian Pines and Pavia University images. However, setting the number of endmembers in unmixing for different HSIs is a tricky problem. Since the Houston image is very complex, unmixingbased features may not be effectively extracted, and therefore, the Unmixing+SRC method cannot deliver very good performance. On the other hand, as can be seen in Tables XIV-XVI, the JSRC, EMAP+SRC, MASR, SBSDM, SAS, and MFASR methods, which jointly utilize spectral and spatial information, may perform better, in terms of OA, than SRC, which only utilizes the spectral information. The main improvement of the spectral-spatial-based methods over the spectral-based method comes from the classes with large homogeneous spatial regions (e.g., classes #1, #8, and #11 in Indian Pines, classes #2 and #8 in Pavia University, and classes #9 and #12 in Houston). For some classes with detailed structures (e.g., class #16 in Indian Pines, class #4 in Pavia University, and classes #6, #14 and #15 in Houston), the spectral-based SRC can perform well and even better than those of spectral-spatial-based methods.

However, the pixel-wise SRC is an efficient classifier, since it only needs to classify one pixel at a time. By utilizing more spatial information to classify the pixel, the JSRC, MASR, SAS, and MFASR methods usually require much higher computational cost. Also, the feature-based classifiers (e.g., EMAP+SRC and MFASR) consume a large amount of computational cost. By contrast, instead of classifying the HSI in a pixel way, the superpixel-based SBSDM method can classify the whole superpixel (containing multiple spectral pixels) at once, and thus greatly enhances classification efficiency.

VIII. DEEP LEARNING-BASED SPECTRAL-SPATIAL CLASSIFIERS

A. Motivation and Background

Deep learning regards a kind of neural network with two or more hidden layers (the input and output layers are not included). The usage of multiple layers tends to extract abstract, invariant, and discriminant features of inputs, which are very useful for the following processing steps including classification, detection, and segmentation [START_REF] Lecun | Deep learning[END_REF]. Indeed, considering the task of classification, linear support vector machine and logistic regression are believed to have one layer, and decision tree or support vector machine with kernels can be attributed as two-layer classifiers [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF]. Compared with traditional classification methods, deep learning-based classifiers have great potential to obtain high classification performance when facing complex inputs.

As discussed in Section I, hyperspectral sensors obtain spectral and spatial information simultaneously, and the imaging mechanism makes the data inherently complex. Furthermore, due to the complex atmosphere condition, scattering from neighboring objects, and intra-class variability, it is difficult to extract discriminative and robust features of HSI for accurate classification. On the other hand, it is believed that the deep learning methods can progressively learn invariant and discriminative features. Therefore, it is not surprising that deep learning is widely-used for HSI classification.

In the deep networks, each layer can extract the features of the previous layer. In this scheme, high-level features can be learned from low-level ones, while the proper features can be useful for the subsequent classification task. Deep learning models can potentially lead to abstract and complex features at higher layers, and more abstract features are generally invariant to most local changes of the inputs. With proper training data, advanced learning methods, and powerful computing devices, deep learning methods can achieve better performance in terms of classification accuracy compared with shallow models.

B. Deep Learning-Based Methods for HSI Classification 1) General framework of deep learning-based methods for HSI classification: Typical deep neural networks stack layerwise units to formulate the deep models. The layer-wise units have a number of alternatives such as autoencoders (AE), denoising autoencoders (DAE), restricted Boltzmann machines (RBM), convolutional neural networks (CNN), and recurrent layers [START_REF] Goodfellow | Deep Learning[END_REF]. Using layer-wise units, various deep models can be established. Deep learning involves a number of models including stack autoencoder (SAE), deep belief network (DBN), deep CNN, and deep recurrent neural network (RNN) [START_REF] Goodfellow | Deep Learning[END_REF]. All of the aforementioned deep learning models have been investigated for HSI classification. Deep learningbased methods have shown their capability in the application to HSI [START_REF] Zhang | Deep learning for remote sensing data: A technical tutorial on the state of the art[END_REF].

From Fig. 12, one can see the general framework of deep learning-based methods for HSI classification. For spectralspatial HSI classification, the neighboring pixel vectors of the pixel to be classified are selected to form 3D inputs, which are fed to deep models. Deep learning models hierarchically extract the discriminant features of the inputs, and usually use a softmax classifier to obtain the final classification results.

In general, deep learning models have lots of parameters (i.e., weights) to be tuned in the training procedure, which means a large number of training samples is needed. Without enough training samples, deep models face a problem known as overfitting, which means that the classification performance of test data will be downgraded. This problem becomes serious when fully connected models, including stack autoencoder and deep belief networks, are used for HSI classification. Due to the shared weights and local connections in CNNs, the number of parameters are dramatically reduced, so CNNs are widelyused for HSI classification when only a limited number of training samples is available. In this study, we focus on the review of CNN-based HSI classification methods since its superior performance over other fully connected networks has already been demonstrated in the literature.

2) The core parts and techniques of deep CNNs: A deep CNN usually contains several convolution layers, several nonlinear transformation layers, and several pooling layers [START_REF] Goodfellow | Deep Learning[END_REF]. The convolution and nonlinear transformation can be defined as follows:

x l j = f ( M i=1 x l-1 i * k l ij + b l j ) (22) 
where f (.) is a nonlinear function and * is the convolution operation. The matrix x l j is the j-th feature map of the current (l)-th layer, and x l-1 i is the i-th feature map of the previous (l -1)-th layer. M is the number of input feature maps of the current (l)-th layer. Furthermore, k l ij and b l j are learnable parameters. In the initialization, k l ij and b l j are randomly drawn and set to zero, respectively. Then, they are fine-tuned through a back-propagation algorithm.

The rectified linear unit (ReLU) is a relatively new but useful nonlinear operation. It accepts the output of a neuron if it is positive, while it returns 0 if the output is negative. The ReLU operation has such advantages as sparse activation, efficient gradient propagation, and low computation load.

Pooling is an operation that combines a small N × N (e.g., N = 2) patch of the previous layer. Pooling usually offers invariance to the deep model by reducing the spatial resolution of the feature maps.

Because of high dimensionality and limited availability of training samples in HSI classification, deep models are facing the serious problem of overfitting. To address the problem in HSI classification, dropout has been widely used. Furthermore, in order to achieve better performance in terms of classification accuracy, batch normalization is adopted in a variety of studies to obtain better model generalization. Below, we describe dropout and batch normalization in more detail.

Dropout is based on setting the output of some hidden neurons to zero, i.e., to drop them. Consequently, the dropped neurons do not contribute in the forward pass and are not used in the back propagation procedure. Deep CNN forms a different neural network in each training epoch by dropping neurons randomly. The inherent ensemble method efficiently mitigate the overfitting problem in classification [START_REF] Hinton | Improving neural networks by preventing co-adaptation of feature detectors[END_REF].

Another useful method for performance improvement is batch normalization. Batch normalization explicitly forces the activations of each layer to have zero means and unit variants. Batch normalization alleviates the problem caused by improper network initialization and it efficiently speeds up the training procedure by preventing gradient vanishing. Due to the aforementioned advantages, Batch normalization is a practical tool in CNN training [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF].

3) Recent CNN-based methods for HSI classification: CNNs can be used as spectral classifiers. In order to fully use the spatial information provided by HSI, some spectralspatial CNN-based methods have been proposed in recent years. The general framework of deep CNN-based methods for HSI classification is shown in Fig. 13. Typical methods are presented as follows.

In [START_REF] Yue | Spectralspatial classification of hyperspectral images using deep convolutional neural networks[END_REF], a classification framework based on principal component analysis (PCA), deep CNN, and logistic regression was proposed. Traditional SAE-based and DBN-based methods usually flattened the spatial map to a 1D vector, which overlooked the spatial patterns. The CNN-based method in [START_REF] Yue | Spectralspatial classification of hyperspectral images using deep convolutional neural networks[END_REF] takes the voxels in a neighbourhood region into consideration, which obtained good classification performance in terms of classification accuracy. Furthermore, the method investigates PCA to reduce the redundancy of spectral information and potentially mitigate the overfitting problem in HSI classification. HSIs are inherently 3D data, so in [START_REF] Chen | Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[END_REF], 3D CNNs are designed to extract the spectral-spatial features of HSIs. 3D convolution filters reduces the trainable parameters in CNNs, which lead to good classification accuracy.

CNN can be combined with other techniques to further improve the classification performance. In [START_REF] Liang | Hyperspectral imagery classification using sparse representations of convolutional neural network features[END_REF], an HSI classification framework is proposed, which was a combination of deep CNN and sparse representation. In the method, the learnt features from CNN were refined by sparse representation, and then followed by a classifier. In [START_REF] Aptoula | Deep learning with attribute profiles for hyperspectral image classification[END_REF], a powerful spatial feature extraction, attribute filtering (discussed in Section IV), was combined with deep CNN. The method led to a better performance compared with each involved approaches individually. Furthermore, in [START_REF] Chen | Hyperspectral images classification with gabor filtering and convolutional neural network[END_REF], Gabor filtering was used to effectively extract spatial information in HSIs, and then, CNN was used for further processing. The methods obtained competitive results even when a limited number of training samples was available.

C. Experimental Results and Discussion

In this experiment, four different CNN-based methods are considered to provide a comprehensive comparison. For the Indian Pines and Pavia University data sets, we use 27×27×3 neighbors of each pixel as the input 3D images in PCA-CNN, EMP-CNN, and Gabor-CNN. Three principal components have been preserved in all the aforementioned approaches. For the CNN method, however, all bands are used so the input 3D images are with the size of 27 × 27 × d. Similarly, we set the input size to be 11 × 11 × 3 and 11 × 11 × d in these methods using PCA and without PCA, respectively, on the Houston data set. In the EMP-CNN method, three principal components from HSIs are computed, and then, the opening and closing operations are used to extract spatial information on the first three components. In the experiments, the shape of the structuring element (SE) is set as disk with an increasing size from 1 to 4. Therefore, 24 spatial features are used for classification. Furthermore, on all the three data sets, the input images are normalized into the range of [-0.5 0.5], the size of mini-batch is set to 100 and the number of training epochs for these CNN-based methods is 200.

The classification results of the above-mentioned methods for all the three data sets are shown in Tables XIV, XV, and XVI. For the PCA-CNN, the CNN is conducted on the three principal components, which is useful when the training samples are limited. From the results, one can see that for all three data sets, the Gabor-CNN shows the best performance (see Figs. 14(h), 15(h), and 16(h)), followed by the EMP-CNN and PCA-CNN. In addition, CNN achieves inferior results compared to the other three deep methods. on the Indian Pines data set, the Gabor-CNN exhibits the highest OA, AA, and Kappa, with an improvement of 1.31%, 0.41%, and 0.0153 over CNN, respectively. Besides, it also outperforms the EMP-CNN by 0.25%, 0.58%, and 0.0047 in terms of OA, AA, and Kappa. Furthermore, results shown in Table XIV, XV, and XVI demonstrate similar trend on the other two data sets. For example, the EMP-CNN increases OA, AA, and Kappa by 4.36%, 0.1%, and 0.0559, respectively, compared with CNN on the Pavia University data set. It also obtains a superior performance compared with the CNN method, and on the Houston data set. The PCA-CNN obtains a better classification performance which is higher than CNN by 0.47%, 1.57%, and 0.0104 in terms of OA, AA, and Kappa, respectively.

IX. CONCLUSION AND POSSIBLE FUTURE WORKS

In this paper, a closer look has been taken at recent advances in spectral-spatial classification of hyperspectral images. Five branches of spectral-spatial classification techniques based on mathematical morphology, MRFs, segmentation, sparse representation, and deep learning have been reviewed both methodologically and through examples of experimental results, in order to discuss how they address the task of incorporating spatial information into an HSI classification chain. As expected, the results confirm that the inclusion of spatial information in the classification system can significantly improve classification accuracies compared to the situation when spatial information is discarded, significantly contributes to the extraction of the shape of different objects, and addresses the salt and pepper appearance problem typical for spectral classifiers. From this perspective, the families of methods discussed in the paper benefit from spatial information in different and complementary ways. Mathematical morphology and deep learning approaches characterize the desired spatial information at the feature extraction stage through shallow hand-crafted features and deep features learned from data, respectively. Markovian methods and sparsity-based techniques operate at the classification stage through probabilistic spatialcontextual priors and through a data-representation viewpoint, respectively. Segmentation-based algorithms extract and use information on the regions in the imaged scene.

Consistently with the goal of providing a methodological review and not an experimental comparative study, no special focus was devoted to making model selection or numerical optimization issues homogeneous across the aforementioned families of methods. Nevertheless, the considered approaches overall obtained high and comparable accuracies on the collection of three considered data sets, which included the very well-known Indian Pines and Pavia University data sets and the recent Houston University data set. This scenario confirms the effectiveness of current spatial-spectral approaches to the topical problem of hyperspectral image classification.

Although the area of spectral-spatial classification of hyperspectral images has been a hot spot in recent years, there are still several aspects worth to be further investigated. Here, we provide readers with pointers to several high potential aspects, which can be followed as possible future works. 1) As shown, extinction profiles can provide accurate classification results swiftly in an unsupervised manner. These capabilities encourage one to investigate the performance of this filtering approach for applications related to Earth observation big data processing. 2) An important aspect in sparse representation for remote sensing image classification is to investigate possible solutions for involving spatial information into the model. In addition, the construction of extinction profiles leads to a very sparse feature space. This encourages one to integrate extinction profiles along with sparse and low-rank techniques to further improve classification accuracies and solve the curse of dimensionality at the same time. 3) In the context of segmentation-based methods, possibly one of the most promising directions of work is their combination with classifiers based on CNNs. As discussed in Section VIII, CNNs are becoming increasingly popular because of their outstanding recognition capabilities and the automatic learning of hierarchical image features. However, when the goal is to perform pixelwise classification, they tend to yield overly unstructured or "blobby" classification maps [START_REF] Maggiori | Recurrent neural networks to correct satellite image classification maps[END_REF]. The use of a segmentation method coupled with CNNs has proven effective to improve such results [START_REF] Audebert | How useful is region-based classification of remote sensing images in a deep learning framework?[END_REF] and is certainly an interesting topic to be studied in the context of hyperspectral image classification. 4) Markov random fields have proven to be flexible and powerful tools for characterizing contextual information within a Bayesian spectral-spatial classification task. In the case of HSI classification, Markov random fields have been found especially effective for HSI classification when integrated with kernels, SVM, and recent energy minimization algorithms. A remarkable property of this integrated framework is that it can be used in conjunction with a wide variety of kernels, MRF models, and energy minimization techniques. In this respect, a promising extension consists in developing advanced hierarchical Markov models [START_REF] Hedhli | A new cascade model for the hierarchical joint classification of multitemporal and multiresolution remote sensing data[END_REF] that allow incorporating multiscale information characterized by segmentation, feature extraction, or CNNs [START_REF] Moser | Land-cover mapping by Markov modeling of spatialcontextual information in very-high-resolution remote sensing images[END_REF], thus possibly bridging to the morphological, region-based, and deep learning approaches. A further topical generalization would be to extend the described integrated framework by means of CRFs, which allow gaining additional flexibility in characterizing spatial information and its relationship to the spectral data. 5) Although there are several deep learning-based spectralspatial classifiers, deep learning is still in the early stage for HSI classification. Deep learning embraces a wide range of models, and many of them have the potential to fulfill the classification task with high accuracy.

• The design of a proper architecture is the core part of a deep model. How to design a proper deep network is still an open area in the machine learning and remote sensing communities.

• Generative adversarial network is an active topic, which has already shown its advantages in the remote sensing community in terms of image translation and data classification [START_REF] Zhu | Generative adversarial networks for hyperspectral image classification[END_REF][START_REF] Ghamisi | Img2dsm: Height simulation from single imagery using conditional generative adversarial net[END_REF]. Although the effectiveness of the generative adversarial network has very recently confirmed for spectral-spatial classification of HSI, its concept can be further adapted and modified, making it suitable for large-scale classification problems with a limited number of training samples.

• Deep learning can be combined with other machine learning or image processing methods, such as ensemble learning and graph models to achieve better classification performance.

X. UTILIZED CODES

Most implementations of the methods described in the paper are made available to the research community. The software and codes for BPT-based classification described in Section VI can be found on http://ooclassif.gforge.inria.fr.

The max-tree and extinction filters implementation are available at https://github.com/rmsouza01/siamxt. The attribute profile and extinction profile executables can be found on http: //pedram-ghamisi.com/index sub2.html. This distribution is compatible with Linux and MAC operating systems. For Windows users a docker [START_REF] Merkel | Docker: Lightweight linux containers for consistent development and deployment[END_REF] is available at https://hub.docker. com/r/marianapbento/siamxt-1.0/ and the corresponding documentation can be found at http://adessowiki.fee.unicamp.br/ adesso/wiki/iamxt/view/.

The source codes of the MASR, SAS, and MFASR methods can be found at http://www.escience.cn/people/LeyuanFang/ index.html.

The sets of training and test samples utilized in this paper can be found at https://pghamisi.wixsite.com/mysite.
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 1 Fig. 1: The number of journal and conference papers available in IEEE Xplore on the subject of hyperspectral image classification within different periods of time. This figure is prepared based on the contributions until March 1, 2017.
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 4 Fig. 4: Classification maps corresponding to the worst (first row) and best (second row) classification overall accuracy achieved by the different classifiers for a single training and test set: (a) SVM with KPCA (OA=94.75%), (b) RF with Hyper (OA=94.57%), (c) RBFNN with KPCA (OA=90.08%), (d) SVM with SDAP(KPCA) + I + nDSM (OA=99.83%), (e) RF with ESDAP(KPCA) + I + nDSM (OA=99.71%), (f) RBFNN with SDAP(KPCA) + I (OA=97.71%).
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 12 Fig. 2: The AVIRIS Indian Pines hyperspectral data. (a) Three band false color composite, (b) Reference data and (c) Color code.
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 2 Fig. 2: The AVIRIS Indian Pines hyperspectral data set. (a) Three band false color composite, (b) Reference data and (c) Color code for the classes.
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 3 Fig. 3: The ROSIS-03 Pavia University hyperspectral data. (a) Three band false color composite, (b) Reference data and (c) Color code.

  coverage ranging from 0.43 to 0.86 µm. Twelve channels have been removed due to noise. The remaining 103 spectral channels are processed. The spatial resolution is 1.3 m per pixel. The data set covers the Engineering School at the University of Pavia and consists of different classes including: trees, asphalt, bitumen, gravel, metal sheet, shadow, bricks, meadow and soil. This data set comprises 640 × 340 pixels. Fig. 3 presents a false color image of the ROSIS-03 Pavia University data and its corresponding reference samples. 3) CASI Houston University: This data set (named "grss dfc 2013" [16]) was captured by the Compact Airborne Spectrographic Imager (CASI) over the University of Houston campus and the neighboring urban area in June, 2012. The size of the data is 349 × 1905 with the spatial resolution of 2.5m. This data set is composed of 144 spectral bands ranging 0.38-1.05m. This data consists of 15 classes including: Grass Healthy, Grass Stressed, Grass Synthetic, Tree, Soil, Water, Residential, Commercial, Road, Highway, Railway, Parking Lot 1, Parking Lot 2, Tennis Court and Running Track. The "Parking Lot 1" includes parking garages at the ground level and also in elevated areas, while "Parking Lot 2" corresponded to parked vehicles. Table III demonstrates different classes with the corresponding number of training and test samples. Fig. 4 shows a three-band false color image and
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 3 Fig. 3: The ROSIS-03 Pavia University hyperspectral data set. (a) Three band false color composite, (b) Reference data, and (c) Color code for the classes.
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 4 Fig. 4: The CASI Houston University data set -From top to bottom: A color composite representation of the hyperspectral data using bands 70, 50, and 20, as R, G, and B, respectively; Training samples; Test samples; and color code for the classes.
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 7 Fig. 7: (a) Rome satellite image and (b) its area normalized extinction histogram.
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 8 Fig. 8: (a) Synthetic image (b) its max-tree and (c) second max-tree using aspect ratio as the attribute for the second tree construction.
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 9 Fig. 9: (a) Second max-tree after filtering step. (b) recovered initial max-tree after filtering step. (c) Resulting image after the filtering procedure.
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 9 Fig. 9: (a) Second max-tree after filtering step. (b) recovered initial max-tree after filtering step. (c) Resulting image after the filtering procedure.

Fig. 12 :

 12 Fig. 12: The general framework of deep learning-based methods for HSI classification.

Fig. 13 :

 13 Fig. 13: The general framework of deep CNN-based methods for HSI classification.

Fig. 14 :Fig. 15 :Fig. 16 :

 141516 Fig. 14: Classification maps obtained on AVIRIS Indian Pines: (a) SVM, (b) RF, (c) BPT α = 0, (d) BPT α = 0.5, (e) MASR, (f) EMEP, (g) MSVC with graph cuts, and (h) Gabor-CNN.

TABLE I :

 I AVIRIS Indian Pines: Number of Training and Test Samples. This data set was acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over the agricultural Indian Pines test site in northwestern Indiana. The spatial dimensions of this data set are 145 × 145 pixels. The spatial resolution of this data set is 20m per pixel. This data set originally includes 220 spectral channels but 20 water absorption bands (104-108, 150-163, 220) have been removed, and the rest (200 bands) were taken into account for the experiments. The reference data contains 16 classes of interest, which represent mostly different types of crops and are detailed in Table

	No	Class Name	Number of Samples Training Test
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Corn-notill Corn-mintill Corn Grass-pasture Grass-trees Hay-windrowed Soybean-notill Soybean-mintill Soybean-clean Wheat Woods Bldg-grass-tree-drives Stone-Steel-Towers Alfalfa Grass-pasture-mowed Oats	50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	1384 784 184 447 697 439 918 2418 564 162 1244 330 45 39 11 5
		Total	695	9671
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TABLE I :

 I AVIRIS Indian Pines: Number of Training and Test Samples.

	No	Class Name	Number of Samples Training Test
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Corn-notill Corn-mintill Corn Grass-pasture Grass-trees Hay-windrowed Soybean-notill Soybean-mintill Soybean-clean Wheat Woods Bldg-grass-tree-drives Stone-Steel-Towers Alfalfa Grass-pasture-mowed Oats	50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	1384 784 184 447 697 439 918 2418 564 162 1244 330 45 39 11 5
		Total	695	9671

TABLE II :

 II ROSIS-03 Pavia University: Number of Training and Test Samples.
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	ired by VIRIS) north-set are a set is spectral 50-163, e taken ontains t types ee-band ples. aptured flective rument. ted by LR, the HySens Union. spectral	No 1 2 3 4 5 6 7 8 9	Class Name Asphalt Meadow Gravel Tree Metal Sheet Bare Soil Bitumen Brick Shadow Total	Number of Samples Training Test 548 6304 540 18146 392 1815 524 2912 256 1113 532 4572 375 981 514 3364 231 795 3921 40002

TABLE II :

 II 

	No	Class Name	Number of Samples Training Test
	1 2 3 4 5 6 7 8 9	Asphalt Meadow Gravel Tree Metal Sheet Bare Soil Bitumen Brick Shadow	548 540 392 524 256 532 375 514 231	6304 18146 1815 2912 1113 4572 981 3364 795
		Total	3921	40002

ROSIS-03 Pavia University: Number of Training and Test Samples.

TABLE III :

 III CASI Houston University: Number of Training and Test Samples.

	No	Class Name	Number of Samples Training Test
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Grass Healthy Grass Stressed Grass Synthetic Tree Soil Water Residential Commercial Road Highway Railway Parking Lot 1 Parking Lot 2 Tennis Court Running Track	198 190 192 188 186 182 196 191 193 191 181 192 184 181 187	1053 1064 505 1056 1056 143 1072 1053 1059 1036 1054 1041 285 247 473
		Total	2,832	12,197

TABLE IV :

 IV AVIRIS Indian Pines -Classification accuracies [%] obtained by mathematical morphology-based approaches and the corresponding CPU processing time (in seconds).

	Classes	RF	EMP	EAPa	EEPa	EMAP EMEP
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 OA AA Kappa Time(s)	55.13 55.61 82.61 85.68 79.91 94.08 78.21 59.35 60.82 95.06 87.86 54.85 100.00 100.00 100.00 100.00 85.04 86.56 85.40 92.98 90.56 96.05 96.74 96.74 98.37 93.51 95.53 95.08 96.84 96.13 94.84 99.54 99.09 98.41 90.85 89.43 92.70 89.83 87.30 92.68 86.17 85.99 89.18 98.15 97.53 98.15 97.03 98.23 95.10 99.09 98.79 98.48 53.85 94.87 94.87 94.87 81.82 100.00 100.00 100.00 100.00 100.00 80.00 100.00 69.36 91.99 91.38 92.99 76.55 95.04 93.54 95.58 0.6541 0.9085 0.9015 0.9199 2 3 3 3	84.10 95.66 98.37 95.53 96.84 99.32 90.63 89.16 86.88 98.77 94.13 98.18 100.00 94.87 100.00 100.00 91.65 95.15 0.9046 7	87.43 95.79 98.91 95.53 95.98 99.09 92.81 93.13 87.06 99.38 97.03 99.09 100.00 94.87 100.00 100.00 93.7 96 0.9279 7

TABLE V :

 V 

	Classes	RF	EMP	EAPa	EEPa	EMAP EMEP
	1 2 3 4 5 6 7 8 9 OA AA K Time(s)	80.17 55.95 52.83 98.73 99.18 78.82 84.59 91.20 97.89 71.51 82.15 0.6498 0.8912 0.8771 0.9332 94.18 96.58 95.93 93.37 84.71 92.49 87.71 70.84 79.23 99.15 97.88 99.87 99.93 99.93 99.93 68.78 96.12 98.87 99.55 99.77 99.85 99.38 97.26 99.48 99.89 98.20 99.89 91.82 90.33 94.82 93.54 93.47 96.17 8 9 8 8	91.30 91.83 72.22 99.80 99.93 99.62 99.70 99.27 99.79 93.52 94.82 0.9165 21	96.05 93.45 81.37 99.87 99.93 99.26 99.85 99.43 100.00 95.46 96.57 0.9407 23

ROSIS-03 Pavia University -Classification accuracies [%] obtained by mathematical morphology-based approaches and the corresponding CPU processing time (in seconds).

V. MARKOV RANDOM FIELDS

A. Random fields and probabilistic graphical models

While mathematical morphology captures spatial information within the feature extraction stage of a pattern recognition

TABLE VI :

 VI The CASI Houston University -Classification accuracies [%] obtained by mathematical morphology-based approaches and the corresponding CPU processing time (in seconds).

	Classes	RF	EMP EAPa EEPa EMAP EMEP CK EMEP
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 OA AA Kappa 0.7563 0.7834 0.777 0.7866 0.7721 0.792 83.38 75.02 76.45 74.83 77.59 77.78 98.40 88.06 76.97 77.54 80.64 76.88 98.02 99.80 99.80 100.00 100.00 100.00 97.54 84.38 83.62 82.67 85.42 82.77 96.40 95.83 95.64 95.93 96.12 96.02 97.20 94.41 95.10 95.80 95.10 95.80 82.09 70.43 71.92 72.20 72.29 72.95 40.65 84.14 84.43 79.39 70.28 82.05 69.78 63.74 59.40 61.19 57.79 63.17 57.63 55.98 66.51 66.99 67.86 67.57 76.09 82.45 78.84 84.06 74.86 82.83 49.38 78.19 77.91 85.11 81.36 84.53 61.40 73.33 71.93 75.79 77.19 73.68 99.60 99.60 99.19 99.60 99.19 99.60 97.67 96.41 99.37 99.37 97.89 98.94 77.47 80.01 79.5 80.32 78.92 80.83 80.34 82.78 82.47 83.36 82.23 83.64 Time 26 23 21 21 57 60	80.53 98.03 100.00 96.02 99.05 95.10 78.08 81.20 81.68 61.39 86.62 89.53 78.95 100.00 98.52 86.64 88.31 0.8831 162

TABLE VII :

 VII Performance Evaluation of EMP, EAP, and EEP in Terms of Classification Accuracies, Simplicity, and Being Closer to Automatic. The best performance is shown using three bullets while the worst performance is represented by one bullet.

	Techniques EMP	Accuracy	Automation	Speed

TABLE VIII :

 VIII AVIRIS Indian Pines -Classification accuracies [%] obtained by the MSVC framework, using three energy minimization algorithms, and by previous spectral-spatial classifiers based on MRF and kernel approaches.

	Classes	MSVC GC TRW-S LBP	MRF-SVM-Post MRF-Gauss CSVM
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 OA AA kappa 0.9044 0.9014 0.9062 88.01 91.26 93.50 94.64 96.81 96.68 97.28 97.83 97.83 95.30 93.51 93.74 96.56 97.42 97.99 91.12 94.31 92.03 87.15 81.70 87.80 92.47 90.74 89.04 86.35 84.04 85.11 100 99.38 99.38 91.80 92.93 92.36 92.73 92.42 92.12 100 93.33 97.78 82.05 76.92 74.36 100 81.82 81.82 100 100 100 91.66 91.40 91.80 93.47 91.53 91.97	86.34 83.80 100 96.20 97.85 99.32 86.93 88.50 96.45 99.38 88.59 100 100 92.31 100 100 90.54 94.73 0.8919	77.31 80.10 95.11 91.05 93.26 98.18 93.25 63.98 88.48 99.38 94.21 76.06 95.56 79.49 81.82 80.00 82.04 86.7 0.7968	83.31 92.47 95.65 95.97 89.53 95.22 91.07 86.64 89.36 99.38 97.27 93.64 100 94.87 100 100 90.35 94.02 0.8900

TABLE IX :

 IX ROSIS-03 Pavia University -Classification accuracies [%] obtained by the MSVC framework, using three energy minimization algorithms, and by previous spectralspatial classifiers based on MRF and kernel approaches.

	Classes	MSVC GC TRW-S LBP	MRF-SVM-Post MRF-Gauss CSVM
	1 2 3 4 5 6 7 8 9 OA AA kappa 0.7769 0.8312 0.7917 95.29 96.73 96.89 67.45 77.47 69.58 80.72 81.93 82.59 95.19 95.36 96.91 100 98.65 100 98.25 96.85 97.86 95.51 81.45 85.22 95.07 97.68 97.35 90.19 93.46 86.79 82.35 86.93 83.60 90.85 91.06 90.35	93.99 67.73 70.80 96.53 99.91 97.44 92.46 98.10 99.50 82.19 90.72 0.7745	84.84 72.56 65.12 96.63 99.91 92.34 91.95 94.59 98.99 81.78 88.55 0.7676	92.56 73.60 71.68 98.97 100 96.35 92.46 97.41 95.09 84.58 90.90 0.8031

TABLE X :

 X CASI Houston University -Classification accuracies [%] obtained by the MSVC framework, using three energy minimization algorithms, and by previous spectralspatial classifiers based on MRF and kernel approaches.

	Classes	MSVC GC TRW-S LBP	MRF-SVM-Post MRF-Gauss CSVM
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 OA AA kappa 0.8489 0.8424 0.8546 82.91 83.10 82.81 100 100 100 99.21 99.80 99.80 97.35 97.35 98.30 99.81 99.91 99.91 99.30 97.90 98.60 91.70 91.79 92.26 53.85 57.08 55.84 84.70 86.59 89.24 76.64 73.65 77.41 74.48 72.01 74.76 83.09 79.25 81.27 83.51 80.70 82.11 100 100 100 97.25 91.75 94.93 86.07 85.48 86.60 88.25 87.39 88.48	82.24 98.31 99.80 98.86 98.39 98.60 88.62 48.34 83.19 74.61 86.81 76.27 71.93 99.60 97.46 85.05 86.87 0.8379	80.34 97.74 99.01 93.28 95.74 90.91 69.78 75.59 82.25 46.04 80.46 82.04 76.84 99.19 92.39 82.04 84.11 0.8062	83.76 97.65 99.80 98.77 99.43 100 78.17 47.86 81.78 75.87 84.16 75.50 84.56 100 98.31 84.29 87.04 0.8300
	method. Since then, different techniques have been proposed for HSI segmentation, such as watershed, partitional clustering and Hierarchical Segmentation (HSeg)

TABLE XI :

 XI AVIRIS Indian Pines -Classification accuracy values obtained by binary partition trees.

	Classes SVM BPT α = 0 BPT α = 0.5
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 OA AA Kappa 0.6141 53.25 52.17 83.70 87.25 82.50 92.03 72.11 47.56 71.63 96.91 79.34 72.73 95.56 56.41 81.82 100.00 65.64 76.56	57.66 59.70 97.83 95.53 86.23 99.54 98.58 80.65 89.54 99.38 90.19 99.70 97.78 97.44 90.91 0.0 82.46 83.79 0.8013	54.99 58.16 100.00 95.53 91.96 99.54 98.69 86.35 96.81 98.77 90.43 99.70 100.00 94.87 100.00 100.00 84.36 91.61 0.8224

TABLE XII :

 XII ROSIS-03 Pavia University -Classification accuracy values obtained by binary partition trees.

	Classes SVM BPT α = 0 BPT α = 0.5
	1 2 3 4 5 6 7 8 9 OA AA Kappa 0.7542 84.21 69.95 67.71 98.08 99.47 93.39 90.42 92.87 97.48 80.62 88.17	96.94 71.27 82.26 97.73 100.00 97.97 99.90 95.63 94.01 84.80 92.87 0.8066	94.14 72.27 99.89 98.15 99.47 97.99 96.23 99.32 88.18 85.74 93.96 0.8185

TABLE XIII :

 XIII Houston University -Classification accuracy values obtained by binary partition trees.

	Classes SVM BPT α = 0 BPT α = 0.5
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 OA AA Kappa 0.8040 83.01 96.80 99.60 97.82 96.12 94.41 86.94 51.57 81.40 66.51 81.59 60.04 62.81 100.00 98.10 81.91 83.78	82.05 83.65 100.00 87.78 92.71 95.10 87.50 46.53 93.39 42.57 99.05 57.83 68.42 100.00 100.00 79.69 82.44 0.7799	83.10 82.99 100.00 94.03 99.43 95.10 91.23 51.29 88.20 64.29 94.02 73.97 62.46 100.00 100.00 83.78 85.34 0.8242

TABLE XIV :

 XIV AVIRIS Indian Pines -Classification accuracy values obtained by sparse representation-and deep learning-based approaches.

	Classes UNMIXING+SRC SRC JSRC EMAP+SRC MASR SBSDM SAS MFASR CNN PCA-CNN EMP-CNN Gabor-CNN
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 OA AA Kappa	65.03 71.17 73.91 92.39 93.97 94.99 71.90 62.03 75.71 99.38 87.70 74.85 100.00 79.49 90.91 100.00 75.03 83.34 0.7174	40.46 83.82 54.46 82.4 55.98 99.46 81.66 84.56 78.48 93.69 89.98 96.13 61.33 89.65 52.77 85.03 47.52 71.28 94.44 100 82.4 98.95 44.55 96.97 95.56 97.78 56.41 100 90.91 100 100 80 61.10 88.24 70.43 91.23 0.5618 0.8659	63.95 88.9 80.98 74.5 63.56 97.49 87.15 73.9 85.28 92.59 97.99 96.97 97.78 66.67 100 100 80.43 85.43 0.7778	87.28 99.11 99.46 95.53 99.57 100 96.41 89.21 95.21 100 99.60 98.48 100 100 100 100 94.44 93.63 0.9749 0.8846 0.8926 0.9452 0.9008 80.85 78.68 86.78 79.25 95.41 94.26 98.98 90.14 95.11 92.39 98.91 98.77 95.53 94.41 97.54 90.94 97.7 93.54 97.7 98.85 91.12 97.95 99.54 100 97.71 92.92 94.99 95.10 81.06 87.47 94.17 91.20 84.22 88.48 92.55 94.34 100 99.38 99.38 100 99.20 99.36 99.76 95.54 96.97 90 98.18 89.66 93.33 100 100 100 97.44 100 97.44 100 100 100 100 100 100 100 100 100 89.90 90.61 95.22 91.53 94.10 94.30 97.25 95.24	81.96 90.99 100 91.32 98.55 96.46 97.55 89.74 93.77 100 98.25 86.21 100 94.87 100 100 91.99 94.98 0.9061	85.02 73.45 100 92.80 98.70 100 93.13 92.25 94.85 100 99.34 89.53 100 100 100 100 92.40 94.94 0.9105	84.44 91.53 98.77 94.70 99.28 100 95.84 90.94 88.59 100 99.34 89.66 100 97.37 100 100 92.84 95.65 0.9161

TABLE XV :

 XV ROSIS-03 Pavia University -Classification accuracy values obtained by sparse representation-and deep learningbased approaches.

	1 2 3 4 5 6 7 8 9 OA AA Kappa	70.29 71.08 67.88 84.82 99.46 85.94 82.77 71.08 94.59 75.05 80.88 0.6825	57.66 49.73 65.23 71.6 61.27 73.33 96.91 96.81 99.82 99.91 66.32 65.05 84.3 95.11 77.11 82.91 57.66 49.73 69.05 71.78 76.76 79.30 0.6077 0.6379	76.41 66.83 65.29 93.03 96.5 44.2 94.9 73.75 76.41 69.49 74.20 0.6183	43.24 78.02 80.99 96.74 99.91 78.22 99.69 92.45 56.48 75.98 68.96 0.8064 0.6393 0.6023 0.6828 0.8308 26.68 30.89 82.95 88.43 76.78 72.23 56.79 91.64 75.04 71.46 91.07 75.95 95.60 96.33 96.36 96.53 92.54 90.75 97.75 98.56 81.12 70.91 81.87 57.87 99.9 88.99 99.39 80.43 85.4 90.81 95.87 98.10 56.6 30.89 92.33 96.84 72.00 68.95 74.39 87.01 76.63 71.48 88.26 87.15	92.23 97.72 52.85 89.46 99.46 57.66 91.42 98.06 98.48 88.93 86.37 0.8544	95.87 99.50 61.12 94.81 95.15 64.84 80.63 97.26 96.08 91.37 87.25 0.8867	87.75 97.25 70.92 97.09 98.83 64.62 76.66 99.05 98.36 91.62 87.83 0.8914

Classes UNMIXING+SRC SRC JSRC EMAP+SRC MASR SBSDM SAS MFASR CNN PCA-CNN EMP-CNN Gabor-CNN

TABLE XVI :

 XVI Houston University -Classification accuracy values obtained by sparse representation-and deep learning-based approaches.

	Classes UNMIXING+SRC SRC JSRC EMAP+SRC MASR SBSDM SAS MFASR CNN PCA-CNN EMP-CNN Gabor-CNN
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 OA AA Kappa	75.97 77.91 100.00 72.25 98.20 95.80 55.69 38.37 62.61 47.59 74.67 68.97 53.33 100.00 98.52 70.49 74.66 0.6802	82.72 83.10 82.61 83.36 99.8 98.42 92.42 97.06 97.73 99.53 99.3 97.90 71.83 73.04 41.22 43.02 61.38 71.01 47.59 47.2 70.87 76.66 55.43 68.78 60.7 43.86 98.38 96.76 96.83 100 73.37 76.35 77.25 78.35 0.7128 0.7446	77.40 83.08 100 74.62 96.02 100 80.6 29.63 56.37 51.64 63.76 63.88 73.33 100 98.1 71.44 76.56 0.6906	83.10 79.7 97.43 96.12 93.28 90.21 69.59 46.06 76.02 45.95 79.98 76.95 61.75 100 100 77.04 79.74 0.7520 0.7371 0.7376 0.8058 0.8061 82.91 83.10 80.82 82.33 82.99 77.54 82.52 84.30 100 100 100 95.84 93.56 82.67 82.77 92.60 100 100 100 99.90 99.30 97.9 99.30 93.00 66.04 64.93 86.29 80.39 43.02 45.49 68.66 70.42 74.13 77.15 78.75 77.77 41.89 44.79 66.6 56.08 79.13 82.35 81.5 75.59 70.51 78.00 74.35 86.55 41.75 37.54 63.86 84.21 100 100 100 93.11 98.73 99.79 100 88.37 75.66 75.72 82.09 82.75 78.26 78.08 84.36 84.04	80.43 84.63 87.78 89.31 99.14 95.07 88.62 79.69 79.60 55.16 73.21 88.05 88.12 100 78.14 83.22 85.61 0.8165	87.49 80.99 87.72 90.43 100 97.90 90.48 58.51 79.77 64.28 78.37 78.29 76.84 99.19 77.04 84.04 83.33 0.8254	87.47 86.01 78.22 85.02 99.89 89.44 90.19 74.44 84.42 63.61 80.06 87.30 85.06 100 56.95 84.12 82.94 82.51

Extensivity and antiextensivity: A transformation ψ is extensive if, for each pixel, the transformation output is greater than or equal to the original image, which can be mathematically shown for a gray scale image, X, as X ≤ ψ(X). By duality, the correspondent property is antiextensive if it satisfies X ≥ ψ(X) for all the pixels in the image.

A filter applied to the min-tree is a thickening operator and a filter applied to the max-tree is a thinning operator.

Please note that for the EP, the higher value of extrema can provide more detail. This contrasts with the conventional thresholding approach applied on APs, in which the higher value of the threshold causes more smoothness. In other words, for the EP, the feature produced by the higher number of extrema is placed closer to the input image in the profile.
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