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Unequal probability sampling is commonly used for sample selection. In the context of spatial sampling, the variables of interest often present a positive spatial correlation, so that it is intuitively relevant to select spatially balanced samples. In this paper, we study the properties of pivotal sampling and propose an application to tesselation for spatial sampling. We also propose a simple conservative variance estimator. We show that the proposed sampling design is spatially well balanced, with good statistical properties and is computationally very efficient.

Introduction

Unequal probability sampling without replacement is commonly used for sample selection, for example to give larger inclusion probabilities to units with larger spread for the variables of interest. Numerous sampling algorithms have been proposed in the literature, see [START_REF] Tillé | Sampling algorithms[END_REF] for a recent review. To produce consistent estimators with associated confidence intervals, some statistical properties are desirable: namely, that the Horvitz-Thompson (HT) estimator is weakly consistent for the true total, and satisfies a centrallimit theorem. These properties have been mainly studied for large entropy sampling algorithms, see in particular [START_REF] Hájek | Asymptotic theory of rejective sampling with varying probabilities from a finite population[END_REF] for conditional Poisson sampling, [START_REF] Rosén | Asymptotic theory for successive sampling with varying probabilities without replacement[END_REF] for successive sampling, and [START_REF] Ohlsson | Asymptotic normality of the Rao-Hartley-Cochran estimator: an application of the martingale CLT[END_REF] for the [START_REF] Rao | On a simple procedure of unequal probability sampling without replacement[END_REF] procedure. Sufficient conditions for large entropy sampling designs are given in [START_REF] Berger | Rate of convergence to normal distribution for the horvitz-thompson estimator[END_REF]. A central-limit theorem for negatively associated sampling designs is also given in [START_REF] Brändén | Negative dependence in sampling[END_REF]. However, their conditions require that the sampling design is such that the variance of the HT-estimator is asymptotically equivalent to that obtained under Poisson sampling, which is usually not respected for fixed-size sampling designs

In the context of spatial sampling, the variables of interest often present a positive spatial correlation, in the sense that neighbouring units tend to resemble each other. It is then intuitively relevant to select samples well spread over space, in order to optimize the information collected. Such samples are called spatially balanced (e.g., [START_REF] Stevens | Spatially balanced sampling of natural resources[END_REF]. Large entropy sampling designs are therefore not suitable, since they do not account for the distribution of units in space. On the other hand, sampling algorithms which take into account the order of units in the population have been extensively used in spatial sampling. Systematic sampling on a grid is commonly used. It is generalized to multiple dimensions by [START_REF] Stevens | Spatially balanced sampling of natural resources[END_REF] who introduce the Generalized Random Tesselation Stratified (GRTS) sampling design. The method consists in defining an order on the spatial units in the population, and then applying systematic sampling after a partial randomization of the units. One drawback of these methods is that the needed statistical properties do not hold, unless we are willing to make some strong model assumptions.

The pivotal method [START_REF] Deville | Efficient balanced sampling: the cube method[END_REF][START_REF] Tillé | Sampling algorithms[END_REF][START_REF] Chauvet | On a characterization of ordered pivotal sampling[END_REF] is a very simple sequential sampling algorithm, which avoids selecting neighbouring units and therefore enables selecting spatially balanced samples. A vast literature has recently considered applying pivotal sampling for spatial sampling, see [START_REF] Grafström | Spatially balanced sampling through the pivotal method[END_REF]; [START_REF] Grafström | Improving forest field inventories by using remote sensing data in novel sampling designs[END_REF]; [START_REF] Grafström | Efficient sampling strategies for forest inventories by spreading the sample in auxiliary space[END_REF]; [START_REF] Grafström | Doubly balanced spatial sampling with spreading and restitution of auxiliary totals[END_REF]; [START_REF] Dickson | The use of spatial sampling designs in business surveys[END_REF]; [START_REF] Benedetti | Sampling spatial units for agricultural surveys[END_REF]; [START_REF] Dickson | Ordered spatial sampling by means of the traveling salesman problem[END_REF]; [START_REF] Fattorini | Designbased strategies for sampling spatial units from regular grids with applications to forest surveys, land use, and land cover estimation[END_REF]; [START_REF] Vallée | Incorporating spatial and operational constraints in the sampling designs for forest inventories[END_REF]. In this paper, we study the statistical properties of pivotal sampling and propose an application to tesselation for spatial sampling. We use a version of the martingale central-limit theorem to prove the asymptotic normality of the HT-estimator. Also, we propose a very simple conservative variance estimator. We introduce a general spatial sampling design which is spatially balanced, which possesses good statistical properties and which is computationally very efficient, even for large databases. This is therefore a good alternative to the GRTS sampling design.

The paper is organized as follows. In Section 2, the notation is defined and our assumptions are introduced and discussed. In Section 3, a recursive algorithm for ordered pivotal sampling is first presented in Section 3.1. A design-based martingale central-limit theorem is proved in Section 3.2, and a conservative variance estimator is proposed in Section 3.3. In Section 4, we consider an application to spatial sampling. We first give some reminders on the GRTS sampling design in Section 4.1. We propose in Section 4.2 a modification that we call the Pivotal Tesselation Method (PTM), and an illustration is given in Section 4.3. By a comparison by simulations with alternative sampling designs in Section 5, we demonstrate that the proposed method is competitive in terms of spatial balance. We also study the properties of the proposed variance estimators. All the proofs are gathered in the Supplementary Material.

Notation and assumptions

We consider a finite population U of size N . In order to study the asymptotic properties of the sampling designs and estimators that we treat below, we consider the asymptotic framework of [START_REF] Isaki | Survey design under the regression superpopulation model[END_REF]. We assume that the population belongs to a nested sequence {U ν } of finite populations with increasing sizes N ν , and all limiting processes will be taken as ν → ∞. Though all quantities under consideration depend on ν, this subscript is omitted in what follows for simplicity of notation.

We note U = {1, . . . , N } the units in the population. We denote π U = (π 1 , . . . , π N ) a vector of probabilities, with 0 < π k ≤ 1 for any unit k in U and n = k∈U π k the sample size. The maximum inclusion probability is denoted as

π M = max k∈U π k .
(2.1)

We are interested in estimating the total t y = k∈U y k for some variable of interest taking the value y k for unit k ∈ U . We note y U = (y 1 , . . . , y N ) the vector of the population values. A random sample S is selected with inclusion probabilities π U , and the total t y is unbiasedly estimated by the Horvitz-Thompson (HT) estimator

tyπ = k∈S yk , (2.2)
with yk = y k /π k . We note E(•) and V (•) for the expectation and the variance of some estimator, and E {F } (•) and V {F } (•) for the expectation and the variance of some estimator conditionally on some σ-field F.

We define the cumulative inclusion probabilities for unit k as C k = k l=1 π l , with C 0 = 0. The unit k is said to be cross-border if the cumulated inclusion probabilities exceed an integer for this specific unit. That is, the crossborder unit k i is such that C k i -1 < i and C k i ≥ i for some positive integer i = 1, . . . , n -1. The inclusion probability for the cross-border unit k i may be split as

π k i = a i + b i with a i = i -C k i -1 and b i = C k i -i.
(2.3)

We also note

c i = a i b i (1 -a i )(1 -b i )
.

(2.4) A microstratum U i , i = 1, . . . , n, is a set of units that are between two crossborder units. We have

U i = {k ∈ U ; k i-1 ≤ k ≤ k i }, with k 0 = 0 and k n = N + 1.
We take a 0 = b 0 = 0, a n = b n = 0, and for any unit k ∈ U i :

α ik =    b i-1 if k = k i-1 , π k if k i-1 < k < k i , a i if k = k i , (2.5) 
and α i = (α ik ) k∈U i . We have in particular k∈U i α ik = 1.

The microstrata are overlapping, since a cross-border unit usually belongs to two adjacent microstrata: k i belongs both to the microstratum U i with an associated probability a i , and to the microstratum U i+1 with an associated probability b i . To fix ideas, useful quantities for population U are presented in Figure 1. We consider the following assumptions:

H1: There exists some constants 0 < f 0 and f 1 < 1 such that for any k ∈ U :

f 0 n N ≤ π k ≤ f 1 . (2.

6)

H2: There exists some constant C 1 such that:

k∈U π k yk -n -1 t y 4 ≤ C 1 N 4 n -3 . (2.7) i -1 i V k i-1 -1 V k i-1 V k i-1 +1 . . . V k i -2 V k i -1 V k i V k i +1 a i-1 b i-1 a i b i π k i-1 π k i-1 +1 . . . π k i -1 π k i π k i +1 U i-1 U i U i+1
Figure 1: Probabilities and cross-border units in the microstratum U i H3: There exists some constant C 2 > 0 such that:

n i=1 k∈U i α ik yk - l∈U i α il yl 2 ≥ C 2 N 2 n -1 . (2.8)
It assumed in (H1) that the first-order inclusion probabilities are bounded away from 1. This is not a severe restriction in practice, since some unit k with π k = 1 is automatically surveyed, and is thus not involved in the selection process. It is also assumed in (H1) that the first-order inclusion probabilities have a lower bound of order n/N . Our condition (H1) is slightly weaker than condition (2.6) in [START_REF] Isaki | Survey design under the regression superpopulation model[END_REF]. Under the condition (H1), the condition (H2) holds in particular if

1 N k∈U y 4 k < ∞,
i.e. if the variable y has a finite moment of order 4. Assumption (H3) requires that the dispersion within the micro-strata does not vanish. For example, Assumption (H3) does not hold if the variable of interest y k is proportional to the inclusion probability π k , or if the variable of interest y k is constant when sampling with equal probabilities.

3 Pivotal sampling and statistical properties

The pivotal method

We suppose that the sample S is selected by means of pivotal sampling with inclusion probabilities π U . Pivotal sampling [START_REF] Deville | Unequal probability sampling without replacement through a splitting method[END_REF] is based on duels between units, and may be summarized as follows. At the first step, the two first units in the population fight. If π 1 +π 2 ≤ 1, the loser of the fight is definitely discarded from the sample, while the winner gets their cumulated probabilities π 1 + π 2 . If π 1 + π 2 > 1, the winner of the fight is definitely selected in the sample, while the loser carries on with the residual probability π 1 + π 2 -1. In any case, the remaining unit then faces unit 3 in a similar principle.

The successive duels result in discarding all the units inside the microstratum, except one which gets the cumulated inclusion probabilities. When this surviving unit (denoted as S 1 ) faces the first cross-border unit k 1 , the cumulated inclusion probabilities exceed 1. In this case, one of the two units (denoted as F 1 ) is selected in the sample, while the other unit (denoted as L 1 ) goes on with the residual probability C k 1 -1 = b 1 . The unit L 1 then faces the next unit k 1 + 1, and the duels go on. The algorithm stops at step N -1, when the two last units fight. A recursive description of pivotal sampling is presented in Algorithm 1.

Pivotal sampling is a fixed-size sampling design which matches exactly the set π U of prescribed inclusion probabilities [START_REF] Deville | Unequal probability sampling without replacement through a splitting method[END_REF]. By construction, the selection of neighbouring units is avoided, since two non cross-border units inside a microstratum U i may not be selected together. This method is therefore of interest in situations where contiguous units are similar with respect to the variables of interest. It is often the case in spatial sampling. In the particular case when the cumulated inclusion probabilities sum to integers, so that C k i = i for any i = 1, . . . , n -1, pivotal sampling is strictly equivalent to a one-per-stratum stratified sampling design.

Asymptotic properties

We assume that the units in U are ordered, prior to sampling, according to some permutation τ , random or not. We reason conditionally on τ , and therefore we do not need particular assumptions on this permutation. An interesting case is when the permutation is deterministic, obtained by ordering the units in U according to some auxiliary variable known for any unit in Algorithm 1 Pivotal sampling in the population U • We initialize with L 0 = k 0 .

• At any step i = 1, . . . , n:

-The unit L i-1 jumps to microstratum U i with the residual probability b i-1 .

-One unit, denoted as S i , is selected among

{L i-1 , k i-1 +1, . . . , k i - 1} with probabilities proportional to (b i-1 , π k i-1 +1 , . . . , π k i -1
).

-The unit S i faces k i . One of these two units, denoted as F i , is selected while the other one, denoted as L i , jumps to microstratum U i+1 with the residual probability b i . We have

(F i , L i ) = (S i , k i ) with probability 1-a i -b i 1-b i , (k i , S i ) with probability a i 1-b i . (3.1) • The final sample is {F 1 , . . . , F n }.
the population. This leads to so-called ordered pivotal sampling [START_REF] Chauvet | On a characterization of ordered pivotal sampling[END_REF]. We consider in Section 4.2 an application to spatial sampling through a modification of the GRTS sampling design.

We derive some properties which are needed to establish the asymptotic normality of the HT-estimator, by following the approach in [START_REF] Ohlsson | Asymptotic normality of the Rao-Hartley-Cochran estimator: an application of the martingale CLT[END_REF].

We introduce the σ-fields

F 0 = σ(τ ), F i = σ(τ, S 1 , F 1 , L 1 , . . . , S i , F i , L i ) for i = 1, . . . , n, (3.2) 
with σ(X) the σ-field generated by some random X. Conditioning on F i amounts to conditioning on all the random events, up to those in the microstratum U i . We first state in Lemma 1 that the HT estimator is a sum of martingale increments.

Lemma 1. We can write

tyπ -t y = n i=1 ξ i where ξ i = yF i + b i yL i -    k∈U i α ik yk + b i yk i    ,(3.3) with U i = {L i-1 , k i-1 + 1, . . . , k i -1, k i }. {ξ i ; i = 1, .
. . , n} is a martingale difference sequence with respect to the filtration {F i ; i = 0, . . . , n}.

The proof of Lemma 1 can be found in Appendix 1 of the supplement. There are two main difficulties in establishing the central-limit theorem under our conditions (H1)-(H3). We need to prove that the components of the martingale decomposition satisfy a conditional Lindeberg condition, which is implied by Lemma 2. Also, we need to prove that the components are shortrange dependent, which is done in Lemma 3.

Lemma 2. We have

E {F 0 } n i=1 ξ 4 i ≤ 16 2 + 1 1 -π M l∈U π l yl - t y n 4 . (3.4)
Lemma 3. We have

V {F 0 } n i=1 V {F i-1 } (ξ i ) ≤ 8 3 + 2 1 -π M 2 + 1 1 -π M k∈U π k yk - t y n 4 . (3.5)
The proof of Lemmas 2 and 3 can be found in Appendix 2 and 3 of the supplement, respectively. We obtain an upper bound for the variance by using the fact that pivotal sampling is more efficient than multinomial sampling [START_REF] Chauvet | A comparison of pivotal sampling and unequal probability sampling with replacement[END_REF], which under Assumption (H2) leads to the inequality

V {F 0 } ( tyπ ) ≤ k∈U π k yk - t y n 2 ≤ C 1 N 2 n . (3.6)
To achieve the usual rate of convergence for the HT-estimator, we also need a lower bound for the variance. From conditions (H1) and (H3) and from Lemma 4, we have

V {F 0 } ( tyπ ) ≥ C 2 (1 -f 1 ) 2 N 2 n . (3.7)
Lemma 4. We have

V {F 0 } ( tyπ ) ≥ {1 -π M } 2    n i=1 k∈U i α ik yk - l∈U i α il yl 2    . (3.8)
The proof of Lemma 4 can be found in Appendix 4 of the supplement. We can now state the main result of this Section.

Theorem 1. Suppose that the sample S is selected by means of pivotal sampling, and that assumptions (H1)-(H3) hold. Then

tyπ -t y V {F 0 } ( tyπ ) -→ L N (0, 1), (3.9)
where -→ L stands for the convergence in distribution.

The proof of Theorem 1 can be found in Appendix 5 of the supplement.

Variance estimation

Two customary choices for variance estimation for a fixed-size sampling design are the Sen-Yates-Grundy (SYG) variance estimator

v SY G ( tyπ ) = 1 2 k =l∈S π k π l -π kl π kl (y k -yl ) 2 , (3.10)
or the Horvitz-Thompson (HT) variance estimator

v HT ( tyπ ) = k,l∈S π kl -π k π l π kl y k π k y l π l , (3.11)
with π kl the probability that units k and l are selected jointly in the sample. These estimators are unbiased if and only if all the second-order inclusion probabilities are strictly positive. Otherwise, v SY G ( tyπ ) is biased downwards, while v HT ( tyπ ) is biased upwards for a variable of interest with positive values.

With pivotal sampling, many second-order inclusion probabilities are 0, since two non cross-border units inside a same microstratum U i may not be selected together in the sample. Both the SYG variance estimator and the HT variance estimator may therefore be severely biased. Another drawback is that the second-order inclusion probabilities are required. Such computation is possible for ordered pivotal sampling (see [START_REF] Chauvet | On a characterization of ordered pivotal sampling[END_REF], but requires the knowledge of the original ranking τ and of the first-order inclusion probabilities for all the units in U . Consequently, this computation may be impossible for a data user with limited knowledge of the sampling frame.

We propose an alternative variance estimator which does not make use of the second-order inclusion probabilities. This variance estimator is

v DIF F ( tyπ ) = n/2 i=1 (1 + δ i ) yF 2i -yF 2i-1 2 + yFn -yF n-1 2 1(n is odd),
where

δ i = b 2i-1 c 2i-1 + c 2i 1 -c 2i , (3.12)
where the quantities b i and c i are given in equations (2.3) and (2.4), where • stands for the integer part, and where 1(•) stands for the indicator function.

Roughly speaking, the i th term of the sum in equation (3.12) accounts for the variance in the microstrata U 2i-1 and U 2i , and yFn -yF n-1 2 is a correction term to account for the variance in the last microstratum U n if n is odd.

Theorem 2. We have

E {F 0 } {v DIF F ( tyπ )} ≥ V {F 0 } ( tyπ ). (3.13)
The proof of Theorem 2 can be found in Appendix 6 of the supplement. This variance estimator enables to compute conservative confidence intervals. The multinomial variance estimator

v M U LT ( tyπ ) = n n -1 k∈S y k π k - tyπ n 2 (3.14)
is another possible conservative variance estimator, see [START_REF] Chauvet | A comparison of pivotal sampling and unequal probability sampling with replacement[END_REF]. The proposed variance estimator v DIF F ( tyπ ) better accounts for the features of the sampling design, and we therefore expect it to be less conservative. This is evaluated in Section 5 through a simulation study. From a close look at the proof of Theorem 2, the bias of v DIF F ( tyπ ) will be small if the means in consecutive microstrata are close, in the sense that for any i = 1, . . . , n/2 :

k∈U 2i-1 α 2i-1,k yk k∈U 2i α 2i,k yk . (3.15)
In many situations, the proposed variance estimator may be further simplified by omitting the factors δ i . It can be shown that

δ i ≤ π 2 M (1 + π M ) 2(2 -π M ) , (3.16)
where π M is the maximum inclusion probability. The proof of inequality (3.16) can be found in Appendix 7 of the supplement. Consequently, with moderately large inclusion probabilities no greater than 0.35, the factors δ i will be no greater than 0.05. In such case, they may be safely ignored, which leads to the simplified variance estimator

v DIF F 2 ( tyπ ) = n/2 i=1 yF 2i -yF 2i-1 2 + yFn -yF n-1 2 1(n is odd). (3.17)
This variance estimator only requires the knowledge of 1) the values of the variable of interest for the selected units, along with their inclusion probabilities, and 2) their rank of selection in the sampling process. It can be therefore easily computed by a data user.

Application to spatial sampling

The degree of spatial balance of a sampling design is very important in order to limit a lack of efficiency due to positive spatial auto-correlation between units. The interest in spatial sampling has increased in the last decade, see for example [START_REF] Stevens | Spatially balanced sampling of natural resources[END_REF]; [START_REF] Grafström | Spatially balanced sampling through the pivotal method[END_REF]; [START_REF] Grafström | Doubly balanced spatial sampling with spreading and restitution of auxiliary totals[END_REF]; [START_REF] Dickson | Ordered spatial sampling by means of the traveling salesman problem[END_REF]. It has led to applications in various domains, including the drawing of primary sampling units in the context of household surveys (see Favre-Martinoz and Merly-Alpa, 2017).

In Section 4.1, we give an overview of the Generalized Random Tesselation Stratified (GRTS) sampling design. Though this sampling method is popular in practice, some useful statistical results like consistency and asymptotic normality of the HT estimator are difficult to prove. Therefore, we introduce a modification in Section 4.2 called the Pivotal Tesselation Method (PTM). By substituting pivotal sampling to systematic sampling at the selection process, this new sampling algorithm makes sure that the required statistical properties hold true.

The GRTS sampling design

The GRTS design [START_REF] Stevens | Spatially balanced sampling of natural resources[END_REF]) is one of the most popular spatial sampling methods. It is suitable to select a sample in several situations, including that of a finite discrete population (e.g., trees within a forest), of a linear continuous population (e.g., rivers), or of an areal continuous population (e.g., forests or lakes). In this Section, we describe the GRTS design for a discrete two-dimensional population. The main idea is to use some function that maps a two-dimensional space into one dimension, while preserving some proximity relationships between units. A sample is then selected in the one-dimensional space through systematic sampling.

To apply the GRTS design, the two-dimensional space under study is first mapped to the unit square [0; 1] × [0; 1]. This unit square is then mapped to a one-dimensional interval, by using a function f (•) which preserves twodimensional proximity relationships. For this purpose, [START_REF] Stevens | Spatially balanced sampling of natural resources[END_REF] propose to use quadrant-recursive functions [START_REF] Mark | Neighbor-based properties of some orderings of twodimensional space[END_REF] which ensure that, when recursively decomposing a rectangular region into sub-quadrants, the image of any sub-quadrant is an interval. In this case, the function f (•) can be seen as the limit of successive intensifications of a grid covering the unit square, where the square is divided into four sub-squares, each of which being subsequently divided into four sub-squares, and so on. In Section 4.2, we propose a simple way to obtain such tesselation of the unit square in cells, by using the decomposition of a number in Bit code.

The quadrant-recursive function f (•) maps each cell to a so-called address, which is a decimal number on the one-dimensional interval resulting from the order in which the divisions are carried out. This mapping preserves the proximity relationships between sampling units, in the sense that consecutive cells in the two-dimensional space have consecutive addresses on the unit line.

Prior to sampling, the cells may then be randomized within each quadrant to gain entropy in the selection process; a so-called hierarchical randomization is obtained if the permutations are independent from one sub-quadrant to another [START_REF] Stevens | Spatially balanced sampling of natural resources[END_REF].

Finally, a sample of cells is selected by systematic sampling of addresses on the line. [START_REF] Stevens | Spatially balanced sampling of natural resources[END_REF] proved that GRTS matches the required first-order inclusion probabilities, and leads to a spatially balanced sample. However, other statistical properties are fairly difficult to prove when using a systematic sampling design, even when the units are randomized.

The Pivotal Tessellation Method

We propose a modification of the GRTS method where pivotal sampling is used in replacement of systematic sampling. Like for GRTS, we use some quadrant-recursive function to map the two-dimensional space into one dimension, and a sample is selected on a one-dimensional line by means of pivotal sampling. This leads to the selection of a spatially balanced sample, while matching the required first-order inclusion probabilities. From the results in Section 3, the HT-estimator is consistent and asymptotically normally distributed, and a conservative variance estimator is easily produced.

We now present an efficient way to obtain a tesselation of the space under study, by using the decomposition of a number in Bit code which is readily obtained in R. The two-dimensional space is mapped by Euclidean transformations to the square [0, 2 31 -1] × [0, 2 31 -1]: only 31 out of the 32 positions in the decomposition are useful, since the first position is always 0 for positive numbers. These 31 positions are successively considered, to obtain an intensification of the grid by subdividing each square previously obtained in four sub-squares.

This division is obtained as follows: if some point in the square has coordinates with on i th position (x i , y i ) ∈ {0, 1} 2 , then the corresponding position in the address is y i + 2x i ∈ {0, 1, 2, 3}. For example, if we have on i th position (x i , y i ) = (1, 0), then the corresponding position in the address is 2. This leads to an address in 31 positions. A cell may contain several sampling units, but the proposed method leads to a very fine tessellation with 4 31 ≈ 4.6 10 18 addresses, making this case fairly unlikely. The proposed tessellation may be easily generalized to spaces of dimension d ≥ 3, which can be of interest in a factorial space, for example (Le [START_REF] Gleut | Analyse factorielle et sondages -utilisation de méthodes d'échantillonnage spatial[END_REF].

The address in 31 positions that we obtain defines a mapping between the two-dimensional space and a line which preserves the proximity relationships between sampling units. A sample is obtained by applying the pivotal method. Here again, the cells obtained in the tessellation may be randomized prior to sampling to gain entropy. However, the use of pivotal sampling guarantees that the HT-estimator is consistent and asymptotically normally distributed, even without this randomization.

We have compared the computational time needed to select a sample by means of GRTS (implemented through the R package spsurvey) and PTM, working on a remote server Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz with 80 Go RAM. With a medium population size (N = 100, 000), we need only 2 seconds to select a sample by PTM, and 90 minutes by GRTS. With a large population size (N = 1, 000, 000), we need 21 seconds to select a sample by PTM, while the computational resources are not sufficient to allow the selection of a sample for GRTS.

An illustration of the proposed method

To fix ideas, we apply the proposed method on a small two-dimensional population. The whole process is given in Figure 2. The mapping of the space on a square and the ranking of the units in the population are described in the top part. The mapping on a one-dimensional line and the sample selection by pivotal sampling are described in the medium part. The mapping back to the selected points in the original space is described in the bottom part.

The population under study contains N = 16 units (first scheme from the left, top part of Figure 2), where we wish to select a spatially balanced sample of size n = 4 with equal inclusion probabilities π k = 1/4. This population is mapped into a square (second scheme). In view of the small size of the population, the fine tessellation on the square [0, 2 31 -1] × [0, 2 31 -1] is not required: to simplify the presentation, the population is mapped into the square [0, 2 2 -1] × [0, 2 2 -1]. The coordinates of each point are then considered, and the two first positions of their decomposition in Bit code are used to obtain addresses ranging from 00 to 33 (third scheme). This defines a path between the units in the square (fourth scheme).

The two-dimensional space is then mapped on a one-dimensional line of length n = 4, where each point k is represented by a segment of length π k , and where the addresses of the units define their ranking on the line (medium part of Figure 2). A sample of n points, represented as gray points, is selected by means of pivotal sampling. In this particular case, pivotal sampling amounts to a one-per stratum stratified sampling design where each stratum is made of four consecutive points. In this example, the addresses 01, 12, 21 and 32 are selected. For comparison, a similar selection by means of GRTS is described in Appendix 8 of the supplement.

Simulation study

In this Section, we present some simulation results. We first use an artificial population from Example 5 of [START_REF] Grafström | Spatially balanced sampling through the pivotal method[END_REF]. We then use the Meuse dataset available in the R package gstat, and considered in [START_REF] Grafström | Doubly balanced spatial sampling with spreading and restitution of auxiliary totals[END_REF]. We compare the performances of the proposed Pivotal Tessellation Method (PTM) with alternative spatial sampling designs. The simulation set-up is described in Section 5.1. The results of the simulation study for the two populations are given in Sections 5.2 and 5.3, respectively.

Simulation set-up

The sampling designs that we consider as competitors are the Generalized Random Tesselation Stratified sampling design (GRTS); the two versions of the Local Pivotal Method (LPM1 and LPM2; see [START_REF] Grafström | Spatially balanced sampling through the pivotal method[END_REF]; the pivotal method through Traveling Salesman Problem order (TSP; see [START_REF] Dickson | Ordered spatial sampling by means of the traveling salesman problem[END_REF]; and the Conditional Poisson Sampling design (CPS; see [START_REF] Hájek | Asymptotic theory of rejective sampling with varying probabilities from a finite population[END_REF]. In order to implement the pivotal method and the CPS design, we use the R package Sampling. To solve the traveling salesman problem, we use the algorithm "2-Opt" of the R package TSP. The GRTS design is implemented through the R package spsurvey, and the LPM1 and LPM2 are implemented through the R package BalancedSampling.

In both simulation studies, we are interested in the spatial balance of the sampling designs, using the approach of Voronoi polygons suggested by [START_REF] Stevens | Spatially balanced sampling of natural resources[END_REF]. For a given sample s, the Voronoi polygon for some sampled unit k includes all units in the population which are closer to k than to any other sampled unit. The quantity

∆(s) = 1 n k∈s (δ k -1) 2 (5.1)
is used as a measure of spatial balance, with δ k the sum of the inclusion probabilities of all units in the polygon associated to k. If the sample is spatially balanced, it is expected that all the δ k 's are close to 1, and that ∆(s) is small. From both populations, we select B = 10, 000 samples by means of the PTM, GRTS, LPM1, LPM2, TSP and CPS. In each sample s b , b = 1, . . . , 10, 000, we compute the quantity ∆(s b ). As a measure of spatial balance of the sampling design, we compute their Monte Carlo Mean

E M C (∆) = 1 B B b=1 ∆(s b ). (5.2)
In both simulation studies, we are also interested in the variance of the HTestimator which is evaluated by the Monte Carlo Variance

V M C ( tyπ ) = 1 B B b=1 tyπ (s b ) - 1 B B c=1 tyπ (s c ) 2 , (5.3) 
with tyπ (s b ) the HT-estimator evaluated on the sample s b , b = 1, . . . , 10, 000.

Finally, we are interested in comparing variance estimators for the proposed PTM. To measure the performances of some variance estimator v( tyπ ), we compute its Monte Carlo Mean

E M C {v( tyπ )} = 1 B B b=1 v{ tyπ (s b )} (5.4)
where v{ tyπ (s b )} denotes the variance estimator in the b-th sample. We also compute the percent relative stability

RS M C {v( tyπ )} = 100 × B -1 B b=1 v( tyπ (s b )) -E M C (v( tyπ )) 2 1/2 V M C ( tyπ ) . (5.5)
We compare the proposed simplified variance estimator v DIF F 2 given in (3.17) with the Sen-Yates-Grundy (SYG) variance estimator given in equation (3.10), and the Horvitz-Thompson (HT) variance estimator given in equation (3.11). We also consider the Hájek-Rósen (HR) variance estimator

v HR ( tyπ ) = n n -1 k∈S (1 -π k ) y k π k -R 2 with R = k∈S y k π k (1 -π k ) k∈S (1 -π k )
.(5.6) Finally, we consider stratified multinomial variance estimators

v M U LT h ( tyπ ) = p i=1 h h -1 k∈S i y k π k - 1 h l∈S i y l π l 2 .
(5.7) This is the variance estimator we would use if the population was stratified into p = n/h strata, with selection of a sample S i of h units by multinomial sampling inside the i th stratum. We compute v M U LT h ( tyπ ) for several values of h. The multinomial variance estimator in (3.14) is a particular case obtained with h = n.

Results of the first simulation study

The first population that we consider is introduced in Example 5 of [START_REF] Grafström | Spatially balanced sampling through the pivotal method[END_REF]. It is obtained by dividing the unit square according to a regular 20 × 20 grid, resulting in a population of N = 400 units. For any unit k, the variable of interest y k is the area within the cell under the function 

f (x1, x2) = 3(x1 + x2) + sin{6(x1 + x2)}.
For comparability, we use the same simulation set-up than in [START_REF] Grafström | Spatially balanced sampling through the pivotal method[END_REF], selecting samples of size n = 16, 32 or 48 with equal probabilities. Note that in case of sampling with equal probabilities, Conditional Poisson Sampling amounts to simple random sampling. [START_REF] Stevens | Spatially balanced sampling of natural resources[END_REF] underlined that their method should perform better in terms of spatial balance for sample sizes which are multiples of 4. Therefore, this simulation set-up is expected to be favorable for GRTS, and presumably for PTM.

The simulation results for the spatial balance and the variance of the HTestimator are given in Table 1. As expected, all sampling designs that use spatial auxiliary information produce much more balanced samples than the conditional Poisson sampling design which does not. PTM, LPM1 and LPM2 are the best methods in terms of spatial balance, with LPM1 performing slightly better. The proposed PTM performs best in terms of variance.

The simulation results for the possible variance estimators for PTM are given in Table 2. All variance estimators are biased, since PTM leads to several second order inclusion probabilities that are equal to zero. The HT variance estimator is heavily positively biased, and the SYG variance estimator is heavily negatively biased. For n = 16, the SYG variance estimator is equal to zero because in this case, the sampling design amounts to stratified simple random sampling of size 1 inside each stratum. Therefore, we have π kl = 0 for two units k and l in the same stratum, and π kl = π k π l otherwise. The five other variance estimators are all positively biased. Among them, the proposed estimator v DIF F 2 and the estimator v M U LT 2 perform similarly and present the best results with the smallest bias. Their relative stability is larger than that of v HR for small sample sizes, but is smaller for n = 48. Overall, v HR is slightly better than v M U LT , but the estimators v M U LT 2 and v M U LT 4 are less biased with comparable or better stability.

v HT v SY G v HR v DIF F 2 v M U LT 2 v M U LT 4 v M U LT E M C {v( tyπ )} (×100) n =

Results of the second simulation study

The second population that we consider is the "Meuse" data set available in the R package gstat. It gives locations and top soil heavy metal concentrations (ppm) collected in a flood plain of the river Meuse, sampled from an area of approximately 15 m × 15 m. The variables that we consider are the topographical map coordinates (x and y), the topsoil concentration in cadmium (cadmium), copper (copper), lead (lead) and zinc (zinc), the relative elevation (elev) and the percentage of organic matter (om).

As explained by [START_REF] Grafström | Doubly balanced spatial sampling with spreading and restitution of auxiliary totals[END_REF], this data set exhibits an important spatial correlation. The computation of Moran's I leads to the same conclusion. The sampling design that we use consists in selecting 50 among the N = 164 locations in the data set, with probabilities proportional to the copper concentration. In view of the high correlations between the concentrations in heavy metals (see Figure 3), the variance for the estimation of the total of these variables is expected to be small.

The simulation results for the spatial balance and the variance of the HT- estimator are given in Table 3. LPM1 and LPM2 produce the most balanced samples, followed by GRTS and TSP, while PTM performs slightly worse.

v HT v SY G v HR v DIF F 2 v M U LT 2 v M U LT 5 v M U LT 10 v M U LT E M C {v( tyπ )} zinc (×10 - 
Here again, all spatial sampling designs produce much more balanced samples than CPS. In terms of variance, the five spatial sampling designs comparable results, with LPM1 and LPM2 performing slightly better.

The simulation results for the possible variance estimators for PTM are given in Table 4. The HT-variance estimator is heavily positively biased, and the SYG-variance estimator is negatively biased, as expected. The six other variance estimators are all positively biased, and among them v HR presents the best results with the smallest bias and the smallest relative stability. Among the five other estimators, the proposed estimator v DIF F 2 and the estimator v M U LT 2 perform similarly and present the smallest bias, but are slightly more unstable. We observe that the variance estimators are particularly unstable for zinc, the value of the fourth central moment for this variable being particularly huge in the data set.

Conclusion

The pivotal method is widely used in spatial sampling since it avoids selecting neighbouring units. In this paper, we proved the asymptotic normality of the HT-estimator under mild assumptions. We also proposed a very simple variance estimator which does not require second-order inclusion probabilities. This variance estimator is very simple to compute for a data user, and enables computing conservative confidence intervals.

Among the spatial sampling designs in the literature, the Generalized Random Tesselation Stratified (GRTS) sampling design is widely used but its statistical properties have not been investigated. We proposed a modification of the GRTS sampling design, by replacing the systematic sampling step with a pivotal sampling step. The proposed Pivotal Tesselation Method (PTM) enjoys very good statistical properties, and availability of a very simple conservative variance estimator. Also, our simulation results indicate that PTM is very competitive both in terms of spatial balance and of accuracy of estimators. We also proposed a very efficient way to obtain a tesselation of the space under study with the proposed method.

The statistical properties established in Section 3 hold true for any population to which ordered pivotal sampling is applied, after a ranking of the units with respect to some criterion. This is in particular true for the pivotal method through Traveling Salesman Problem (TSP), see [START_REF] Dickson | Ordered spatial sampling by means of the traveling salesman problem[END_REF]. However, our results do not hold for the Local Pivotal Method (LPM, see [START_REF] Grafström | Spatially balanced sampling through the pivotal method[END_REF], since the ranking of the units is not fixed in advance, but varies during the sampling procedure. The study of similar statistical properties for the LPM is a very challenging problem for the future.
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 2 Figure 2: Selection process on a two-dimensional population by means of the Pivotal Tesselation Method
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 3 Figure 3: Scatter plot matrix of the variables in the Meuse data set

Table 1 :

 1 Monte Carlo Mean of the spatial balance and Monte Carlo Variance of the Horvitz-Thompson estimator for Population 1

	PTM GRTS LPM1 LPM2 TSP CPS
	E M C (∆)
	n = 16 0.07 0.12 0.08 0.09 0.11 0.33
	n = 32 0.08 0.11 0.07 0.07 0.10 0.30
	n = 48 0.09 0.11 0.07 0.07 0.10 0.29
	V M C ( tyπ ) (×100)
	n = 16 1.53 2.49 1.94 1.96 2.65 12.48
	n = 32 0.39 0.89 0.54 0.57 0.65 6.18
	n = 48 0.16 0.34 0.26 0.27 0.28 3.91

Table 2 :

 2 Monte Carlo Mean and Relative Stability of the variance estimators for the Pivotal Tesselation Method in Population 1

Table 3 :

 3 Monte Carlo Mean of the spatial balance and Monte Carlo Variance of the Horvitz-Thompson estimator for Population 2

		PTM GRTS LPM1 LPM2 TSP CPS
		E M C (∆)
		0.18 0.16 0.13 0.14 0.16 0.29
		V M C ( tyπ )
	zinc	(×10 -7 ) 2.06 2.03 1.98 2.00 2.02 2.14
	lead	(×10 -5 ) 5.79 5.77 5.33 5.42 5.63 9.38
	cadmium (×10 -2 ) 5.14 5.83 5.93 5.77 5.88 7.92
	elev	(×10 -3 ) 6.90 6.03 5.27 5.43 5.37 9.24
	om	(×10 -3 ) 2.24 2.18 1.97 1.99 2.06 2.71

Table 4 :

 4 Monte Carlo Mean and Relative Stability of the variance estimators for the Pivotal Tesselation Method in Population 2