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Magneto-mechanical analysis of magnetic gear pole 
pieces ring from analytical models for wind turbine 

applications

M Desvaux1, B Multon1, H Ben Ahmed1 and S Sire2

Abstract

This article deals with the structural behavior of a multi-bar system which maintains pole pieces in a concentric magnetic gear. 

Simplified analytic magnetic and mechanical models of the system are proposed in order to be integrated in a multi-criteria global 

optimization for the sizing of a magnetic gear in wind power applications. For this purpose, the reduction of the computation time 

is taken into account. The geometry of the support bar subsystem is defined and a Q bar structure is proposed. The magnetic study 

is based on Maxwell’s equations and subdomain method in order to determine variable radial and tangential magnetic loads. The 

mechanical study is based on a multibody model with different bars stiffnesses which are determined from a one-dimensional model. 

Variable radial and tangential magneto-mechanical pole pieces loads (magnetic load and weight) are also considered. An example 

of a magnetic gear with 172 pole pieces (i.e. 6-MW wind turbine) is proposed to analyze the mechanical behavior and also the 

computation time.

Keywords
Analytical model, computation time, laminated pole pieces, magnetic gear, magnetic load,
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Introduction

The development of electricity production from renewable energy is currently expanding rapidly (IRENA, 2017). 

This development includes the conversion of wind energy resources from either onshore or offshore localization (Hau, 

2013; Lacal Arántegui and Serrano Gonzáles, 2015; Larsen et al., 2005; Larsen and Sønderberg Petersen, 2014). To 

perform an energy conversion from wind, different conversion chains are proposed from different wind turbine 

manufacturers (Larsen and Sønderberg Petersen, 2014). On one side, there are the indirect drive designs with multi-

stages of mechanical gears like the wind turbine SL-6000, a 6.0-MW wind turbine with three-stage mechanical gears, 

or the wind turbine V164, a 8.0-MW wind turbine with a single-stage mechanical gear (Larsen and Sønderberg 

Petersen, 2014). On the other side, there are the direct drive designs without mechanical gearbox like the wind turbine 

Haliade (6 MW) or E126 (7.5 MW) (Larsen and Sønderberg Petersen, 2014).

It has been shown that indirect drive designs provide a lower capital expenditure and lower masses than the direct 

drive designs and this becomes more critical when the power of the wind turbine increases, as for offshore wind 

turbines (Henriksen and Jensen, 2012; Polinder et al., 2006). In return, mechanical gearboxes induce production 

interruptions and repairs, which increase operating costs (Keller et al., 2016; Teng et al., 2016; Thor, 2008). Aiming to 

reduce the overall life cycle cost, a potential solution is to combine a generator with a magnetic gear in order to obtain a 

fully magnetic indirect drive designs (Desvaux et al., 2016; Matt et al., 2012). For these designs, an attractive topology of 

magnetic gear has been proposed by Martin (1968) and used in different studies (Atallah et al., 2008; Atallah and Howe, 

2001; Rasmussen et al., 2005; Wang et al., 2009).
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This concentric magnetic gear architecture shown in Figure 1 potentially offers a higher performance with a high torque 

density and a high reliability than mechanical gearboxes (Gouda et al., 2011) and even more for high-torque applications 

like offshore wind turbine (of the order of a few MN m and a few MW) with only magnetic part consideration (Matt et al., 

2012). However, no magneto-mechanical sizing has been done on this magnetic gear (with an approach similar than 

(Zavvos et al., 2011) for a wind turbine generator) and it seems to have weaknesses in terms of mechanical strength since 

some parts are subjected to variable radial and tangential loads from the magnetic field. Indeed, ferromagnetic pole pieces 

are very elongated structures laminated perpendicular to the axis of rotation (to minimize iron losses and conserve a high 

efficiency of the system) and subjected to a variable magnetic load.

The weakness of this part of the system raises the question of the possibility to maintain mechanically the laminated 

pole pieces without lessening the magnetic properties (therefore, without increasing air gaps and modifying magnetic 

field) in high-power wind turbine applications (i.e. high dimensions and high pole numbers of the magnetic gear). It is then 

necessary to evaluate the stiffness of the pole piece structure for different configurations. This evaluation must be done in 

a global multi-criteria mechatronic optimization.

The major contribution of this work is the definition of analytical models (based on subdomain method in magnet-

ism and multibody model in mechanics) of the pole pieces ring in order to evaluate quickly different mechanical criteria 

based on displacement and stress distributions and evolutions. These analytical models do not consider the coupling 

between magnetic loads and displacement (due to the low value of displacement) and could be integrated in a multi-

criteria mechatronic optimization of a magnetic gear for wind turbine applications.

Design of the pole pieces ring

As shown in Figure 1, the magnetic gear is composed of three rings: a ring with pLPN  low pole number of pole pairs of 

permanent magnets and a ferromagnetic yoke, a ring with pHPN  high pole number of pole pairs of permanent magnets and a 

ferromagnetic yoke, a ring with Q ferromagnetic pole pieces (an example is given in Figure 1 with pLPN = 20 , pHPN =131 ,

and Q =151 ). To achieve the power transmission, three rings’ pole numbers must respect equation (1) (Atallah et al., 2004).

When the pole pieces ring is fixed, the gear ratio G
m

 is given by equation (2) (Atallah et al., 2004)

p p QHPN LPN+ = (1)

G
p

p
m

HPN

LPN

= − (2)

The rotation of the two permanent magnet rings generates two rotating magneto-motive forces. Pole pieces are then 

subjected to a rotating flux density which imposes to laminate the pole pieces in order to reduce iron losses (Desvaux 

et al., 2017b; Rasmussen et al., 2011). The rotating flux also generates variable radial and tangential loads on different 

pole pieces (Filippini and Alotto, 2017). Pole pieces must then be supported by a multi-bar system which must resist to 

the transmitted magneto-mechanical loads. For high-power applications like offshore wind turbine, the number of pole 

increases with the diameter. A consequence can be a decrease in the structure rigidity.

Figure 1. Part of the magnetic region of a magnetic gear.
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To support the laminated pole pieces of the magnetic gear, the support bar geometry shown in Figure 2 is proposed. 

The support bars are composed of a massive magnetic insulator steel and a magnetic and electrical insulator skin. These 

support bars do not lessen the magnetic density of the system since they do not need to increase the airgap dimensions, but 

the geometry adaptation of the pole pieces slightly modify the magnetic field. Support bar will then transmit the magneto-

mechanical load of the laminated pole pieces to the structural parts. Support bars are thus subjected to variable radial and 

tangential magnetic load; their induced displacements and stresses must be then taken into account for their sizing (see 

Desvaux et al., 2016).

Magnetic analytical model

To compute a two-dimensional (2D) magnetic load analytically, an adapted geometry of the pole pieces is considered 

(see Figure 3(a)) since the geometry presented in Figure 2 (which takes into account support bars) might make the model 

complicated and therefore greatly increase the computation time (see Figure 3(b)). For the geometry of magnetic gear 

without support bars, we need first to determine the magnetic field repartition with the radial flux density B
r

k( )  and tan-

gential flux density B
t

k( )
 as defined in Lubin et al. (2010) and Desvaux et al. (2017d) for the k  region of the magnetic

gear (according to Figure 1). It is then possible to compute the Maxwell stress tensor σ
k( )

 as defined in equation (3) 

for the k  region of the magnetic gear. To compute the radial and tangential load of the pole piece q  from the Maxwell 

tensor, in accordance with Figure 3(a), the magnetic radial load Fr
q( )

 is given by equation (4) and the magnetic tangen-

tial load Ft
q( )

 is given by equation (5) for the pole piece q  with the hypothesis of small opening angle of pole pieces

(Filippini and Alotto, 2017)
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Figure 2. Pole pieces ring with support bars (end bells are not represented).
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To compute magnetic loads by considering the support bar geometry proposed in Figure 2, it is possible to use 2D mag-

netic finite element model (FEM). Figure 4 shows first that the magnetic loads obtained from a 2D FEM with the adapted 

geometry of pole pieces are in agreement with magnetic loads obtained considering the support bars (see Figure 2) for the 

magnetic gear (Desvaux et al., 2017c). Figure 4 also shows that the magnetic load obtained analytically (seen in Filippini 

and Alotto, 2017) are close enough to those obtained with 2D FEM with the same geometry. These two results validate the 

consideration of the adapted geometry necessary to determine magnetic load analytically. Moreover, the analytical model 

permits to divide the computation time by 1000 (15,000 s vs 15 s, with the same discretization of rotation (30 positions)) 

and it offers a computation time adapted for a global mechatronic optimization.

Mechanical model

Multibody model

Loads that generate stresses and displacements are the magnetic radial and tangential load ( )F Fr

q q( ) ( )
� ���� � ����

and α  and the weight 

of the structure for the Q  pole pieces and Q  support bars ( q  corresponds to the number of the pole pieces, 1 = ≤ q ≤ Q).

For the magnetic gear (Desvaux et al., 2017c), the weight reaches approximately 60 N for a support bar and 120 N for a 

pole piece. The weight will then have a small impact on the mechanical behavior in comparison to the magnetic load for 

this magnetic gear (see Figure 4). The geometry of the structural part of the pole pieces ring includes support bars and end 

bells. It is possible to consider that a support bar is equivalent to a fixed-end beam and that the end bells have a negligible 

Figure 3. (a) Parametrization of the adapted pole piece for radial and tangential loads computation and (b) pole piece geometry 
considering support bars.
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deformation compared to support bars. Considering that the magnetic load and the weights are applied in the middle of 

the pole pieces, the pole pieces ring parametrization and modeling is described in Figure 5(a) and the multibody model 

described in Figure 5(b) is proposed (Desvaux et al., 2017a).

As shown in Figure 5(b), the multibody model is composed of 4Q  bodies Si
q( )

 (with i =1 4, , ) and 4Q  degrees of

freedom ( 2Q  translation and 2Q  rotation) (Desvaux et al., 2017a). The 2Q  translations are linked to the stiffness of the 

support bars and the 2Q  rotations correspond to the contacts between pole pieces and support bars. The stiffness of the 

support bars is determined from a fixed-end beam one-dimensional (1D) model. The stiffness of pole pieces is considered 

negligible in this study because they are laminated.

This multibody model includes 8Q unknowns. They correspond to the 2Q  stiffnesses defined in equation (6), the 2Q

fixed-end reactions at the end of the support bars ( ),X Y
q q

1 2
( ) ( )
� ���� � ����

 and the 4Q  reactions from the contact between pole pieces 

and support bars as shown in Figure 5(b) ( ), , ,X Y X Y
q q q q
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Displacement evaluation

From equilibriums proposed in Desvaux et al. (2017a), the displacements of the support bars generated by the magnetic 

load and weight can be determined and the reactions at the end of the support bars too. It is then possible to show the 

Figure 4. Comparison between the magnetic loads obtained from the 2D finite element model with the support bar geometry and 
from the analytical model without considering support bar geometry for the magnetic gear: (a) radial load and (b) tangential load for 
the magnetic gear (Desvaux et al., 2017c).
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radial and tangential displacements of different support bars as shown in Figure 6 for a support bar placed horizontally 

(the weight correspond to a tangential load), for a support bar placed vertically (the weight correspond to a radial load), 

and for a support bar placed arbitrary, for the magnetic gear (Desvaux et al., 2017c).

Figure 6 shows that support bars are approximately subjected to the same displacement since the weight is negligible 

compared to the magnetic load. Then, the evolution of the displacements has the same form than the evolution of the mag-

netic load (Figure 4). Moreover, the periodicity T  of the displacements corresponds to the periodicity of the magnetic 

load which depends on the rotational speed and the pole pair configuration of the rings as shown in equation (7) with 

ΩLPN/0—the rotation speed of the high-speed rotor and ΩHPN/0—the rotation speed of the low-speed rotor

T
p pLPN LPN HPN HPN

= =
⋅ ⋅

2 2

0 0

π π

Ω Ω
/ /

(7)

In order to size the pole pieces ring, we propose like Desvaux et al. (2016) and Zavvos et al. (2011) to impose that the 

radial displacement of support bars x
q( )  must be lower than 10% of the airgap δ  (0.5 mm for the magnetic gear; Desvaux

et al., 2017c) and the relative twist generated by the tangential displacement y
q( )

 must be lower than 0.01° (equation (8))
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Stress evaluation

In order to evaluate if the stress in the support bars does not exceed a critical value, it is necessary to analyze where the 

maximal stress values are. For a cylindrical fixed-end beam with a point load in the center of the beam, the maximal stress 

is obtained at the ends of the beam (equation (9)) with parameters defined in Figure 7. At the end of each cylindrical sup-

port bar, the maximal stress is located on the external radius of the cross section. Moreover, considering the dimensions 

of the support bars, on the external radius of the support bars, σ σxz

q

zz

q( ) ( )  and σ σyz

q

zz

q( ) ( ) . The von Mises stress σVM
q( )

Figure 5. (a) Parametrization and modeling of the pole pieces ring; and (b) multibody modeling of the pole pieces ring with the 
definition of the different loads and bodies.
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is then directly equal to the normal stress σ zz
q( )

. In order to evaluate the maximal stress value at a position of the magnetic 

gear, the critical value σVM max
q( )

is obtained is the same direction than the load T T T
q

x

q

y

q( ) ( ) ( )
= +

� ���� � ���� � ����

 and must be lower than 

the yield stress of the material σ y  (equation (9))
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Due to the rotation of the magnetic field, the maximum stress is located on the external radius at the end of the beam, 

and this location changes with the mechanical angle, as shown in Figure 8 for the magnetic gear (Desvaux et al., 2017c) 

with θ
q( )

 the orientation T
q( )
� ����

� of defined in Figure 7 and σVM max

q( )
 in equation (9). It is then necessary to evaluate the 

Figure 6. Evolution of (a) the radial displacement and (b) tangential displacement of support bars due to the magnetic loads and 
the weight for the magnetic gear (Desvaux et al., 2017c) with a constant rotational speed of 13 r/min for the external ring and 85 r/
min for the internal ring with (c) the position of the three studied support bars.
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maximal stress value for different positions (see Figure 8) and evaluate the evolution of the stress at different points on the 

external radius at the end of the beam as shown in Figure 9 for the magnetic gear (Desvaux et al., 2017c). The different 

stress evolutions proposed in Figure 9 show a cyclic loading with a mean stress different from zero, which suggests the 

use of a fatigue criterion for sizing the support bars (equation (10)) considering a given N  number of cycles

∆ ∆σ σ
zz limit
< (10)

Since the magnetic loads are determined, the evaluation of stresses and displacements with the multibody analytical 

model is very quick. Indeed, with a discretization of the rotation in 30 positions, the computation time is equal to 1.5 s. 

This analytical model permits to reduce strongly the computation time compared to three-dimensional (3D) FEM since 

with the same hypothesis, the computation is done in 5000 s. From the magnetic and mechanical models, it is then possible 

to evaluate for the radial displacement, the relative twist generated by tangential displacement, the maximal value of the 

von Mises stress, and the normal stress amplitude needed for a fatigue assessment with a computation time lower than 20 s, 

which is adapted to a multi-criteria optimization procedure.

Conclusion

This article proposes magnetic and mechanical analytical models and an analysis of the mechanical behavior of the pole 

pieces ring in a magnetic gear. The analysis permits to show that four mechanical criteria must be evaluated to size cor-

rectly the pole pieces ring of the magnetic gear:

Figure 7. Parametrization of the support bar fixed-end beam modelization.

Figure 8. Evolution of the maximal stress value σVM max

q( ) generated by the magnetic load T
q( )
� ���

with the orientation θ
q( )  for the

magnetic gear (Desvaux et al., 2017c). θ
q( )  also corresponds to the position of the maximal stress value σVM max

q( ) on the external
radius at the end of the beam.
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• The radial displacement of support bars (equation (8)).

• The relative twist generated by tangential displacement (equation (8)).

• The maximal von Mises stress value (equation (9)).

• The stress amplitude for a fatigue assessment (equation (10)).

Moreover, the analytical models developed in this article permit to strongly reduce the computation time since 

the evaluation is done in approximately 20 s with the analytical models versus 20,000 s with mechanical 3D FEM 

and magnetic 2D FEM. Models proposed in this article are then adapted to a multi-criteria optimization procedure 

that we need to perform in prospect. This procedure also contains mechanical analytical models of the different 

other structural parts of the magnetic gear. However, it is possible to analyze the dynamic aspects generated by the 

magnetic cyclic load.
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