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SPECTRUM OF A LINEAR DIFFERENTIAL EQUATION OVER A FIELD OF

FORMAL POWER SERIES

TINHINANE A. AZZOUZ

Abstract. In this paper we associate to a linear differential equation with coefficients in the field of

Laurent formal power series a new geometric object, a spectrum in the sense of Berkovich. We compute

this spectrum and show that it contains interesting informations about the equation.

1. Introduction

Differential equations constitute an important tool for investigation of algebraic and analytic varieties.
Among ways to look for solutions of such equations, the study of formal Taylor solutions of the equation
around singular and regular points and the computation of their radii of convergence plays an important
role. This leads in particular to the study of differential equations with coefficients in the field of Laurent
formal power series. In this special case, we have interesting classification results. Before discussing in
more details these results, we shall fix the setting.

Let k be a field of characteristic 0. We set k((T )) to be the field of Laurent formal power series.
Consider the differential field (k((T )), T d

dT). We mean by a differential equation with coefficients in k((T ))

a differential module (M,∇) over (k((T )), T d
dT). The main fondamental classification results are the

following:

(1) Decomposition theorem according to the slopes. Considering the T -adic valuation of the coeffi-
cients of the operator ∇ in a cyclic basis, we can associate a Newton polygon, called formal.
The formal slopes of (M,∇) are the slopes of this polygon. The decomposition theorem is the
following.

Theorem 1.1 ([DMR07, p. 97-107]). Let γ1 < · · · < γµ be the slopes of the formal Newton
polygon of (M,∇), with multiplicity n1, · · · , nµ respectively. Then

(M,∇) =

µ⊕

i=1

(Mγi
,∇γi

),

where Mγi
has dimension ni and a unique slope γi with multiplicity ni.

(2) The Turrittin-Levelt-Hukuhara decomposition theorem [Kat70], [Rob80], [Ked10]. It claims that
for any differential module (M,∇), there exists a suitable finite extension k′((T

1
n )) of k((T )) for

which the pull-back of (M,∇) with respect to this extension is an extension of differential modules
of rank one.

In this paper we propose a new geometric invariant for differential modules over (k((T )), T d
dT), a

spectrum in the sense of Berkovich. We will compute this spectrum and show that it contains interesting
information about the equation. For this purpose we will use the classification results listed above. Before
announcing the main result of the paper, we shall recall quickly the notion of the spectrum in the sense
of Berkovich.

Recall that for an element f of a non-zero k-algebra E with unit, the classical spectrum of f is the set

{a ∈ k; f − a.1E is not invertible in E}.
1
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This set may be empty, even if E is a k-Banach algebra. To deal with this issue Berkovich proposed to
consider the spectrum not as a subset of k, but as a subset of the analytic affine line A

1,an
k (which is a

bigger space than k)[Ber90, Chapter 7]. Let E be a non-zero k-Banach algebra and f ∈ E. The spectrum
Σf,k(E) of f in the sense of Berkovich is the set of points of A1,an

k that correspond to a pair (Ω, c), where
Ω is a complete extension of k and c ∈ Ω, for which f⊗1−1⊗c is not invertible in E⊗̂kΩ. This spectrum
is non-empty, compact and satisfies other nice properties (cf.[Ber90, Theorem 7.1.2]).

Let (M,∇) be a differential module over (k((T )), T d
dT). Let r > 0 be a real positive number. From

now on we endow k((T )) with the T -adic absolute value given by

(1.1) |
∑

i≥N

aiT
i| := rN ,

if aN 6= 0. In this setting k((T )) is a complete valued field and the induced valuation on k is the trivial
valuation. From now on we endow k with the trivial valuation. We can endow M with k((T ))-Banach
structure, moreover it induces a k-Banach structure for which ∇ : M → M is a bounded operator. As
in our previous work [Azz18], the spectrum Σ∇,k(Lk(M)) of (M,∇) will be the spectrum of ∇ as an
element of the k-Banach algebra Lk(M) of bounded endomorphism of M with respect to operator norm.

Notice that we cannot use the classical index theorem of B. Malgrange [Mal74] to compute neither
the spectrum in the sense of Berkovich nor the classical spectrum of ∇. Indeed, it is relatively easy
to show that any non trivial rank one connection on k((T )) is set-theoretically bijective. However, the
set-theoretical inverse of the connection may not be bounded. This is due to the fact that the base field
k is trivially valued and Banach open mapping theorem does not hold in this setting.

For any positive real number l, we set x0,l to be the point of A1,an
k associated to l-Gauss norm on k[T ]

(i.e.
∑

i aiT
i 7→ maxi |ai|l

i). The main result of the paper is the following:

Theorem 1.2. Assume that k is algebraically closed. Let (M,∇) be a differential module over (k((T )), T d
dT).

Let {γ1, · · · , γν} be the set of the slopes of (M,∇) and let {a1, · · · , aµ} be the set of the exponents of the
regular part of (M,∇). Then the spectrum of ∇ as an element of Lk(M) is:

Σ∇,k(Lk(M)) = {x0,r−γ1 , · · · , x0,r−γν } ∪

µ⋃

i=1

(ai + Z).

This result clearly shows the importance of the points of the spectrum that are not in k. Indeed,
form these points we can recover the slopes without multiplicity of the differential module. On other the
hand, although differential modules over (k((S)), S d

dS) are algebraic objects, their spectra in the sense of
Berkovich depend highly on the choice of the absolute value on k((S)).

The paper is organized as follows. Section 2 is devoted to providing setting and notation. It is divided
into three parts, the first one is to recall the notion of differential module. In the second one, we recall
the definition of the analytic affine line A

1,an
k , and give, in the setting of the paper, a precise topological

description for disks and annuli of A1,an
k . In the last part, we recall the definition of the spectrum in the

sense of Berkovich and give some properties.
In Section 3, we introduce the spectrum of a differential module and recall some properties given in

[Azz18]. We also show how the spectrum of a differential module behaves after ramified ground field
extension. In the end of the section we recall the definition of the formal Newton polygon.

Section 4 is devoted to announcing and proving the main result of the paper. Using the decomposition
theorem according to the slopes, we can reduce the probleme to the computation of the spectrum of
regular singular differential modules and differential modules without regular part. The spectrum of a
regular singular module is mainly obtained by the computation of the spectrum of T d

dT as an element
of Lk(k((T ))). For differential modules without regular part, we reduce the computation of the spec-
trum to the case of differential modules of rank one. This is possible by using Turrittin-Levelt-Hukura
decomposition theorem and the behaviour of the spectrum after ramified ground field extension.
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2. Definitions and notations

All rings are with unit element. We will denote by R the field of real numbers, by Z the ring of integers
and by N the set of natural numbers. We set

R+ := {r ∈ R; r ≥ 0}.

In all the paper we fix (k, |.|) to be an algebraically closed trivially valued field of characteristic 0. Let
E(k) be the category whose objects are (Ω, |.|Ω), where Ω is a field extension of k, complete with respect
to the valuation |.|Ω, and whose morphisms are isometric rings morphisms. For (Ω, |.|Ω) ∈ E(k), we fix

an algebraic closure Ωalg of Ω. The absolute value |.|Ω extends uniquely to Ωalg. We denote by Ω̂alg the
completion of Ωalg with respect to this absolute value.

2.1. Differential modules. Let F ∈ E(k) and d be a k-linear derivation on F . Consider the differential
field (F, d). A differential module (M,∇) over (F, d) of rank n ∈ N is an F -vector space M of dimension
n together with a k-linear map ∇ : M → M , called connection of M , satisfying ∇(fm) = df.m+ f.∇(m)
for all f ∈ F and m ∈ M . If we fix a basis of Mthe operator ∇ is given in the induced basis {e1, · · · , en}
by the formula:

(2.1) ∇



f1
...
fn


 =



df1
...

dfn


+G



f1
...
fn




where G ∈ Mn(F ) is the matrix that whose i column is the vector ∇(ei). Conversely the datum of such
matrix defines a differential module structure on M by the formula (2.1).

A morphism between differential modules is a k-linear map M → N commuting with connections.

Notation 2.1. We denote by d-Mod(F ) the category of differentiel modules over (F, d) whose arrows
are morphisms of differential modules.

We set DF :=
⊕
i∈N

F.Di to be the ring of differential polynomials on D with coefficients in F , where

the multiplication is non-commutative and defined as follows: D.f = d(f) + f.D for all f ∈ A. Let
P (D) = g0 + · · ·+ gn−1D

n−1 +Dn be a monic differential polynomial. The quotient DF /DF .P (D) is an
F -vector space of dimension n. Equipped with the multiplication by D, it is a differential module over
(F, d). In the basis {1, D, . . . , Dn−1} the multiplication by D satisfies:

(2.2) D




f1

fn




=




df1

dfn




+




0 0 −g0

1 0 0

0

0

0 0 1 −gn−1







f1

fn




Proposition 2.2 (The cyclic vector theorem). Assume that d 6= 0. Let (M,∇) be a differential module
over (F, d). Then there exists P (D) ∈ DF such that (M,∇) ≃ (DF /DF .P (D), D).

Proof. See [Ked10, Theorem 5.7.2.]. �



4 TINHINANE A. AZZOUZ

Let (M1,∇1) and (M2,∇2) be two differential modules over (F, d) of rank n1 and n2. The tensor
product M1 ⊗M2 equipped with the connection:

(2.3) ∇ = ∇1 ⊗ 1 + 1⊗∇2

is a differential module over (F, d) of rank n1n2.

2.2. Analytic affine line. In this part we give basic notions related to the analytic affine line A
1,an
k in

the sense of Berkovich, and describe some analytic domains of A1,an
k that are helpful to describe spectra

of differential modules later.
We will consider k-analytic spaces in the sense of Berkovich (see [Ber90]). We denote by A

1,an
k the

affine analytic line over the ground field k. Recall that a point x ∈ A
1,an
k corresponds to a multiplicative

semi-norm |.|x on k[T ] (i.e. |0|x = 0, |1|x = 1, |P −Q|x ≤ max(|P |x, |Q|x) and |P ·Q|x = |P |x · |Q|x for
all P , Q ∈ k[T ]) whose restriction coincides with the absolute value of k.

Notation 2.3. Let c ∈ k and r ∈ R+. Denote by xc,r the point that corresponds to the semi-norm
(norm if r > 0)

(2.4)
k[T ] −→ R+∑n

i=0 ai(T − c)i 7→ maxi |ai|r
i .

Remark 2.4. Since (k, |.|) is trivially valued, any point of A1,an
k is a point of the form xc,r. The points of

the form xc,0 coincides with the element of k.

Notation 2.5. The set

px := {P ∈ k[T ]; |f |x = 0}

is a prime ideal of k[T ] and the semi-norm extends to a multiplicative norm on the fraction field
Frac(A/px)). We denote by H (x) the completion of Frac(A/px) with respect to |.|x, and by |.| the
absolute value on H (x) induced by |.|x.

Let Ω ∈ E(k). A nonzero k-algebra morphism χ : k[T ] → Ω is called a character of k[T ]. Let ∼ be the
equivalence relation defined as follows: let χ′ : k[T ] → Ω′ and χ′′ : k[T ] → Ω′′ be two characters,

χ′ ∼ χ′′ ⇔ ∃χ : k[T ] → Ω such that:

Ω′

k[T ]

χ′

77♥♥♥♥♥♥♥♥♥♥♥♥♥♥ χ
//

χ′′

''
PP

PP
PP

PP
PP

PP
PP

Ω

??⑦⑦⑦⑦⑦⑦⑦⑦

��
❅❅

❅❅
❅❅

❅❅

Ω′′

For any point x ∈ A
1,an
k we have a natural nonzero k-algebra morphism

χx : k[T ] −→ H (x)
P 7→ P (x)

.

This induces a bijection between A
1,an
k and the set of equivalence classes of characters of k[T ].

For a point xc,r ∈ A
1,an
k with r > 0 the field H (xc,r) can be described more concretely. The case

where r = 0 is trivial, indeed H (xc,0) ≃ k.
In the case where r < 1, the field H (xc,r) coincides with the field of Laurent formal power series



SPECTRUM OF A LINEAR DIFFERENTIAL EQUATION OVER A FIELD OF FORMAL POWER SERIES 5

(2.5) k((T − c)) :=




∑

i≥N

ai(T − c)i; ai ∈ k, N ∈ Z



 .

equipped with (T − c)-adic absolute value given by |
∑

i≥N ai(T − c)i| := rN , if aN 6= 0.
If r > 1, then H (xc,r) coincides with k(((T − c)−1)) equipped with the (T − c)−1-adic absolute value

given by |
∑

i≥N ai(T − c)−i| := r−N , if aN 6= 0.
Otherwise, H (xc,1) coincides with k(T ) equipped with the trivial absolute value.
Let Ω ∈ E(k) and c ∈ Ω. For r ∈ R+ \ {0} we set

D+
Ω(c, r) := {x ∈ A

1,an
Ω ; |T (x)− c| ≤ r}

and

D−Ω (c, r) := {x ∈ A
1,an
Ω ; |T (x)− c| < r}.

The point xc,r ∈ A
1,an
Ω corresponds to the disk D+

Ω(c, r), more precisely it does not depend on the of
the center c (cf. [Ber90, Section 1.4.4]).
Let c ∈ k. The map

(2.6)
[0,+∞) −→ A

1,an
k

r 7→ xc,r

induces an homeomorphism between [0,+∞) and its image. Since the valuation is trivial on k, we can
describe disks of A1,an

k as follows.

Notation 2.6. We denote by [xc,r,∞) (resp. (xc,r,∞)) the image of [r,∞) (resp. (r,∞)), by [xc,r, xc,r′ ]
(resp. (xc,r, xc,r′ ], [xc,r, xc,r′), (xc,r, xc,r′)) the image of [r, r′] (resp. (r, r′], [r, r′), (r, r′)).

Let c ∈ k and r ∈ R+. In the case where r < 1, we have

(2.7) D+
k (c, r) = [c, xc,r] D−k (c, r) = [c, xc,r).

If r > 1, recall that for all a ∈ k, xa,1 = x0,1 and we have

(2.8) D+
k (c, r) =

∐

a∈k

[a, x0,1)
∐

[x0,1, x0,r].

(2.9) D−k (c, r) =





[c, x0,1) if r = 1

∐
a∈k

[a, x0,1)
∐
[x0,1, x0,r) otherwise

.

For r1, r2 ∈ R+, such that 0 < r1 ≤ r2 we set

C+
Ω (c, r1, r2) := D+

Ω(c, r2) \D
−
Ω (c, r1)

and for r1 < r2 we set:

C−Ω (c, r1, r2) := D−Ω (c, r2) \D
+
Ω (c, r1).

We may suppress the index Ω when it is obvious from the context.
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Let X be an affinoid domain of A1,an
Ω , we denote by O(X) the Ω-Banach algebra of global sections of

X .
Since k is trivially valued, if r < 1 we have

(2.10) O(D+(c, r)) = k[[T − c]] := {
∑

i∈N

ai(T − c)i; ai ∈ k},

otherwise,

(2.11) O(D+(c, r)) = k[T − c].

In the both cases, the multiplicative norm on O(D+(c, r)) is :

(2.12) ‖
∑

i∈N

ai(T − c)i‖ = max
i∈N

|ai|r
i.

Let X = C+
Ω (c, r1, r2)

(2.13) O(C+
Ω (c, r1, r2)) =





∑

i∈N\{0}

ai
(T − c)i

; ai ∈ Ω, |ai|r
−i
1 → 0



⊕O(D+(c, r2)).

where ‖
∑

i∈N\{0}

ai

(T−c)i ‖ = maxi |ai|r
−i
1 and the sum above is equipped with the maximum norm.

In the case where Ω = k, for r2 < 1 we have

(2.14) O(C+(c, r1, r2)) = k((T − c)).

If r1 ≤ 1 ≤ r2, we have

(2.15) O(C+(c, r1, r2)) = k[T, (T − c)−1].

If r1 > 1, we have

(2.16) O(C+(c, r1, r2)) = k(((T − c)−1)).

Notation 2.7. Let X be an analytic domain of A1,an
k , and f ∈ O(X). We can see f as an analytic map

X → A
1,an
k that we still denote by f .

2.3. Berkovich spectrum. This part is devoted to recalling the definition of the spectrum in the sense
of Berkovich and the definition of the sheaf of analytic function with values in a k-Banach space over
an analytic space, given by V. Berkovich in [Ber90, Chapter 7]. We recall here also the most important
properties. We add in later sections some other properties that are necessary to compute the spectrum.

Definition 2.8. Let M and N be two k-Banach spaces. We defined a norm on the tensor product
M ⊗k N as follows:

(2.17)
‖.‖ : M ⊗k N −→ R+

f 7→ inf{maxi{‖mi‖M ·‖ni‖N}| f =
∑
i

mi ⊗ ni} .

We denote by M⊗̂kN the completion of the tensor product with respect to this norm.

Definition 2.9. Let E be k-Banach algebra with unit and f ∈ E. The spectrum of f is the set Σf,k(E)

of points x ∈ A
1,an
k such that the element f ⊗ 1 − 1 ⊗ T (x) is not invertible in the k-Banach algebra

E⊗̂kH (x). The resolvent of f is the function:

Rf : A1,an
k \ Σf,k(E) −→

∐
x∈A1,an

k
\Σf,k(E)

E⊗̂kH (x)

x 7−→ (f ⊗ 1− 1⊗ T (x))−1
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Remark 2.10. If there is no confusion we denote the spectrum of f , as an element of E, just by Σf .

Remark 2.11. The set Σf ∩ k coincides with the classical spectrum, i.e.

Σf ∩ k = {a ∈ k; f − a is not invertible in E}.

Definition 2.12. Let X be a k-affinoid space and B be a k-Banach space. We define the sheaf of analytic
functions with values in B over X to be the sheaf:

OX(B)(U) = lim
←−
V⊂U

B⊗̂kAV

where U is an open subset of X , V an affinoid domain and AV the k-affinoid algebra associated to V .

As each k-analytic space is obtained by gluing k-affinoid spaces (see [Ber90], [Ber93]), we can extend
the definition to k-analytic spaces.

Definition 2.13. Let E be a k-Banach algebra. The spectral semi-norm associated to the norm ‖.‖ of
E is the map:

(2.18)
‖.‖Sp : E −→ R+

f 7→ lim
n→+∞

‖fn‖
1
n

.

If ‖.‖Sp =‖.‖, we say that E is a uniform algebra.

This notion of spectrum satisfies the same properties of the classical spectrum in the complex case.

Theorem 2.14 ([Ber90, Theorem 7.1.2]). Let E be a non-zero k-Banach algebra and f ∈ E. Then:

(1) The spectrum Σf is a non-empty compact subset of A1,an
k .

(2) The radius of the smallest (inclusion) closed disk with center at zero which contains Σf is equal
to ‖f‖Sp.

(3) The resolvent Rf is an analytic function on P
1,an
k \Σf which is equal to zero at infinity.

Lemma 2.15 ([Azz18, Lemma 2.20]). Let E be a non-zero k-Banach algebra and f ∈ E. If a ∈

(A1,an
k \Σf)∩k, then the biggest open disk centred at a contained in A

1,an
k \Σf has radius R =‖(f−a)−1‖−1Sp .

Let M , N be two k-Banach spaces. Recall that a k-linear map ϕ : M → N is said to be bounded if

∃C ∈ R+, ∀m ∈ M ; ‖ϕ(m)‖ ≤ C‖m‖.

If moreover ϕ is an isomorphism and if ϕ−1 is bounded we say that it is bi-bounded isomorphism.

Notation 2.16. Denote By Lk(M,N) the k-algebra of bounded k-linear maps M → N . We set
Lk(M,M) := Lk(M).

The k-algebra Lk(M,N) equipped with the operator norm:

(2.19) ϕ 7→‖ϕ‖op := sup
m∈M\{0}

‖ϕ(m)‖

‖m‖

is a k-Banach algebra.

Lemma 2.17. Let E and E′ be two k-Banach algebras and ϕ : E → E′ be a bounded morphism of
k-algebras. If f ∈ E then we have:

Σϕ(f)(E
′) ⊂ Σf (E).

If moreover ϕ is a bi-bounded morphism then we have the equality.

Proof. Consequence of the definition. �
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The following Lemma allow us to compute the spectrum of a translate of a connection ∇ from the
spectrum of ∇. We will see that in Sections 3.2 and 4.1.

Let P (T ) ∈ k[T ], let E be a k-Banach algebra and let f ∈ E. We set P (f) to be the image of P (T )
by the morphism k[T ] → E, T 7→ f .

Lemma 2.18. We have the equality of sets:

ΣP (f) = P (Σf )

Proof. The proof is analogous to the proof [Bou07, p. 2]. �

3. Differential module over k((S)) and spectrum

In this section we recall some properties of a differential module (M,∇) over (F, d), where (F, d) is a
finite differential extension of (k((S)), S d

dS). We will recall also some general properties of the spectrum
associated to (M,∇), and show how it behaves under ramification of the indeterminate S.

Convention 3.1. We fix r ∈ (0, 1) and endow k((S)) with the S-adic absolute value given by |
∑

i≥N aiS
i| :=

rN , if aN 6= 0. In this setting the pair (k((S)), |.|) coincides with H (x0,r), where x0,r ∈ A
1,an
k .

Remark 3.2. The derivation S d
dS is bounded as an operator on k((S)).

3.1. Spectrum of differential modules. Recall that if F is a finite extension of k((S)) of degree m,
then we have F ≃ k((S

1
m )) [VS12, Proposition 3.3]. The absolute value |.| on k((S)) extends uniquely to

an absolute value on F . The pair (F, |.|) is an element of E(k) and can be identified with H (x
0,r

1
m
).

The derivation S d
dS extends uniquely to a derivation d on F , where d(S

1
m ) = 1

mS
1
m . Then (F, d) is a

finite differential extension of (k((S)), S d
dS ). Hence, the derivation d is also bounded as an operator on F .

Conversely, any finite differential extension of (k((S)), S d
dS) is obtained this way.

Let (F, d) be a finite differential extension of (k((S)), S d
dS ). Let (M,∇) be a differential module over

(F, d). In order to associate to this differential module a spectrum we need to endow M with a structure
of k-Banach space. By fixing a basis on M we can pull-back the structure of F -Banach space of Fn

equipped with the max norm to M . Any other choice of basis induces an equivalent F -Banach structure.
This induces a structure of k-Banach space on M . As ∇ satisfies the formula (2.1) and d ∈ Lk(M), we

have ∇ ∈ Lk(M). The spectrum of (M,∇) will be the spectrum of ∇ as an element of Lk(M), which we
denote by Σ∇,k(Lk(M)) (or just by Σ∇ if the dependence is obvious from the context). This spectrum
does not depend on the choice of a basis on M . Indeed, since the norms are equivalent, by Lemma 2.17
we obtain the equality of spectra.

Let ϕ : (M,∇) → (N,∇′) be a morphism of differential modules. If we endow M and N with structures
of k-Banach spaces then it induces a bounded k-linear map. In the case where ϕ is an isomorphism, then
it induces a bi-bounded k-linear isomorphism and according to Lemma 2.17 we have:

(3.1) Σ∇(Lk(M)) = Σ∇′(Lk(M))

This proves the following statement:

Proposition 3.3. The spectrum of a connection is invariant by bi-bounded isomorphisms of differential
modules.

Remark 3.4. We observe here that spectrum depends on the choice of the derivation. In this paper we
chose in particular the derivation S d

dS to compute the spectrum.

This spectrum behaves nicely under exact sequences and direct sums.



SPECTRUM OF A LINEAR DIFFERENTIAL EQUATION OVER A FIELD OF FORMAL POWER SERIES 9

Proposition 3.5. Let (M,∇), (M1,∇1) and (M2,∇2) be three differential modules over (F, d). If we
have two exact sequences of the form:

0 → (M1,∇1) → (M,∇) → (M2,∇2) → 0

0 → (M2,∇2) → (M,∇) → (M1,∇1) → 0.

Then we have Σ∇(Lk(M)) = Σ∇1(Lk(M1)) ∪ Σ∇2(Lk(M2)).

Proof. See [Azz18, Proposition 3.7] and [Azz18, Remark 3.8]. �

Corollary 3.6. Let (M,∇), (M1,∇1) and (M2,∇2) be three differential modules over (F, d). If we
suppose that (M,∇) = (M1,∇1)⊕ (M2,∇2), then we have Σ∇(Lk(M)) = Σ∇1(Lk(M1))∪Σ∇2(Lk(M2)).

Corollary 3.7. Let f ∈ F . Consider the differential module (M,∇) := (DF /DF .(D− f)n, D). Then we
have:

Σ∇(Lk(M)) = ΣS d
dS+f (Lk(F )).

3.2. Spectrum of a differential module after ramified ground field extension. In this section
we show how the spectrum of a differential module behaves after ramified ground field extensions.

Let (F, d) be a finite differential extension of (k((S)), S d
dS). Let m ∈ N such that F ≃ k((S

1
m )). Now, if

we set Z = S
1
m , then we have F = k((Z)) and d = Z

m
d
dZ . Note that we can see (F, Z

m
d
dZ) as a differential

module over (k((S)), S d
dS). In the basis {1, Z, · · · , Zm−1} we have:

(3.2)
Z

m

d

dZ




f1

fm




=




S d
dSf1

S d
dSfm




+




0 0 0

0 1
m

0

0 0 m−1
m







f1

fm




We have a functor:

(3.3)
IF
∗ : S d

dS − Mod(k((S))) −→ Z
m

d
dZ − Mod(F )

(M,∇) 7→ (IF
∗M, IF

∗∇)

where IF
∗M = M ⊗k((S)) F and the connection IF

∗∇ is defined as follows:

IF
∗∇ = ∇⊗ 1 + 1⊗

Z

m

d

dZ
.

Let (M,∇) be an object of S d
dS − Mod(k((S))) of rank n. If {e1, . . . , en} is a basis of M such that we

have:

∇



f1
...
fn


 =



S d

dSf1
...

S d
dSfn


+G



f1
...
fn


 ,

with G ∈ M(k((S))), then (IF
∗M, IF

∗∇) is of rank n and in the basis {e1 ⊗ 1, . . . , en ⊗ 1} we have:

(3.4) IF
∗∇



f1
...
fn


 =




Z
m

d
dZf1
...

Z
m

d
dZfn


+G



f1
...
fn


 .

We have also the functor:

(3.5)
IF∗ :

Z
m

d
dZ − Mod(F ) −→ S d

dS − Mod(k((S)))
(M,∇) 7→ (IF∗M, IF∗∇)
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where IF∗M is the restriction of scalars of M via k((S)) →֒ F , and ∇ = IF∗∇ are equal as k-linear maps.
If (M,∇) has rank equal to n, the rank of (IF∗M, IF∗∇) is equal to n.m.

Let (M,∇) be an object of S d
dS−Mod(k((S))) of rank n. The differential module (IF∗IF

∗M, IF∗IF
∗∇)

has rank nm. Let {e1, · · · , en} be a basis of (M,∇) and let G be the associated matrix in this basis.
Then the matrix associated to (IF∗IF

∗M, IF∗IF
∗∇) in the basis {e1 ⊗ 1, · · · , en ⊗ 1, e1 ⊗ Z, · · · , en ⊗

Z, · · · , e1 ⊗ Zm−1, · · · , en ⊗ Zm−1} is:



G 0 0

0 G+ 1
m · In

0

0 0 G+ m−1
m · In




.

Therefore we have the following isomorphism:

(3.6) (IF∗IF
∗M, IF∗IF

∗∇) ≃

m−1⊕

i=0

(M,∇+
i

m
).

As k-Banach spaces IF∗IF
∗M and IF

∗M are the same, and IF∗IF
∗∇ as a k-linear map coincides with

IF
∗∇. Therefore, we have

(3.7) ΣI∗
F
∇,k(Lk(I

∗
FM)) = ΣIF∗I∗

F
∇,k(Lk(IF∗I

∗
FM)).

By Lemma 2.18 and Corollary 3.6 we have:

(3.8) ΣIF ∗∇,k(Lk(IF
∗M)) =

m−1⋃

i=0

i

m
+Σ∇,k(Lk(M)).

3.3. Newton polygon and the decomposition according to the slopes. Let v : k((S
1
m )) → Z∪{∞}

be the valuation map associated to the S
1
m -adic valuation. Let P =

n∑
i=0

giD
i be an element of Dk((S)).

Let LP be the convex hull in R2 of the set of points

{(i, v(gi))| 0 ≤ i ≤ n} ∪ {(0, min
0≤i≤n

v(gi))}.

Definition 3.8 ([VS12, Definition 3.44]). The Newton polygon NP(P ) of P is the boundary of LP . The
finite slopes γi of P are called the slopes of NP(P ). The horizontal width of the segment of NP (P ) of
slope γi is called the multiplicity of γi.

Definition 3.9. A differential module (M,∇) over (k((S)), S d
dS ) is said to be regular singular if there

exists a basis for which G (cf. (2.1)) has constant entries (i.e G ∈ Mn(k)). We will call the eigenvalues
of such G the exponents of (M,∇).

Proposition 3.10. Let (M,∇) be a differential module over (k((S)), S d
dS). The following properties are

equivalent:

• (M,∇) is regular singular;
• There exists a differential polynomial P (D) with only one slope equal to 0 such that (M,∇) ≃

Dk((S))/Dk((S)).P (D);
• There exists P (D) = g0 + g1D + · · · + gn−1D

n−1 + Dn with gi ∈ k[[S]], such that (M,∇) ≃
(Dk((S))/Dk((S)).P (D), D);

• There exists P (D) = g0 + g1D + · · · + gn−1D
n−1 + Dn with gi ∈ k, such that (M,∇) ≃

(Dk((S))/Dk((S)).P (D), D);
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Proof. See [Ked10, Corollary 7.1.3] and [Chr, Proposition 10.1]. �

Proposition 3.11 ([Ked10, Proposition 7.3.6]). Let P (D) = g0 + g1D+ · · ·+ gn−1D
n−1 +Dn such that

gi ∈ k[[S]]. Then we have the isomorphism in S d
dS − Mod(k((S))):

(Dk((S))/Dk((S)).P (D), D) ≃ (Dk((S))/Dk((S)).P0(D)),

where P0(D) = g0(0) + g1(0)D + · · · gn−1(0)D
n−1 +Dn.

Remark 3.12. This proposition means in particular that for all f ∈ k[[S]] there exists g ∈ k((S))\ {0} such

that f −
S d

dS (g)

g = f(0). Indeed, by Proposition 3.11 we have (k((S)), S d
dS + f) ≃ (k((S)), S d

dS + f(0)).
This is equivalente to saying that there exists g ∈ k((S)) \ {0} such that

g−1 ◦ S
d

dS
◦ g + f = S

d

dS
+ f(0).

Definition 3.13. Let (M,∇) be an element of S d
dS − Mod(k((S))), and let P (D) ∈ Dk((S)) such that

(M,∇) ≃ (Dk((S))/Dk((S)).P (D), D). If all the slopes of P (D) are different from 0, then we say that
(M,∇) is without regular part.

Proposition 3.14. Let P ∈ Dk((S)) and γ a slope of P . Let ν be the multiplicity of γ. Then there exist
differential polynomials R, R′, Q and Q′ which satisfy the following properties:

• P = RQ = Q′R′.
• The degree of R and R′ is equal to ν, and their only slopes are γ with multiplicity equal to ν.
• All the slopes of Q and Q′ are different from γ.
• Dk((S))/Dk((S)).P = Dk((S))/Dk((S)).R⊕ Dk((S))/Dk((S)).Q = Dk((S))/Dk((S)).Q

′ ⊕ Dk((S))/Dk((S)).R
′.

Proof. See [Chr, Proposition 12.1] and [VS12, Theorem 3.48]. �

Corollary 3.15. Let (M,∇) be a differential module over (k((S)), S d
dS). Then we have decomposition in

S d
dS − Mod(k((S))):

(M,∇) = (Mreg,∇reg)⊕ (Mirr,∇irr)

where (Mreg,∇reg) is a regular singular differential module and (Mirr,∇irr) is a differential module without
regular part.

4. Spectrum of a differential module

In this section we compute the spectrum of a differential module (M,∇) over
(k((S)), S d

dS). The main statement of the paper is the following.

Theorem 4.1. Let (M,∇) be a differential module over (k((S)), S d
dS). Let {γ1, · · · , γν} be the set of

slopes of (M,∇) and let {a1, · · · , aµ} be the set of exponents of the regular part of (M,∇). Then the
spectrum of ∇ as an element of Lk(M) is:

Σ∇,k(Lk(M)) = {x0,r−γ1 , · · · , x0,r−γν } ∪

µ⋃

i=1

(ai + Z)

Remark 4.2. We observe that although differential modules over (k((S)), S d
dS) are algebraic objects, their

spectra in the sense of Berkovich depends highly on the choice of the absolute value on k((S)).

According to Corollary 3.15 we have the decomposition:

(M,∇) = (Mreg,∇reg)⊕ (Mirr,∇irr)

We know that Σ∇ = Σ∇reg
∪Σ∇irr

(cf. Corollary 3.6). Therefore, in order to obtain the main statement, it
is enough to know the spectrum of a regular singular differential module and the spectrum of differential
module without regular part.
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4.1. Spectrum of regular singular differential module. Let (M,∇) be a regular singular differential
module. The behaviour of the spectrum of ∇ is recapitulated in the following theorem.

Theorem 4.3. Let (M,∇) be a regular singular differential module over (k((S)), S d
dS). Let G a matrix

associated to ∇ with constant entries (i.e. G ∈ Mν(k)), and let {a1, · · · , aN} be the set of eigenvalues
of G. The spectrum of ∇ is

Σ∇,k(Lk(M)) =

N⋃

i=1

(ai + Z) ∪ {x0,1}.

Lemma 4.4 ([VS12, Proposition 3.12]). There exists a basis for which the set of the eigenvalues {a1, · · · , aN}
of G satisfies ai − aj 6∈ Z for each i 6= j.

In order to prove this Theorem, we use the following Proposition to reduce the computation of the
spectrum of S d

dS as an element of (k((S)),∇).

Proposition 4.5 ([Azz18, Proposition 3.15]). Let (M,∇) be a differential module over (k((S)), S d
dS) such

that:

∇



f1
...
fn


 =



df1
...

dfn


+G



f1
...
fn


 ,

with G ∈ Mn(k). The spectrum of ∇ is Σ∇,k(Lk(M)) =
N⋃
i=1

(ai + Σd,k(Lk(k((S))))), where {a1, . . . , aN}

are the eigenvalues of G.

We now compute the spectrum of S d
dS .

Lemma 4.6. The norm and spectral semi-norm of S d
dS as an element of Lk(k((S))) satisfy:

‖S
d

dS
‖ = 1, ‖S

d

dS
‖Sp = 1.

Proof. Since ‖S‖ = |S| = r and ‖ d
dS‖ = 1

r (cf. [Pul15, Lemma 4.4.1]), we have ‖S d
dS‖ ≤ 1. Hence also,

‖S d
dS‖Sp ≤ 1. The map

Lk(H (x)) −→ Lk(H (x))
ϕ 7→ S−1 ◦ ϕ ◦ S

is bi-bounded and induces change of basis. Therefore, as S−1 ◦ (S d
dS) ◦ S = S d

dS +1, we have ‖S d
dS‖Sp =

‖S d
dS + 1‖Sp. Since 1 commutes with S d

dS , we have:

1 =‖1‖Sp =‖S
d

dS
+ 1− S

d

dS
‖Sp ≤ max(‖S

d

dS
+ 1‖Sp, ‖S

d

dS
‖Sp).

Consequently, we obtain

‖S
d

dS
‖ =‖S

d

dS
‖Sp = 1.

�

Proposition 4.7. The spectrum of S d
dS as an element of Lk(k((S))) is equal to:

ΣS d
dS
(Lk(k((S)))) = Z ∪ {x0,1}

We will use the following lemma.
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Lemma 4.8 ([Azz18, Lemma 2.29]). Let M1 and M2 be k-Banach spaces and let M = M1⊕M2 endowed
with the max norm. Let p1, p2 be the respective projections associated to M1 and M2 and i1, i2 be the
respective inclusions. Let ϕ ∈ Lk(M)and set ϕ1 = p1ϕi1 ∈ Lk(M1) and ϕ2 = p2ϕi2 ∈ Lk(M2). If
ϕ(M1) ⊂ M1 , then we have:

i) Σϕi
(Lk(Mi)) ⊂ Σϕ(Lk(M)) ∪ Σϕj

(Lk(Mj)), where i, j ∈ {1, 2} and i 6= j.
ii) Σϕ(Lk(M)) ⊂ Σϕ1(Lk(M1)) ∪ Σϕ2(Lk(M2)). Furthermore, if ϕ(M2) ⊂ M2, then we have the

equality.
iii) If Σϕ1(Lk(M1)) ∩Σϕ2(Lk(M2)) = ∅, then Σϕ(Lk(M)) = Σϕ1(Lk(M1)) ∪Σϕ2(Lk(M2)).

Proof of Proposition 4.7. We set d := S d
dS and Σd−n := Σd−n,k(Lk(k((S)))). As ‖d‖Sp = 1 (cf. Lemma 4.6),

we have Σd ⊂ D+(0, 1).
Let a ∈ k∩D+(0, 1). If a ∈ Z, then we have (d−a)(Sa) = 0. Hence, d−a is not injective and Z ⊂ Σd.

As the spectrum is compact, we have Z ∪ {x0,1} ⊂ Σd. If a 6∈ Z, then d − a is invertible in Lk(k((S))).
Indeed, let g(S) =

∑
i∈Z biS

i ∈ k((S)). If there exists f =
∑

i∈Z aiS
i ∈ k((S)) such that (d − a)f = g,

then for each i ∈ Z we have

ai =
bi

(i − a)
.

For each i ∈ Z we have |ai| = |bi|. This means that f it is unique and converges in k((S)). We obtain also
|f | = |g|. Consequently, the set theoretical inverse (d− a)−1 is bounded and ‖(d− a)−1‖ = 1. Hence, we
have ‖(d− a)−1‖Sp = 1. According to Lemma 2.15, we have D−(a, 1) ⊂ A

1,an
k \ Σd.

Recall that D+(0, 1) =
⋃

a∈k[a, x0,1] (cf. (2.8)). In order to end the proof, it is enough to show that
(n, x0,1) ⊂ A

1,an
k \ Σd for all n ∈ Z. Let n ∈ Z. Then we have

k((S)) = k.Sn ⊕
⊕̂

i∈Z\{n}
k.Si.

The operator (d − n) stabilises both k.Sn and
⊕̂

i∈Z\{n}k.S
i. We set (d − n)|k.Sn = ∇1 and (d −

n)|⊕̂
i∈Z\{n}k.S

i = ∇2. We set Σ∇1 := Σ∇1,k(Lk(k.S
n)) and Σ∇2 := Σ∇2,k(Lk(

⊕̂
i∈Z\{n}k.S

i)). We have

∇1 = 0. By Lemma 4.8, we have:

Σd−n = Σ∇1 ∪ Σ∇2 = {0} ∪Σ∇2 .

We now prove that
D−(0, 1) ∩ Σ∇2 = ∅.

The operator ∇2 is invertible in Lk(
⊕̂

i∈Z\{n}k.S
i). Indeed, let g(S) =

∑
i∈Z\{n} biS

i ∈
⊕̂

i∈Z\{n}k.S
i. If

there exists f =
∑

i∈Z\{n} aiS
i ∈

⊕̂
i∈Z\{n}k.S

i such that ∇2(f) = g , then for each i ∈ Z \ {n} we have

ai =
bi

(i − n)
.

Since |ai| = |bi|, the element f exists and it is unique, moreover |f | = |g|. Hence, ∇2 is invertible in

Lk(
⊕̂

i∈Z\{n}k.S
i) and as a k-linear map it is isometric. Therefore, we have ‖∇−12 ‖Sp = 1. Hence, by

Lemma 2.15 D−(0, 1) ⊂ A
1,an
k \ Σ∇2 . Consequently, D−(0, 1) ∩ Σd−n = {0}. As Σd = Σd−n + n (cf.

Lemma 2.18), we have D−(n, 1) ∩ Σd = {n}. Therefore, for all n ∈ Z we have (n, x0,1) ⊂ A
1,an
k \ Σd and

the claim follows. �

4.2. Spectrum of a differential module without regular part. Recall the following Theorem, which
is the celebrated theorem of Turrittin. It ensures that any differential module becomes extension of rank
one differential modules after pull-back by a suitable ramified extension.
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Theorem 4.9 ([Tur55]). Let (M,∇) be a differential module over (k((S)), S d
dS). There exists a finite

extension F = k((S
1
m )) such that we have:

(4.1) (IF
∗M, IF

∗∇) =

N⊕

i=1

(DF /DF .(D − fi)
αi , D)

where fi ∈ k[[S−
1
m ]] and αi ∈ N.

Proof. See [VS12, Theorem 3.1]. �

Now, in order to compute the spectrum, we need the following result.

Proposition 4.10. Let f =
∑

i∈Z aiS
i
m an element of F := k((S

1
m )) and let (F,∇) be the differential

module of rank one such that ∇ = S d
dS + f . If v(f) < 1, then the spectrum of ∇ as an element of Lk(F )

is:
Σ∇,k(Lk(F )) = {x0,rv(f)}.

The following results are necessary to prove this proposition.

Lemma 4.11. Let Ω ∈ E(k). Consider the isometric embedding of k-algebras

Ω −→ Lk(Ω)
a 7→ b 7→ a.b

.

With respect to this embedding, Ω is a maximal commutative subalgebra of Lk(Ω).

Proof. Let A be a commutative subalgebra of Lk(Ω) such that Ω ⊂ A. Then each element of A is an
endomorphism of Ω that commutes with the elements of Ω. Therefore, A ⊂ LΩ(Ω) = Ω. Hence, we have
A = Ω. �

Lemma 4.12. Let Ω ∈ E(k) and πΩ/k : A1,an
Ω → A

1,an
k be the canonical projection. Let α ∈ Ω. The

spectrum of α as an element of Lk(Ω) is Σα(Lk(Ω)) = {πΩ/k(α)}.

Proof. By [Ber90, Proposition 7.1.4, i)], the spectrum of α as an element of Ω is the point which corre-
sponds to the character k[T ] → Ω, T 7→ α. Hence, Σα,k(Ω) = {πΩ/k(α)}. By Lemma 4.11 and [Ber90,
Proposition 7.2.4] we conclude. �

Lemma 4.13 ([Azz18, Lemma 2.3]). Let Ω ∈ E(k) and let M be a k-Banach space. Then, the inclusion
M →֒ M ⊗k Ω is an isometry. In particular, for all v ∈ M and c ∈ K we have ‖v ⊗ c‖ = |c|·‖v‖.

Proof of Proposition 4.10. We set d := S d
dS . We can assume that f =

∑
i∈N aiS

−i
m . Indeed, since

f = f− + f+ with f− :=
∑

i<0 aiS
−i
m and f+ :=

∑
i≥0 aiS

−i
m , according to Remark 3.12 there exists

g ∈ k((S
1
m )) such that f+ − a0 =

S d
dS (g)

g . Therefore, we have (k((S
1
m )),∇) ≃ (k((S

1
m )), S d

dS + f− + a0).
Since the point πF/k(f) corresponds to the character k[T ] → F , T 7→ f and F ≃ H (x

0,r
1
m
), it coincides

with f(x
0,r

1
m
)(cf. Notation 2.7). Moreover, we have f(x

0,r
1
m
) = x0,|f | = x0,rv(f) . By Lemma 4.12

Σf,k(Lk(F )) = {x0,rv(f)}. Let us prove now that Σ∇,k(Lk(F )) = {x0,rv(f)}. Let y ∈ A
1,an
k \ {x0,rv(f)}.

We know that f ⊗ 1 − 1 ⊗ T (y) is invertible in F ⊗̂kH (y), hence invertible in Lk(F )⊗̂kH (y). Since
d⊗ 1 = (∇⊗ 1− 1⊗ T (y))− (f ⊗ 1− 1⊗ T (y)), in order to prove that ∇⊗ 1− 1⊗ T (y) is invertible, it
is enough to show that

‖d⊗ 1‖ <‖(f ⊗ 1− 1⊗ T (y))−1‖−1.

In order to do so, since ‖d‖ =‖d ⊗ 1‖ = 1 (cf. Lemmas 4.13 and 4.6 ), it is enough to show that
1 <‖(f ⊗ 1 − 1 ⊗ T (y))−1‖−1. On the one hand, since F →֒ Lk(F ) is an isometric embedding, then so
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is F ⊗̂kH (y) → Lk(F )⊗̂kH (y) (cf. [Poi13, Lemme 3.1]). On the other hand, we have F ⊗̂kH (y) =

O(C+
H (y)(0, r

1
m , r

1
m )). Therefore, we have

‖(f ⊗ 1− 1⊗ T (y))−1‖−1 =‖f ⊗ 1− 1⊗ T (y)‖ = max(|f − a0|, |T (y)− a0|).

Consequently, we obtain 1 <‖(f ⊗ 1− 1⊗ T (y))−1‖−1 in F ⊗̂kH (y), hence in Lk(F )⊗̂kH (y). Since the
spectrum Σ∇,k(Lk(F )) is not empty, we conclude that Σ∇,k(Lk(F )) = {x0,rv(f)}. �

Proposition 4.14. Let (M,∇) be a differential module over (k((S)), S d
dS ) without regular part. The

spectrum of ∇ as an element of Lk(M) is:

Σ∇,k(Lk(M)) = {x0,rv(f1) , · · · , x0,rv(fN )}

where the fi are as in the formula (4.1).

Proof. We set Σ∇ := Σ∇,k(Lk(M)). By Theorem 4.9, there exists F = k((S
1
m )) such

(IF
∗M, IF

∗∇) =
N⊕

i=1

DF /DF .(D − fi)
αi

where fi ∈ k[[S−
1
m ]]. We set ΣIF ∗∇ := ΣIF ∗∇,k(Lk(IF

∗M)). Since (M,∇) is without regular part, we
have fi ∈ k[[S−

1
m ]] \ k. By Corollaries 3.6 and 3.7, we have:

ΣIF ∗∇ =
N⋃

i=1

ΣS d
dS+fi

(Lk(F )).

By Proposition 4.10, we have ΣS d
dS+fi

(Lk(F )) = {x0,rv(fi)}. Hence,

ΣIF ∗∇ = {x0,rv(f1) , · · · , x0,rv(fN )}.

By the formula (3.8), we have:

ΣIF ∗∇ =

m−1⋃

i=0

i

m
+Σ∇.

Since rv(fi) > 1 for all 1 ≤ i ≤ N , then each element of ΣIF ∗∇ is invariant by translation by j
m where

1 ≤ j ≤ m. This means that Σ∇ = Σ∇ + j
m . Therefore, we have ΣIF ∗∇ = Σ∇. �

Remark 4.15. Note that, it is not easy to compute the fi of the formula (4.1). However, the values −v(fi)
coincide with the slopes of the differential module (cf. [Kat87] and [VS12, Remarks 3.55]).

We now prove the main statement of the paper that summarizes all the previous results.

Proof of Theorem 4.1. According to Theorem 4.3, Proposition 4.14 and Remark 4.15 we obtain the result.
�
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