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Abstract

Unequal probability sampling without replacement is commonly used

for sample selection. To produce estimators with associated con�-

dence intervals, some basic statistical properties like consistency and

asymptotic normality of the Horvitz-Thompson estimator are desir-

able. These properties have been mainly studied for large entropy

sampling designs. On the other hand, spatial sampling designs rather

make use of sampling algorithms which take into account the order of

units in the population, like systematic sampling or pivotal sampling.

So far, the statistical properties of such procedures have not been in-

vestigated. In this work, we study the asymptotic properties of the

pivotal sampling design. Under mild assumptions, we prove that the

Horvitz-Thompson estimator is asymptotically normally distributed

and that a conservative variance estimator can always be computed.

We also introduce a general spatial sampling design which is spatially

balanced, which possesses good statistical properties and which is com-

putationally very e�cient, even for large databases.

Keywords: asymptotic normality, conservative variance estimator, martingale al-

gorithm, spatial balance.
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1 Introduction

Unequal probability sampling without replacement is commonly used for
sample selection, since the accuracy of estimators may be signi�cantly im-
proved if the inclusion probabilities are chosen roughly proportional to the
variable of interest. Numerous sampling algorithms have been proposed in
the literature, see Tillé (2006) for a recent review. To produce consistent es-
timators with associated con�dence intervals, some statistical properties are
desirable for a sampling algorithm: namely, that (a) the Horvitz-Thompson
(HT) estimator is weakly consistent for the true total; (b) the HT estimator
satis�es a central-limit theorem; (c) an asymptotically valid con�dence in-
terval may be computed for the HT-estimator.

As underlined by Chauvet (2017), the property (a) of consistency for the HT
estimator follows under a simple moment condition if the sampling algorithm
under study is more e�cient than with-replacement unequal probability sam-
pling, a.k.a multinomial sampling (Tillé, 2006, Section 5.4). This property
holds for the Sampford design and for the conditional Poisson sampling de-
sign (Gabler, 1981, 1984; Qualité, 2008). A general discussion about the
consistency of the HT-estimator for large entropy sampling designs is given
in Berger (2011). The property (b) has been proved by Hájek (1964) for con-
ditional Poisson sampling, Rosén (1972) for successive sampling, and Ohlsson
(1986) for the Rao-Hartley-Cochran (1962) procedure. Su�cient conditions
for large entropy sampling designs are given in Berger (1998). Concerning
property (c), the normality-based con�dence interval obtained by replacing
the unknown variance by an estimator is asymptotically valid if the vari-
ance estimator is weakly consistent. Such property holds for the so-called
Horvitz-Thompson variance estimator under assumptions on �rst through
fourth-order inclusion probabilities (see Breidt and Opsomer, 2000, assump-
tions H6 and H7). These assumptions may be shown to hold for conditional
Poisson sampling (Boistard et al., 2012). In summary, the properties (a)-
(c) have been mainly studied for large entropy sampling algorithms, where
the units are closed to being independently selected conditionally on a �xed
sample size.

In the context of spatial sampling, the variables of interest often present a
positive spatial correlation, in the sense that neighbouring units tend to re-
semble each other. It is intuitively relevant in this case to select samples
which are well spread over space, in order to optimize the information col-
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lected. Such samples are called spatially balanced (e.g., Stevens and Olsen,
2004). Large entropy sampling designs are therefore not suitable, since they
do not account for the distribution of units in space. On the other hand,
sampling algorithms which take into account the order of units in the popu-
lation have been extensively used in spatial sampling. Systematic sampling
on a grid is commonly used, with the drawback that properties (a)-(c) usually
do not hold unless we are willing to make some strong model assumptions.
Systematic sampling is generalized to multiple dimensions by Stevens and
Olsen (2004) who introduce the Generalized Random Tesselation Strati�ed
(GRTS) sampling design. The method consists in de�ning an order on the
spatial units in the population, and then applying systematic sampling after
a partial randomization of the units. Though GRTS involves more random-
ization than direct systematic sampling, properties (a)-(c) are not guaranteed
to hold either.

The pivotal method (Deville and Tillé, 2004; Tillé, 2006; Chauvet, 2012) is
a very simple sequential sampling algorithm, which avoids selecting neigh-
bouring units and therefore enables selecting spatially balanced samples. A
vast literature has recently considered such applications for pivotal sampling,
see for example Grafström et al. (2012); Grafström and Ringvall (2013);
Grafström et al. (2014); Grafström and Tillé (2013); Dickson et al. (2014);
Benedetti et al. (2015); Dickson and Tillé (2016); Fattorini et al. (2015);
Vallée et al. (2015). However, these authors have mainly considered the
properties of spatial sampling procedures in terms of spatial spread and in
terms of accuracy of the HT-estimator. The statistical properties (a)-(c) have
not been considered yet for spatial sampling designs, and this is the purpose
of the present paper.

Pivotal sampling does not belong to the class of large entropy sampling de-
signs. In applications for spatial sampling, some intricate dependencies are
introduced to avoid the selection of neighbouring units. Therefore, the gen-
eral tools for large entropy sampling designs considered by Berger (1998,
2011) are not applicable to prove the required statistical properties. Chau-
vet (2017) proved that pivotal sampling is more e�cient than multinomial
sampling, so that property (a) holds. We tackle properties (b)-(c) in this
paper. We make use of a version of the martingale central-limit theorem to
prove the asymptotic normality of the HT-estimator. It is not possible to
produce a consistent variance estimator, since many second-order inclusion
probabilities are equal to zero. However, we propose some very simple vari-
ance estimators which are proved to be conservative for the true variance.

3



This enables to produce very simple conservative con�dence intervals. We
also introduce a general spatial sampling design which is spatially balanced,
which possesses good statistical properties and which is computationally very
e�cient, even for large databases. This is therefore a good alternative to the
GRTS sampling design.

The paper is organized as follows. In Section 2, the notation is de�ned
and our assumptions are introduced and discussed. In Section 3, a recur-
sive algorithm for ordered pivotal sampling is �rst presented in Section 3.1,
and a martingale characterization of the HT-estimator is given in Section
3.2, along with some useful properties. They are used in Section 3.3 to ob-
tain a design-based martingale central-limit theorem for the HT-estimator.
Variance estimation is then discussed in Section 3.4, and some very simple
conservative variance estimators are proposed. In Section 4, we consider an
application to spatial sampling. We �rst give some reminders on the GRTS
sampling design in Section 4.1, and we propose in Section 4.2 a modi�cation
that we call the Pivotal Tesselation Method (PTM). By a comparison by
simulations with alternative sampling designs in Section 5, we demonstrate
that the proposed method is competitive in terms of spatial balance. We
also study the properties of the proposed variance estimators. The proofs of
Propositions and Theorems are given in Appendix. The proofs of additional
Lemmas are given in the Supplementary Material.

2 Notation and assumptions

We consider a �nite population U of size N . In order to study the asymptotic
properties of the sampling designs and estimators that we treat below, we
consider the asymptotic framework of Isaki and Fuller (1982). We assume
that the population belongs to a nested sequence {Uν} of �nite populations
with increasing sizes Nν , and all limiting processes will be taken as ν →∞.
Though all quantities under consideration depend on ν, this subscript is
omitted in what follows for simplicity of notation.

We assume that the units in U are ordered, prior to sampling, according
to some permutation τ , random or not. We reason conditionally on τ , and
therefore we do not need particular assumptions on this permutation. An
interesting case is when the permutation is deterministic, obtained by order-
ing the units in U according to some auxiliary variable known for any unit in
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the population. This leads to so-called ordered pivotal sampling (Chauvet,
2012). We consider in Section 4.2 an application to spatial sampling through
a modi�cation of the GRTS sampling design.

We note U = {1, . . . , N} the units in the population after re-arrangement
with respect to τ . We denote πU = (π1, . . . , πN)> a vector of probabilities,
with 0 < πk ≤ 1 for any unit k in U and n =

∑
k∈U πk the sample size. We

note

πM = max
k∈U

πk. (1)

We are interested in estimating the total ty =
∑

k∈U yk for some variable of
interest taking the value yk for unit k ∈ U . We note yU = (y1, . . . , yN)>

the vector of the population values. A random sample S is selected with
inclusion probabilities πU , and the total ty is unbiasedly estimated by the
Horvitz-Thompson (HT) estimator

t̂yπ =
∑
k∈S

y̌k, (2)

with y̌k = yk/πk. We note E(·) and V (·) for the expectation and the vari-
ance of some estimator, and E{F}(·) and V{F}(·) for the expectation and the
variance of some estimator conditionally on some σ-algebra F .

We de�ne the cumulative inclusion probabilities for unit k as Ck =
∑k

l=1 πl,
with C0 = 0. The unit k is said to be cross-border if the cumulated inclusion
probabilities exceed an integer for this speci�c unit. That is, the cross-
border unit ki is such that Cki−1 < i and Cki ≥ i for some positive integer
i = 1, . . . , n − 1. The inclusion probability for the cross-border unit ki may
be split as πki = ai + bi with

ai = i− Cki−1 and bi = Cki − i. (3)

We also note

ci =
aibi

(1− ai)(1− bi)
. (4)

A microstratum Ui, i = 1, . . . , n, is a set of units that are between two cross-
border units. We have Ui = {k ∈ U ; ki−1 ≤ k ≤ ki}, with k0 = 0 and
kn = N + 1. We take by convention a0 = b0 = 0 and an = bn = 0. For any
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Figure 1: Probabilities and cross-border units in the microstratum Ui

unit k ∈ Ui, we note

αik =


bi−1 if k = ki−1,
πk if ki−1 < k < ki,
ai if k = ki,

(5)

and αi = (αik)k∈Ui . We have in particular
∑

k∈Ui αik = 1.

The microstrata are overlapping, since a cross-border unit usually belongs to
two adjacent microstrata: ki belongs both to the microstratum Ui with an
associated probability ai, and to the microstratum Ui+1 with an associated
probability bi. To �x ideas, useful quantities for population U are presented
in Figure 1.

We make the following assumptions:

H1: There exists some constant f1 < 1 such that for any k ∈ U :

πk ≤ f1. (6)

H2: There exists some constant C1 such that:

∑
k∈U

πk

(
y̌k −

ty
n

)4

≤ C1
N4

n3
. (7)
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H3: There exists some constant C2 > 0 such that:

n∑
i=1

∑
k∈Ui

αik

(
y̌k −

∑
l∈Ui

αily̌l

)2

≥ C2
N2

n
. (8)

It assumed in (H1) that the �rst-order inclusion probabilities are bounded
away from 1. This is not a severe restriction in practice, since some unit with
an inclusion probability equal to 1 is automatically surveyed, and is thus not
involved in the selection process. The condition (H2) holds in particular if
the variable y has a �nite centered moment of order 4, and if there exists
some constants D1, D2 > 0 such that for any k ∈ U, D1 ≤ Nn−1πk ≤ D2.
Assumption (H3) requires that the dispersion within the micro-strata does
not vanish.

3 Pivotal sampling and statistical properties

3.1 The pivotal method

We suppose that the random sample S is selected by means of pivotal sam-
pling with inclusion probabilities πU . Pivotal sampling (Deville and Tillé,
1998) is based on duels between units, and may be summarized as follows.
At the �rst step, the two �rst units in the population �ght, and the loser is
de�nitely discarded from the sample while the winner gets their cumulated
probabilities π1+π2. The remaining unit then faces unit 3 in a similar princi-
ple. The �ghts go on until all non cross-border units in a micro-stratum have
been considered. The successive duels result in discarding all the units inside
the micro-stratum, except one which gets the cumulated inclusion probabil-
ities.

When this surviving unit (denoted as S1) faces the �rst cross-border unit k1,
the cumulated inclusion probabilities exceed 1. In this case, one of the two
units (denoted as F1) is selected in the sample, while the other unit (denoted
as L1) goes on with the residual probability Ck1 − 1 = b1. The unit L1 then
faces the next unit k1 + 1, and the duels go on. The algorithm stops at
step N − 1, when the two last units �ght. A recursive description of pivotal
sampling is presented in Algorithm 1.
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Algorithm 1 Pivotal sampling in the population U

• We initialize with L0 = k0.

• At any step i = 1, . . . , n:

� The unit Li−1 jumps to microstratum Ui with the residual proba-
bility bi−1.

� One unit, denoted as Si, is selected among {Li−1, ki−1+1, . . . , ki−
1} with probabilities proportional to (bi−1, πki−1+1, . . . , πki−1).

� The unit Si faces ki. One of these two units, denoted as Fi, is
selected while the other one, denoted as Li, jumps to microstratum
Ui+1 with the residual probability bi. We have

(Fi, Li) =

{
(Si, ki) with probability 1−ai−bi

1−bi ,

(ki, Si) with probability ai
1−bi .

(9)

• The �nal sample is {F1, . . . , Fn}.

Pivotal sampling is a �xed-size sampling design which matches exactly the
set πU of prescribed inclusion probabilities (Deville and Tillé, 1998). By con-
struction, the selection of neighbouring units is avoided, since two non cross-
border units inside a same microstratum Ui may not be selected together in
the sample. This method is therefore of interest in situations where contigu-
ous units are similar with respect to the variables of interest. It is often the
case in spatial sampling. In the particular case when the cumulated inclusion
probabilities sum to integers, so that Cki = i for any i = 1, . . . , n − 1, piv-
otal sampling is strictly equivalent to a one-per-stratum strati�ed sampling
design.

3.2 Some preliminary results

We derive some properties which are needed to establish the asymptotic
normality of the HT-estimator, by following the approach in Ohlsson (1986).
Let σ(X) denote the σ-�eld generated by some random X. We introduce the
following σ-�elds:

F0 = σ(τ),

Fi = σ(τ, S1, F1, L1, . . . , Si, Fi, Li) for i = 1, . . . , n. (10)
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Conditioning on the σ-�eld Fi amounts to conditioning on all the random
events, up to those in the microstratum Ui. We �rst state in Proposition 1
that the HT estimator is a sum of martingale increments. The proof of this
proposition is given in Appendix A.

Proposition 1. We can write

t̂yπ − ty =
n∑
i=1

ξi where ξi = y̌Fi + biy̌Li −

∑
k∈U ′i

αiky̌k + biy̌ki

 , (11)

and where U ′i = {Li−1, ki−1 + 1, . . . , ki − 1, ki}. Also, {ξi; i = 1, . . . , n}
is a martingale di�erence sequence with respect to the �ltration {Fi; i =
0, . . . , n}.

We note

ηi =
ξi√

V{F0}(t̂yπ)
. (12)

We prove the martingale central-limit theorem for the HT-estimator by ap-
plying Proposition 4.1 in Ohlsson (1986), for which we need the following
conditions:

n∑
i=1

E{F0}|ηi|2+δ → 0 for some δ > 0, (13)

n∑
i=1

E{Fi−1}(η
2
i ) →Pr 1, (14)

and where →Pr stands for the convergence in probability. Under Assump-
tions (H1) and (H2), these conditions will follow from Propositions 2 and 3.
The proof of Proposition 2 is given in Appendix B. The proof of Proposi-
tion 3 is lengthy, and is therefore given in the Supplementary Material. We
also need to prove that the variance of the HT-estimator is not vanishing, in
the sense that its order of magnitude is O(N2 n−1). This will follow from
Proposition 4, whose proof is given in Appendix C.

Proposition 2. We have

E{F0}

(
n∑
i=1

ξ4i

)
≤ 16

{
2 +

1

1− πM

}{∑
l∈U

πl

(
y̌l −

ty
n

)4
}
. (15)
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Proposition 3. We have

V{F0}

{
n∑
i=1

V{Fi−1}(ξi)

}
≤ 8

{
3 +

2

1− πM

}{
2 +

1

1− πM

}∑
k∈U

πk

(
y̌k −

ty
n

)4

.(16)

Proposition 4. We have

V{F0}(t̂yπ) ≥ {1− πM}2


n∑
i=1

∑
k∈Ui

αik

(
y̌k −

∑
l∈Ui

αily̌l

)2
 . (17)

3.3 A martingale central-limit theorem

We can now formulate our main result. The proof is given in Appendix D.

Theorem 1. Suppose that the sample S is selected by means of pivotal sam-
pling, and that assumptions (H1)-(H3) hold. Then

t̂yπ − ty√
V{F0}(t̂yπ)

−→
L
N (0, 1), (18)

where −→
L

stands for the convergence in distribution.

From Theorem 1, an approximate two-sided 100(1−2α)% con�dence interval
for ty is thus given by [

t̂yπ ± u1−α
√
V{F0}(t̂yπ)

]
(19)

with u1−α the quantile of order 1−α of the standard normal distribution. In
practice, the variance of the HT-estimator in (19) needs to be replaced with
a variance estimator, which is discussed in Section 3.4.

3.4 Variance estimation

Two customary choices for variance estimation for a �xed-size sampling de-
sign are the Sen-Yates-Grundy (SYG) variance estimator

vSY G(t̂yπ) =
1

2

∑
k 6=l∈S

πkπl − πkl
πkl

(y̌k − y̌l)2, (20)
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or the Horvitz-Thompson (HT) variance estimator

vHT (t̂yπ) =
∑
k,l∈S

πkl − πkπl
πkl

yk
πk

yl
πl
, (21)

with πkl the probability that units k and l are selected jointly in the sample.
These two variance estimators are unbiased if and only if all the second-
order inclusion probabilities are strictly positive. Otherwise, vSY G(t̂yπ) is
biased downwards, while vHT (t̂yπ) is biased upwards for a variable of interest
with positive values.

In case of pivotal sampling, many second-order inclusion probabilities are
equal to 0, since in particular two non cross-border units inside a same mi-
crostratum Ui may not be selected together in the sample. Both the SYG
variance estimator and the HT variance estimator may therefore be severely
biased. Another drawback is that the second-order inclusion probabilities
are required. Computing these probabilities is possible for ordered pivotal
sampling (see Chauvet, 2012), but this requires the knowledge of the original
ranking τ and of the �rst-order inclusion probabilities for all the units in
U . Consequently, this computation may be impossible for a data user with
limited knowledge of the sampling frame.

We propose an alternative variance estimator which does not make use of
the second-order inclusion probabilities. This variance estimator is

vDIFF (t̂yπ) =

bn/2c∑
i=1

(1 + δi)
(
y̌F2i
− y̌F2i−1

)2
+
(
y̌Fn − y̌Fn−1

)2
1(n is odd),

where δi =
b2i−1c2i−1 + c2i

1− c2i
, (22)

where the quantities bi and ci are given in equations (3) and (4), where b·c
stands for the integer part, and where 1(·) stands for the indicator function.
Roughly speaking, the ith term of the sum in equation (22) accounts for the

variance in the microstrata U2i−1 and U2i, and
(
y̌Fn − y̌Fn−1

)2
is a correction

term to account for the variance in the last microstratum Un if n is odd.

Theorem 2. We have

E{F0}{vDIFF (t̂yπ)} ≥ V{F0}(t̂yπ). (23)
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The proof of Theorem 2 is given in Appendix E. The proposed variance esti-
mator enables to compute conservative con�dence intervals. The multinomial
variance estimator

vMULT (t̂yπ) =
n

n− 1

∑
k∈S

(
yk
πk
− t̂yπ

n

)2

(24)

is another possible conservative variance estimator, see Chauvet (2017). The
proposed variance estimator vDIFF (t̂yπ) better accounts for the features of
the sampling design, and we therefore expect it to be less conservative. This
will be evaluated in Section 5 through a simulation study. From a close look
at the proof of Theorem 2, the bias of vDIFF (t̂yπ) will be small if the means in
consecutive microstrata are close, in the sense that for any i = 1, . . . , bn/2c:∑

k∈U2i−1

α2i−1,ky̌k '
∑
k∈U2i

α2i,ky̌k. (25)

In many situations, the proposed variance estimator may be further simpli�ed
by omitting the factors δi. It can be shown that

δi ≤
π2
M(1 + πM)

2(2− πM)
, (26)

where πM is the maximum inclusion probability, see equation (1). The proof
of equation (26) is given in the Supplementary Material. Consequently, with
moderately large inclusion probabilities no greater than 0.35, the factors δi
will be no greater than 0.05. In such case, they may be safely ignored which
leads to the simpli�ed variance estimator

vDIFF2(t̂yπ) =

bn/2c∑
i=1

(
y̌F2i
− y̌F2i−1

)2
+
(
y̌Fn − y̌Fn−1

)2
1(n is odd). (27)

This variance estimator only requires the knowledge of 1) the values of the
variable of interest for the selected units, along with their inclusion prob-
abilities, and 2) their rank of selection in the sampling process. It can be
therefore easily computed by a data user.
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4 Application to spatial sampling

The degree of spatial balance of a sampling design is very important in order
to limit a lack of e�ciency due to positive spatial auto-correlation between
units. The interest in spatial sampling has increased in the last decade, see
for example Stevens and Olsen (2004); Grafström et al. (2012); Grafström
and Tillé (2013); Dickson and Tillé (2016). It has led to applications in vari-
ous domains, including the drawing of primary sampling units in the context
of household surveys (see Favre-Martinoz and Merly-Alpa, 2017).

In Section 4.1, we give a brief overview of the Generalized Random Tesse-
lation Strati�ed (GRTS) sampling design. Though this sampling method is
popular in practice, some basic statistical results like the consistency of the
HT estimator and the asymptotic normality are di�cult to prove. There-
fore, we introduce a modi�cation in Section 4.2 that we call the Pivotal
Tesselation Method (PTM). By substituting pivotal sampling to systematic
sampling at the selection process, this new sampling algorithm makes sure
that the required statistical properties hold true. Also, it enables to signi�-
cantly reduce the computational time needed to select a sample, see Section
6 for an illustration.

4.1 The GRTS sampling design

The GRTS design (Stevens and Olsen, 2004) is one of the most popular spa-
tial sampling methods. It is suitable to select a sample in several situations,
including that of a �nite discrete population (e.g., trees within a forest), of a
linear continuous population (e.g., rivers), or of an areal continuous popula-
tion (e.g., forests or lakes). In this Section, we describe the GRTS design for
a discrete two-dimensional population. The main idea is to use some func-
tion that maps a two-dimensional space into one dimension, while preserving
some proximity relationships between units. A sample is then selected in the
one-dimensional space through systematic sampling.

To apply the GRTS design, the two-dimensional space under study is �rst
mapped to the unit square [0; 1] × [0; 1]. This unit square is then mapped
to a one-dimensional interval, by using a function f(·) which preserves two-
dimensional proximity relationships. For this purpose, Stevens and Olsen
(2004) propose to use quadrant-recursive functions (Mark, 1990) which en-
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sure that, when recursively decomposing a rectangular region into sub-quadrants,
the image of any sub-quadrant is an interval. In this case, the function f(·)
can be seen as the limit of successive intensi�cations of a grid covering the
unit square, where the square is divided into four sub-squares, each of which
being subsequently divided into four sub-squares, and so on. In Section 4.2,
we propose a simple way to obtain such tesselation of the unit square in cells,
by using the decomposition of a number in Bit code.

The quadrant-recursive function f(·) maps each cell to a so-called address,
which is a decimal number on the one-dimensional interval resulting from
the order in which the divisions are carried out. This mapping preserves the
proximity relationships between sampling units, in the sense that consecutive
cells in the two-dimensional space have consecutive addresses on the unit line.
Prior to sampling, the cells may then be randomized within each quadrant to
gain entropy in the selection process; a so-called hierarchical randomization
is obtained if the permutations are independent from one sub-quadrant to
another (Stevens and Olsen, 2004).

Finally, a sample of cells is selected through systematic sampling of addresses
on the line. Stevens and Olsen (2004) proved that the GRTS sampling design
matches the required �rst-order inclusion probabilities, and leads to a spa-
tially balanced sample. However, the statistical properties (a)-(c) are fairly
di�cult to prove when using a systematic sampling design, even when the
units are randomized.

4.2 The Pivotal Tessellation Method

We propose a modi�cation of the GRTS method where pivotal sampling is
used in replacement of systematic sampling. Like for the GRTS design, we
use some quadrant-recursive function to map the two-dimensional space into
one dimension, and a sample is then selected on a one-dimensional line by
means of pivotal sampling. This leads to the selection of a spatially balanced
sample, while matching the required �rst-order inclusion probabilities. Also,
from the results in Section 3, the HT-estimator is consistent and asymptot-
ically normally distributed, and a conservative variance estimator may be
easily produced.

We now present an e�cient way to obtain a tesselation of the space under
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study, by using the decomposition of a number in Bit code which is readily
obtained in R. The two-dimensional space is mapped by Euclidean transfor-
mations to the square [0, 231−1]× [0, 231−1]: only 31 out of the 32 positions
in the decomposition are useful, since the �rst position is always 0 for pos-
itive numbers. These 31 positions are successively considered, to obtain an
intensi�cation of the grid by subdividing each square previously obtained in
four sub-squares.

This division is obtained as follows: if some point in the square has coordi-
nates with on ith position (xi, yi) ∈ {0, 1}2, then the corresponding position
in the address is yi+2xi ∈ {0, 1, 2, 3}. For example, if we have on ith position
(xi, yi) = (1, 0), then the corresponding position in the address is 2. This
leads to an address in 31 positions. A cell may contain several sampling units,
but the proposed method leads to a very �ne tessellation with 431 ≈ 4.6 1018

addresses, making this case fairly unlikely. The proposed tessellation may be
easily generalized to spaces of dimension d ≥ 3, which can be of interest in a
factorial space, for example (Le Gleut, 2017).

The address in 31 positions that we obtain de�ne a mapping between the
two-dimensional space and a line which preserves the proximity relation-
ships between sampling units. A sample is obtained by applying the pivotal
method. Here again, the cells obtained in the tessellation may be random-
ized prior to sampling to gain entropy. However, the use of pivotal sampling
guarantees that the HT-estimator is consistent and asymptotically normally
distributed, even without this randomization.

4.3 An illustration of the proposed method

To �x ideas, we apply the proposed method on a small two-dimensional pop-
ulation. The whole process is given in Figure 2. The mapping of the space
on a square and the ranking of the units in the population is described in the
top part. The mapping on a one-dimensional line and the sample selection by
means of the pivotal method is described in the medium part. The mapping
back to the selected points in the original space is described in the bottom
part.

The population under study contains N = 16 units (�rst scheme from the
left, top part of Figure 2), where we wish to select a spatially balanced sam-
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ple of size n = 4 with equal inclusion probabilities πk = 1/4. This population
is mapped into a square (second scheme). In view of the small size of the
population, the �ne tessellation on the square [0, 231 − 1] × [0, 231 − 1] is
not required: to simplify the presentation, the population is mapped into
the square [0, 22 − 1] × [0, 22 − 1]. The coordinates of each point are then
considered, and the two �rst positions of their decomposition in Bit code are
used to obtain addresses ranging from 00 to 33 (third scheme). This de�nes
a path between the units in the square (fourth scheme).

The two-dimensional space is then mapped on a one-dimensional line of
length n = 4, where each point k is represented by a segment of length
πk, and where the addresses of the units de�ne their ranking on the line
(medium part of Figure 2). A sample of n points, represented as gray points,
is then selected by means of pivotal sampling. In this particular case, pivotal
sampling amounts to a one-per stratum strati�ed sampling design where each
stratum is made of four consecutive points. In this example, the addresses
01, 12, 21 and 32 are selected. For comparison, a similar sample selection
by means of the GRTS sampling design is described in the Supplementary
Material.

5 Simulation study

In this Section, we present some simulation results. We �rst use an arti�cial
population introduced in Example 5 of Grafström et al. (2012). We then
use the Meuse dataset available in the R package gstat, and considered in
Grafström and Tillé (2013). We compare the performances of the proposed
Pivotal Tessellation Method (PTM) with alternative spatial sampling de-
signs. The simulation set-up is described in Section 5.1. The results of the
simulation study for the two populations are given in Sections 5.2 and 5.3,
respectively.

5.1 Simulation set-up

The sampling designs that we consider as competitors are the Generalized
Random Tesselation Strati�ed sampling design (GRTS); the two versions of
the Local Pivotal Method (LPM1 and LPM2; see Grafström et al., 2012); the
pivotal method through Traveling Salesman Problem order (TSP; see Dick-
son and Tillé, 2016); and the Conditional Poisson Sampling design (CPS; see
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Hájek, 1964). In order to implement the pivotal method and the CPS design,
we use the R package Sampling. To solve the traveling salesman problem,
we use the algorithm "2-Opt" of the R package TSP. The GRTS design is
implemented through the R package spsurvey, and the LPM1 and LPM2
are implemented through the R package BalancedSampling.

In both simulation studies, we are interested in the spatial balance of the sam-
pling designs, using the approach of Voronoi polygons suggested by Stevens
and Olsen (2004). For a given sample s, the Voronoi polygon for some sam-
pled unit k includes all units in the population which are closer to k than to
any other sampled unit. The quantity

∆(s) =
1

n

∑
k∈s

(δk − 1)2 (28)

is used as a measure of spatial balance, with δk the sum of the inclusion
probabilities of all units in the polygon associated to k. If the sample is
spatially balanced, it is expected that all the δk's are close to 1, and that
∆(s) is small. From both populations, we select B = 10, 000 samples by
means of the PTM, GRTS, LPM1, LPM2, TSP and CPS. In each sample
sb, b = 1, . . . , 10, 000, we compute the quantity ∆(sb). As a measure of
spatial balance of the sampling design, we compute their Monte Carlo Mean

EMC(∆) =
1

B

B∑
b=1

∆(sb). (29)

In both simulation studies, we are also interested in the variance of the HT-
estimator which is evaluated by the Monte Carlo Variance

VMC(t̂yπ) =
1

B

B∑
b=1

{
t̂yπ(sb)−

1

B

B∑
c=1

t̂yπ(sc)

}2

, (30)

with t̂yπ(sb) the value of the HT-estimator evaluated on the sample sb, b =
1, . . . , 10, 000.

Finally, we are interested in comparing variance estimators for the proposed
PTM. To measure the performances of some variance estimator v(t̂yπ), we
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compute its Monte Carlo Mean

EMC{v(t̂yπ)} =
1

B

B∑
b=1

v{t̂yπ(sb)} (31)

where v{t̂yπ(sb)} denotes the variance estimator in the b-th sample. We also
compute the percent relative stability

RSMC{v(t̂yπ)} = 100×

[
B−1

∑B
b=1

{
v(t̂yπ(sb))− EMC(v(t̂yπ))

}2]1/2
VMC(t̂yπ)

.(32)

We compare the performance of the proposed simpli�ed variance estimator
vDIFF2 given in (27) with the Sen-Yates-Grundy (SYG) variance estimator
given in equation (20), and the Horvitz-Thompson (HT) variance estimator
given in equation (21). We also consider the Hájek-Rósen (HR) variance
estimator

vHR(t̂yπ) =
n

n− 1

∑
k∈S

(1− πk)
(
yk
πk
− R̂

)2

with R̂ =

∑
k∈S

yk
πk

(1− πk)∑
k∈S(1− πk)

. (33)

Finally, we consider strati�ed multinomial variance estimators

vMULTh(t̂yπ) =

p∑
i=1

h

h− 1

∑
k∈Si

(
yk
πk
− 1

h

∑
l∈Si

yl
πl

)2

. (34)

This is the variance estimator we would use if the population was strati�ed
into p = n/h strata, with selection of a sample Si of h units by multinomial
sampling inside the ith stratum. We compute vMULTh(t̂yπ) for several values
of h. The multinomial variance estimator in (24) is a particular case obtained
with h = n.

5.2 Results of the �rst simulation study

The �rst population that we consider is introduced in Example 5 of Graf-
ström et al. (2012). It is obtained by dividing the unit square according to a
regular 20×20 grid, resulting in a population of N = 400 units. For any unit
k, the variable of interest yk is the area within the cell under the function
f(x1, x2) = 3(x1 + x2) + sin{6(x1 + x2)}.
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Table 1: Monte Carlo Mean of the spatial balance and Monte Carlo Variance
of the Horvitz-Thompson estimator for Population 1

PTM GRTS LPM1 LPM2 TSP CPS

EMC(∆)
n = 16 0.07 0.12 0.08 0.09 0.11 0.33
n = 32 0.08 0.11 0.07 0.07 0.10 0.30
n = 48 0.09 0.11 0.07 0.07 0.10 0.29

VMC(t̂yπ) (×100)
n = 16 1.53 2.49 1.94 1.96 2.65 12.48
n = 32 0.39 0.89 0.54 0.57 0.65 6.18
n = 48 0.16 0.34 0.26 0.27 0.28 3.91

For comparability, we use the same simulation set-up than in Grafström et al.
(2012), selecting samples of size n = 16, 32 or 48 with equal probabilities.
Note that in case of sampling with equal probabilities, Conditional Poisson
Sampling amounts to simple random sampling. Stevens and Olsen (2004)
underlined that their method should perform better in terms of spatial bal-
ance for sample sizes which are multiples of 4. Therefore, this simulation
set-up is expected to be favorable for GRTS, and presumably for PTM.

The simulation results for the spatial balance and the variance of the HT-
estimator are given in Table 1. As expected, all sampling designs that use
spatial auxiliary information produce much more balanced samples than the
conditional Poisson sampling design which does not. PTM, LPM1 and LPM2
are the best methods in terms of spatial balance, with LPM1 performing
slightly better. The proposed PTM performs best in terms of variance.

The simulation results for the possible variance estimators for PTM are given
in Table 2. All variance estimators are biased, since the PTM leads to several
second order inclusion probabilities that are equal to zero. The HT variance
estimator is heavily positively biased, and the SYG variance estimator is
heavily negatively biased. For n = 16, the SYG variance estimator is equal
to zero because in this case, the sampling design amounts to strati�ed simple
random sampling of size 1 inside each stratum. Therefore, we have πkl = 0
for two units k and l in the same stratum, and πkl = πkπl otherwise.
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Table 2: Monte Carlo Mean and Relative Stability of the variance estimators
for Population 1

vHT vSY G vHR vDIFF2 vMULT2 vMULT4 vMULT

VMC(t̂yπ) (×100) EMC{v(t̂yπ)} (×100)
n = 16 1.53 66.57 0.00 13.26 5.46 5.40 6.63 13.82
n = 32 0.39 29.25 0.04 6.19 1.16 1.15 2.19 6.73
n = 48 0.16 17.12 0.03 3.91 0.36 0.35 0.56 4.45

RSMC{v(t̂yπ)}
n = 16 306 0 93 149 150 90 97
n = 32 745 18 94 104 107 111 101
n = 48 1499 17 95 71 71 77 108

The �ve other variance estimators are all positively biased. Among them,
the proposed estimator vDIFF2 and the estimator vMULT2 perform similarly
and present the best results with the smallest bias. Their relative stability
is larger than that of vHR for small sample sizes, but is smaller for n = 48.
Overall, vHR is slightly better than vMULT , but the estimators vMULT2 and
vMULT4 are less biased with comparable or better stability.

5.3 Results of the second simulation study

The second population that we consider is the "Meuse" data set available in
the R package gstat. It gives locations and top soil heavy metal concentra-
tions (ppm) collected in a �ood plain of the river Meuse, sampled from an
area of approximately 15 m × 15 m. The variables that we consider are the
topographical map coordinates (x and y), the topsoil concentration in cad-
mium (cadmium), copper (copper), lead (lead) and zinc (zinc), the relative
elevation (elev) and the percentage of organic matter (om).

As explained by Grafström and Tillé (2013), this data set exhibits an im-
portant spatial correlation. The computation of Moran's I leads to the same
conclusion. The sampling design that we use consists in selecting 50 among
the N = 164 locations in the data set, with probabilities proportional to the
copper concentration. In view of the high correlations between the concen-
trations in heavy metals (see Figure 3), the variance for the estimation of the

21



cadmium

20 60 100 500 1500 5 10 15

0
10

20
80 copper

lead

10
0

50
0

50
0 zinc

elev

0
4

8

0 5 10

5
15

100 400 0 4 8

om

Figure 3: Scatter plot matrix of the variables in the Meuse data set

total of these variables is expected to be small.

The simulation results for the spatial balance and the variance of the HT-
estimator are given in Table 3. LPM1 and LPM2 produce the most balanced
samples, followed by GRTS and TSP, while PTM performs slightly worse.
Here again, all spatial sampling designs produce much more balanced sam-
ples than CP. In terms of variance, the �ve spatial sampling designs show
comparable results, with LPM1 and LPM2 performing slightly better.

The simulation results for the possible variance estimators for PTM are given
in Table 4. The HT-variance estimator is heavily positively biased, and the
SYG-variance estimator is negatively biased, as expected. The six other vari-
ance estimators are all positively biased, and among them vHR presents the
best results with the smallest bias and the smallest relative stability. Among
the �ve other estimators, the proposed estimator vDIFF2 and the estimator
vMULT2 perform similarly and present the smallest bias, but are slightly more
unstable. We observe that the variance estimators are particularly unstable
for zinc, the value of the fourth central moment for this variable being par-
ticularly huge in the data set.
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Table 3: Monte Carlo Mean of the spatial balance and Monte Carlo Variance
of the Horvitz-Thompson estimator for Population 2

PTM GRTS LPM1 LPM2 TSP CPS

EMC(∆)
0.18 0.16 0.13 0.14 0.16 0.29

VMC(t̂yπ)
zinc (×10−7) 2.06 2.03 1.98 2.00 2.02 2.14
lead (×10−5) 5.79 5.77 5.33 5.42 5.63 9.38

cadmium (×10−2) 5.14 5.83 5.93 5.77 5.88 7.92
elev (×10−3) 6.90 6.03 5.27 5.43 5.37 9.24
om (×10−3) 2.24 2.18 1.97 1.99 2.06 2.71

6 Computational time

In this Section, we compared the computational time needed to select a sam-
ple by means of spatial sampling designs. We worked on a remote server
Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz with 80 Go RAM. We used
various population sizes, with equal probabilities of πk = 1/10. The sam-
pling designs considered are the proposed PTM, GRTS, LPM1, LPM2 and
TSP. The coordinates x and y of the units in the population were generated
independently from a standard normal distribution.

The results are presented in Table 5, with NC (not computed) indicating
the cases where the computational resources were not su�cient to allow the
selection of a sample. We �rst note that TSP is not feasible for the medium
or the large population, while GRTS is not feasible for the large popula-
tion. The computational time for PTM, LPM1 and LPM2 is considerably
lower than that for GRTS, even in the small population. The computational
time for PTM is approximately the same than for LPM1 and LPM2 for the
small population, but is considerably reduced for the medium and the large
populations.
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Table 5: Computational time to select a sample for 5 spatial sampling designs
and 3 populations

Population size PTM GRTS LPM1 LPM2 TSP

N = 10, 000 0.3s 36.5s 1.4s 0.6s 18h30m
N = 100, 000 2s 1h30m 1m8s 43s NC
N = 1, 000, 000 21s NC 4h8m 1h26m NC

7 Conclusion

The pivotal method is widely used in spatial sampling designs since it avoids
selecting neighbouring units. It does not belong to the class of large entropy
sampling designs, and basic statistical properties such as the asymptotic nor-
mality of the Horvitz-Thompson estimator do not follow from general results
obtained for this type of sampling designs (Berger, 1998, 2011). In this pa-
per, we proved the asymptotic normality of the HT-estimator under mild
assumptions. We also proposed a very simple variance estimator which does
not require second-order inclusion probabilities. This variance estimator is
very simple to compute for a data user, and enables computing conservative
con�dence intervals.

Among the spatial sampling designs proposed in the literature, the General-
ized Random Tesselation Strati�ed (GRTS) sampling design is widely used
but its statistical properties have not been investigated. We proposed a
modi�cation of the GRTS sampling design, by replacing the systematic sam-
pling step with a pivotal sampling step. The proposed Pivotal Tesselation
Method (PTM) enjoys very good statistical properties, namely consistency
and asymptotic normality of the HT-estimator and availability of a very sim-
ple conservative variance estimator. Also, our simulation results indicate that
PTM is very competitive both in terms of spatial balance and of accuracy
of estimators. We also proposed a very e�cient way to obtain a tesselation
of the space under study with the proposed method. Among the spatial
sampling designs that we consider, PTM appears as the less computationally
intensive and enables selecting spatially balanced samples, even for very large
populations.
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The statistical properties established in Section 3 hold true for any population
to which ordered pivotal sampling is applied, after a ranking of the units with
respect to some criterion. This is in particular true for the pivotal method
through Traveling Salesman Problem (TSP), see Dickson and Tillé (2016).
However, our results do not hold for the Local Pivotal Method (LPM, see
Grafström et al., 2012), since the ranking of the units is not �xed in advance,
but varies during the sampling procedure. The study of similar statistical
properties for the LPM is a very challenging problem for the future.

8 Supplementary Material

The four supplemental �les are contained in a single archive.

README: description of the supplemental �les. (txt �le)

Functions: Functions for the tessellation of the space and the mapping in
one dimension. (R �le)

Example: An example of sample selection by means of the Pivotal Tessela-
tion Method (calls Functions). (R �le)

SuppMaterial: Additional proofs of results. (pdf �le)
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Appendix

A Proof of Proposition 1

Using the identity∑
k∈U ′i

αiky̌k = bi−1y̌Li−1
+

∑
ki−1<k<ki

αiky̌k + aiy̌ki ,

we can write

n∑
i=1

ξi =
n∑
i=1

(
y̌Fi + biy̌Li − bi−1y̌Li−1

)
+

n∑
i=1

 ∑
ki−1<k<ki

αiky̌k + (ai + bi)y̌ki

 .(35)

We �rst consider the �rst term in the right-hand side of (35), which we can
write as

n∑
i=1

(
y̌Fi + biy̌Li − bi−1y̌Li−1

)
=

n∑
i=1

y̌Fi +
n∑
i=1

(biy̌Li − bi−1y̌Li−1
)

= t̂yπ + (bny̌Ln − b0y̌L0)

= t̂yπ. (36)

We now consider the second term in the right-hand side of (35), which we
can write as

n∑
i=1

 ∑
ki−1<k<ki

αiky̌k + (ai + bi)y̌ki

 =
n∑
i=1

∑
ki−1<k≤ki

yk

= ty. (37)

By plugging (36) and (37) into (35), we obtain (11). Also, from equation (9),
we obtain

E{Li−1,Si}(y̌Fi + biy̌Li) = (1− ai)y̌Si + (ai + bi)y̌ki (38)
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and from the de�nition of ξi and Si, we obtain

E{Fi−1}(ξi) = E{Li−1}(ξi) = E{Li−1}E{Li−1,Si}(ξi)

= E{Li−1}

(1− ai)y̌Si −
∑

k∈U ′i\{ki}

αiky̌k

 = 0.

B Proof of Proposition 2

B.1 Preliminary Lemmas

The proofs are given in the Supplementary Material.

Lemma 1. We can write

ξi = bi(y̌Si − y̌Fi) +
∑
k∈U ′i

αik(y̌Fi − y̌k) (39)

= (1− bi)
∑
k∈U ′i

αik(y̌Fi − y̌k) + bi
∑
k∈U ′i

αik(y̌Si − y̌k). (40)

Lemma 2. For any convex function φ, we have:

φ(ξi) ≤ (1− bi)
∑
k∈U ′i

αikφ(y̌Fi − y̌k) + bi
∑
k∈U ′i

αikφ(y̌Si − y̌k),(41)

E{Li−1}φ(ξνi) ≤
∑
k,l∈U ′i

αikαilφ(y̌l − y̌k). (42)

Lemma 3. For any i ≤ j = 1, . . . , n, we note ci = aibi
(1−ai)(1−bi) , and

c(i, j) =

{
1 if j = i,∏j−1

l=i cl if j > i.
(43)

We have

n∑
j=i

c(i, j) ≤ 1 +
1

1− πM
and

j∑
i=1

c(i, j) ≤ 1 +
1

1− πM
. (44)

Lemma 4. We note z for some variable of interest, and z+l = max(zl, 0).
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Then

E{F0}

(
n−1∑
j=1

bjzLj

)
≤

{
1 +

1

1− πM

}∑
l∈U

πlz
+
l . (45)

B.2 Proof of Proposition 2

We can write

n∑
i=1

E{F0}(ξ
4
i ) = E{F0}

[
n∑
i=1

E{F0,Li−1}(ξ
4
i )

]
. (46)

Applying equation (42) in Lemma 2 with φ(x) = x4, we obtain

n∑
i=1

E{F0}(ξ
4
i ) ≤ E{F0}

 n∑
i=1

∑
k,l∈U ′i

αikαil(y̌l − y̌k)4


= E{F0}

 n∑
i=1

∑
k,l∈U ′i

αikαil

{(
y̌l −

ty
n

)
−
(
y̌k −

ty
n

)}4


≤ 16E{F0}

 n∑
i=1

∑
k,l∈U ′i

αikαil

(
y̌k −

ty
n

)4


= 16E{F0}

 n∑
i=1

∑
k∈U ′i

αik

(
y̌k −

ty
n

)4
 . (47)

We note zk =
(
y̌k − ty

n

)4
. From equation (47), we obtain

n∑
i=1

E{F0}(ξ
4
i ) ≤ 16E{F0}

[
n∑
i=1

{
bi−1zLi−1

+
∑
k∈Ui

αikzk

}]

≤ 16

{
E{F0}

(
n∑
i=1

bi−1zLi−1

)
+
∑
l∈U

πlzl

}
. (48)

By applying Lemma 4, we obtain

E{F0}

(
n∑
i=1

ξ4i

)
≤ 16

{
2 +

1

1− πM

}{∑
l∈U

πl

(
y̌l −

ty
n

)4
}
.
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C Proof of Proposition 4

C.1 Preliminary Lemma

The proof is given in the Supplementary Material.

Lemma 5. We have

V{Li−1}(ξi) =
∑

k<l∈U ′i\{ki}

αikαil(y̌k − y̌l)2

+
1− ai − bi

1− ai

∑
k∈U ′i\{ki}

αikai(y̌k − y̌ki)2. (49)

C.2 Proof of Proposition 4

Since the ξi's de�ne a martingale di�erence sequence with respect to the
�ltration {Fi; i = 0, . . . , n}, we have E{Fi−1}(ξi) = 0, which leads to

V{F0}(t̂yπ) =
n∑
i=1

V{F0}(ξi) =
n∑
i=1

E{F0}V{Fi−1}(ξi). (50)

From Lemma 5, we obtain

V{Fi−1}(ξi) ≥ (1− ai − bi)

 ∑
k<l∈U ′i\{ki}

αikαil(y̌k − y̌l)2

+
∑

k∈U ′i\{ki}

αikai(y̌k − y̌ki)2


= (1− ai − bi)
∑
k,l∈U ′i

αikαil(y̌k − y̌l)2

= (1− ai − bi)
∑
k∈U ′i

αik

y̌k −∑
l∈U ′i

αily̌l

2

. (51)
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Since Li−1 = ki−1 with probability 1−ai−1−bi−1

1−bi−1
, we obtain from (51)

E{F0}V{Fi−1}(ξi) ≥
(1− ai−1 − bi−1)(1− ai − bi)

1− bi−1

∑
k∈Ui

αik

(
y̌k −

∑
l∈Ui

αily̌l

)2

≥
{

1−max
k∈U

πk

}2
{∑
k∈Ui

αik(y̌k −
∑
l∈Ui

αily̌l)
2

}
. (52)

From (50) and (52), we obtain (17).

D Proof of Theorem 1

From Proposition 4.1 in Ohlsson (1986), it is su�cient to prove that the
sequence {ηi; i = 1, . . . , n} ful�lls equations (13) and (14). We �rst note
that from Propositions 2-4 and from Assumptions (H1)-(H3), we obtain

E{F0}

(
n∑
i=1

ξ4i

)
= O

(
N4

n3

)
, (53)

V{F0}

{
n∑
i=1

V{Fi−1}(ξi)

}
= O

(
N4

n3

)
, (54)

V{F0}(t̂yπ) ≥ C2 {1− f1}2
N2

n
. (55)

From equations (53) and (55) we have

n∑
i=1

E{yU}(η
4
i ) = O(n−1), (56)

and equation (13) holds with δ = 2. From equations (55) and (57):

V{F0}

{
n∑
i=1

VFi−1
(ηi)

}
= O(n−1), (57)

and since E{F0}
{∑n

i=1 VFi−1
(ηi)
}

= 1, we obtain (14).
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E Proof of Theorem 2

E.1 Preliminary Lemmas

The proofs of Lemmas 6, 7 and 9 are given in the Supplementary Material.
The proof of Lemma 8 follows from straightforward computations, and is
therefore omitted.

Lemma 6. We have

V{Fi−1}(ξi) ≤
{

1− aibi
1− ai

}∑
k∈U ′i

αik(y̌k − ¯̌yU ′i )
2 where ¯̌yU ′i =

∑
k∈U ′i

αiky̌k. (58)

Lemma 7. Let m denote some quantity which is non-random, conditionally
on Li−1. Then:

V{Fi−1}(ξi) + E{Fi−1}V{Fi}(ξi+1) ≤ {1 + cibi}

∑
k∈U ′i

αik(y̌k −m)2 +
∑

k∈Ui+1

αi+1,k(y̌k −m)2

 ,(59)

where ci = aibi
(1−ai)(1−bi) .

Lemma 8. Conditionally on Li−1, {Fi, Fi+1} is a pivotal sample selected in
U ′i ∪ Ui+1 with inclusion probabilities

π′k =


αik(1− cici+1) for k ∈ U ′i \ {ki},
ai + bi − (1−ai−bi)bici+1

1−bi for k = ki,

αi+1,k(1− ci+1) for k ∈ Ui+1 \ {ki, ki+1},
ai+1

1−bi+1
for k = ki+1.

(60)

Lemma 9. We have

E{Fi−1}
{

(y̌Fi − y̌Fi+1
)2
}
≥ {1− ci+1}

∑
k∈U ′i

αik(y̌k −m1)
2 +

∑
k∈Ui+1

αi+1,k(y̌k −m1)
2

 ,(61)

where

m1 =
1

2

∑
k∈U ′i∪Ui+1

yk
π′k
πk
, (62)

and where the π′k's are given in (60).
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E.2 Proof of Theorem 2

We can use equation (50) to write

V{F0}(t̂yπ) = E{F0}


bn/2c∑
i=1

V{Fi−1}(ξi) + E{Fi−1}V{Fi}(ξi+1)


+ E{F0}V{Fn−1}(ξn)1(n is odd). (63)

If n is even, equation (23) follows directly from Lemmas 7 and 9. If n is odd,
we note that f(x) = E{Fn−1}(y̌Fn − x)2 is minimized for x = E{Fn−1}(y̌Fn , so
that

V{Fn−1}(ξn) ≤ E{Fn−1}(y̌Fn − y̌Fn−1)
2, (64)

which completes the proof.
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