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I. INTRODUCTION

Who has never imagined elementary particles as tiny pinheads moving in space? And atoms as some kind of miniature solar systems, with a nucleus playing the role of the sun and electrons the role of the planets? It matters little that physicists have forsaken this model for ages, it still survives, at least unconsciously, in our mental representations since it provides a comfortable classical image of what is supposed to -or simplier could -go on at a microscopic scale. Of course, Quantum Mechanics (QM) provides a far better description, and is now a widespread theory familiar to a large population of physics students. But it is not, so to speak, intuitive. Describing the physical state of a particle by means of a state vector "living" in a -complex -Hilbert vector space instead of the classical (position, velocity) set enabling the existence of a trajectory is far from natural. Moreover, the fact that two quantum states could be simply added and that the Schrödinger equation that rules the time-evolution of the state vector could be linear (whatever the nonlinearities of the system it describes) is prima facie puzzling. Admittedly, physics students, at length, grow used to quantum calculations, often giving up creating mental images for themselves: habituation then takes the place of intuition. E. Schrödinger himself was puzzled by the presence of the imaginary number i in his equation and admitted with a great sense of humour (and of modesty as well) that he had "let it escape by chance but was inappreciably relieved to have unwillingly given birth to it" [1].

In this context, any intuitive support is welcome to justify resorting to the quantum formalism, at least to make it plausible. It is the aim of the present paper to suggest such a support, taking of course the risk of promoting a misleading image, which can reasonably be argued to be worse than promoting no image at all. Hence the "entertaining" vocation of the present article.

In a recent paper [START_REF]The harmonic oscillator as a tutorial introduction to quantum mechanics[END_REF], we have shown that any classical N -degree-of-freedom harmonic oscillator (HON ) can be formally associated with an N -level quantum system: the set E N of its physical states is an N -dimension C-vector space, on which a Hermitian dot product is defined; each physical state is then represented by a state vector |ψ , the time-evolution of which is ruled by a Schrödinger equation. In foregoing papers [START_REF] Leroy | Simulating a one-half spin with coupled pendula: the free Larmor precession[END_REF][START_REF] Leroy | Simulating a one-half spin with two coupled pendula II: The parametrically induced Rabi precession[END_REF] we had already studied the N = 2 case, and showed that the dynamics of a one-half spin in a static magnetic field (Larmor precession) or in two combined static and rotating magnetic fields (Rabi precession) can be illustrated by means of a set of two coupled pendula.

In the present article, we simply apply the formalism we have derived in the general case considered in [START_REF]The harmonic oscillator as a tutorial introduction to quantum mechanics[END_REF] to the particular HON shown in figure 1: a linear chain of like rotating rods, each rod being elastically coupled to its next two neighbours and in addition brought back to its equilibrium position by means of a (spiral) return spring. We essentially discuss the physical consequence of the invariance of this system through spatial translations.

For the sake of simplicity, we do our best to keep, as far as possible, the same notations as in [START_REF]The harmonic oscillator as a tutorial introduction to quantum mechanics[END_REF]. This paper is organized as follows. In section II, we deal with a discrete description of the chain. We write the Lagrangian and
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FIG. 1: Pendulum n (of moment of inertia J) oscillates in the vertical plane perpendicular to axis (A). It is coupled to its next neighbours, pendula n -1 and n + 1, through a torsion wire with stiffness C1. Moreover it is submitted to a return torque -C0θn.

the Hamiltonian of the chain in subsection II A, from which we derive the motion equations and the eigenmodes in subsection II B. Next, we introduce the classical Glauber variables of the chain, as a function of which we express the Hamiltonian in subsection II C. The unitary transformations of the Glauber variables and the Hamiltonian are then discussed in subsection II D. In section III, we throw a first bridge with Quantum Mechanics. The Hilbert vectors space is built in subsection III A; the Schrödinger equation is obtained in the case of a time-independent Hamiltonian in subsection III B. In section IV, we deal with a continuous description of the chain. We discuss the passage to the continuous limit in subsection IV A, we display the continuous motion equation and eigenmodes in subsection IV B. The overall chain momentum is considered in subsection IV C and we examine in subsection IV D what turns out for the Glauber variables in the continuous limit. In section V we re-examine our bridge with QM in the light of the continuous description of the chain, insisting upon the difference between the Schrödinger equation ruling the wave function in spatial representation (subsection V A) and the Schrödinger equation ruling the time-evolution of the state vector in the Hilbert space (subsection V B). The case of a breaking of the (spatial) translational invariance of the chain is interpreted in terms of a potential in subsection V C. In section VI, we draw a few conclusions of our study and formulate some speculative remarks about our toy-model: in subsection VI A we summarize what has been done; a quick extension to a 3D chain is mentioned in subsection VI B, including a remark about the spontaneous incursion of Special Relativity formulas in our model; we conclude in subsection VI C that, if we have actually proposed an interpretation of the form of the Schrödinger equation, a second quantization is needed to fully recover the Fock space structure.

II. THE CHAIN AND ITS MOTION: A DISCRETE DESCRIPTION

A. The chain

Let us consider the linear pendula chain displayed in figure 1. Each pendulum is made of a rod and can rotate without friction in a plane perpendicular to some axis (A), but is drawn back to an equilibrium position by means of a (spiral) return spring with angular stiffness C 0 . Let J stand for its inertia momentum with respect to axis (A). Pendulum n (n ∈ [1, N ]) is located at the abscissa x = na of axis (A); let θ n be its angular deviation with respect to equilibrium. Pendulum n is coupled to the neighbouring pendula n -1 and n + 1 by means of a torsion wire with stiffness C 1 .

For the sake of simplicity, in order to avoid cumbersome considerations about the particular status of pendula n = 1 and N , which have only one neighbour in the linear configuration of figure 1, we shall suppose that the chain is looped on itself, or equivalently that it is infinite but constrained by the Born-von Kármán (BvK) boundary condition

θ n+N = θ n , ∀n. (1) 
With this simplification, the Lagrangian of the chain is

L({θ n , θn }) = 1 2 N n=1 J θ2 n -C 0 θ 2 n -C 1 (θ n -θ n+1 ) 2 , (2) 
where the sum N n=1 may be substituted by a sum over any set of N consecutive integers n. Using the matricial formalism introduced in [START_REF]The harmonic oscillator as a tutorial introduction to quantum mechanics[END_REF], the above Lagrangian reads (the left upper index t indicating matrix transposition)

L(Θ, Θ) = 1 2 ( t ΘJ Θ -t ΘCΘ), (3) 
where Θ stands for the N -row column-matrix

Θ =         θ 1 . . . θ n . . . θ N         (4a) 
and J and C for the N × N inertia and stiffness matrices, respectively. In the present case of our pendula chain, the inertia matrix J is proportional to identity: J = J1 (hence our simplified notation) and

C =               C 0 + 2C 1 -C 1 0 . . . 0 -C 1 -C 1 C 0 + 2C 1 -C 1 0 . . . 0 -C 1 C 0 + 2C 1 -C 1 0 . . . . . . 0 -C 1 C 0 + 2C 1 -C 1 0 . . . . . . . . . . . . . . . 0 -C 1 C 0 + 2C 1 -C 1 0 -C 1 0 . . . 0 -C 1 C 0 + 2C 1               . (4b) 
Besides, let

Σ =         σ 1 . . . σ n . . . σ N         = ∂L ∂ t Θ = J Θ (5a)
be the conjugate momenta of the dynamical variables Θ. The usual Legendre transformation implemented on Lagrangian (3) yields the Hamiltonian

H(Θ, Σ) = -L + t Σ Θ = 1 2 ( t ΣJ -1 Σ + t ΘCΘ). (5b) 
With the aim of writing the stiffness matrix C, it is convenient to introduce the translation matrix T that changes every θ n in θ n+1 (or σ n in σ n+1 as well):

T            θ 1 . . . θ n-1 θ n θ n+1 . . . θ N            =            θ 2 . . . θ n θ n+1 θ n+2 . . . θ 1            , (6a) 
so that

C = (C 0 + 2C 1 )1 -C 1 (T + T -1 ) (6b) 
(note that, matrix T being orthogonal, we have T -1 = t T ). Moreover, it will be useful to define the cutoff angular frequency ω 0 and the dimensionless coupling constant κ as

ω 0 = C 0 J , κ = C 1 C 0 , (6c) 
and to introduce the symmetrical positive matrix

Ω 2 = C J = ω 2 0 [(1 + 2κ)1 -κ(T + T -1 )], (6d) 
which will play a central role in the following discussion.

B. Discrete motion and eigenmodes

Applying the Lagrange equations to Lagrangian (2), one easily gets

J θn = -C 0 θ n + C 1 (θ n+1 -2θ n + θ n-1 ), (7a) 
which comes in the form of a set of N coupled differential equations. This set can be written in a matricial form using the matrix Ω 2 defined in (6d):

Θ + Ω 2 Θ = 0. ( 7b 
)
In order to uncouple this set of equations, the standard procedure consists in determining the N eigenmodes of the system. To begin with, let us observe that, due to the (BvK-induced) circular invariance of the chain, matrix T obviously commutes with matrix Ω 2 : [T, Ω 2 ] = 0. It is then a well known result of linear algebra that the eigenvectors of Ω 2 should be looked for within the vector eigensubspaces associated with the different eigenvalues of T . Now diagonalizing T is much easier that diagonalizing Ω 2 directly. If the N -row column-vector Θ is an eigenvector of T associated with the eigenvalue λ, we must have (see (6a))

θ n+1 = λθ n ∀n, (8a) 
which implies, due to the BvK condition (1),

λ N = 1. (8b)
Consequently, the eigenvalues of T are simply the N th roots of unity:

λ m = e 2iπ N m (m ∈ Z). (8c) 
These N eigenvalues are obtained from the above expression with m ranging over any set of N consecutive integers. It is convenient (but not mandatory) to choose this set within the so-called "first Brillouin zone" (FBZ), i.e. the interval ] -N/2, N/2] (which contains exactly N consecutive integers, whether N is even or odd). Let Θ (m) be the (normalized) eigenvector of T associated with eigenvalue λ m . The column-matrix Θ (m) has components

θ (m) n = λ n m θ (m) 0 = 1 √ N e 2iπ N nm . (9) 
Since the N eigenvalues of T are nondegenerate, the eigenvectors of T are ipso facto eigenvectors of Ω 2 , which reads, due to (6d), with

(Ω 2 Θ (m) ) n = ω 2 0 [(1 + 2κ)θ (m) n -κ(θ (m) n+1 + θ (m) n-1 )] = ω 2 0 [1 + 2κ -κ(λ m + λ -1 m )]θ (m) n = ω 2 0 1 + 2κ 1 -cos 2πm N θ (m) n = ω 2 em θ (m) n , 0 N/2 m -N/2
ω em = ω 0 1 + 4κ sin 2 πm N . ( 10 
)
The eigen angular frequencies ω em are displayed in figure 2.

As a consequence of (9), the passage matrix P d that diagonalizes matrix Ω 2 (i.e. such that

P -1 d Ω 2 P d = Ω 2 e ,
where Ω e is the diagonal matrix with elements (Ω e ) mm = ω em ) has elements

(P d ) nm = 1 √ N e 2iπ N nm . (11a) 
Note that matrix P d is unitary, entailing

(P d P -1 d ) nn = δ nn = 1 N m e 2iπ N (n-n )m , (11b) 
δ standing for the Kronecker symbol and m ranging over any set of N consecutive integers. It is therefore possible (this issue is discussed at some length in [START_REF]The harmonic oscillator as a tutorial introduction to quantum mechanics[END_REF]) to define matrix Ω r (r any real) as Ω r = P d Ω r e P -1 d , i.e.

(Ω r ) np = m 1 √ N e 2iπ N nm ω r em 1 √ N e -2iπ N nm = 1 N m e 2iπ N (n-p)m ω r 0 1 + 4κ sin 2 πm N r/2 . ( 12a 
)
The above formula is not very easy to handle and should be given a smarter form, at least symbolically. In fact, surprising though it may look prima facie, it is possible to carry out exactly the summation m , as explained hereafter. First, let us expand the 1 + 4κ sin 2 (πm/N ) r/2 term in increasing powers of parameter κ. If r/2 is a positive integer, we are then faced with the well known expansion

1 + 4κ sin 2 πm N r/2 = r/2 s=0 r/2 s 4κ sin 2 πm N s , (12b) 
where

r/2 s = 1 s! r 2 r 2 -1 • • • r 2 -s + 1 (12c)
is the usual binomial coefficient. On the other hand, if r/2 is not a positive integer, and if 4κ sin 2 (πm/N ) < 1 (for a convergence purpose), expansion (12b) should be substituted by a power series, with the summation over s now ranging to infinity, but with the expression (12c) of the series coefficients still being available. Second, let us observe that 4κ sin 2 πm N = -κ e iπm/N -e -iπm/N 2 (12d)

and implement the binomial development to get

4κ sin 2 πm N s = (-κ) s 2s k=0 2s k (-1) k e 2iπm(s-k)/N . (12e) 
Third, gathering the terms depending on m in (12a) and using lemma (11b), we are left with

(Ω r ) np = ω r 0 ∞ s=0 r/2 s (-κ) s 2s k=0 (-1) k 2s k δ n+k-s,p . (12f) 
The above formula looks even more cumbersome than (12a), although the summation over m has been carried out.

Fortunately, it can be put in a much more elegant and compact form, as explained hereafter. Let us introduce the symbolical discrete derivation operator ∆ as

∆{ϕ} n = ϕ n+ 1 2 -ϕ n-1 2 , ( 13a 
)
where ϕ is any quantity (θ or σ for instance) indexed by integer n (no matter that n ± 1 2 should not be integers). To the second order, we get

∆ 2 {ϕ} n = ϕ n+1 -2ϕ n + ϕ n-1 (13b)
and more generally

∆ 2s {ϕ} n = 2s k=0 (-1) k 2s k ϕ n+k-s . (13c) 
Hence expression (12f) can be simplified into

(Ω r ) np = ω r 0 ∞ s=0 r/2 s (-κ) s ∆ 2s {δ} n,p , (14a) 
where the discrete derivation concerns index n. Now, it is noteworthy that the above expansion is perfectly analogous to (12b) and can in turn be summed up in the symbolical form

(Ω r ) np = ω r 0 (1 -κ∆ 2 ) r/2 {δ} n,p . (14b) 
The latter expression will reveal to be particularly useful in section IV when passing to the continuous limit.

C. Standard and Glauber variables

In the expressions ( 3) and (5a-b), the Θ stand for the angles and the Σ for the angular momenta. This results from our choice of parametrization of the pendula chain. Of course, another choice of dynamical variables of our HON would have given a different result. Now, in the course of our throwing a bridge with QM, it will come in handy to have the same dimension for the dynamical variables and their conjugate momenta. First observe that the latter requirement entails that this common dimension should be the square root of an action (and consequently should be reckoned in (J.s) 1/2 units). We are thus naturally led to define the standard variables as

Q = SΘ, with S = Ω 1/2 J 1/2 . ( 15a 
)
Expressed in terms of the standard variables Q, Lagrangian (3) now reads

L(Q, Q) = 1 2 ( t QΩ -1 Q -t QΩQ), (15b) 
with consequently the conjugate momenta

P = ∂L ∂ t Q = Ω -1 Q (= Ω -1/2 J -1/2 Σ = t S -1 Σ). (15c) 
Besides, the usual Legendre transformation of L yields the Hamiltonian

H(Q, P ) = -L + t P Q = 1 2 ( t P ΩP + t QΩQ), (16a) 
and the associated Hamilton equations

Q = ∂L ∂ t P = ΩP, Ṗ = - ∂L ∂ t Q = -ΩQ. (16b) 
It is noteworthy that the above couple of Hamilton real equations can be gathered in a unique complex equation ruling the linear combination Q + iP . In fact, to be in step with R. Glauber [5][START_REF] Glauber | Optical Coherence and Photon Statistics in Quantum optics and electronics[END_REF][START_REF] Cohen-Tannoudji | Quantum Mechanics[END_REF][START_REF] Merzbacher | Quantum Mechanics[END_REF][START_REF] Aslangul | Mécanique Quantique[END_REF], we introduce the generalized complex variable set

A = 1 √ 2 (Q + iP ) =         α 1 . . . α n . . . α N         , ( 17 
)
where is the usual quantum constant so that the α n are dimensionless. Note that, due to the Poisson brackets relations {q n , p n } = δ nn , definition (17) entails {α n , α * n } = δ nn /i . Besides, Hamiltonian H reads in the Glauber variables, superscript † indicating Hermitian transconjugation,

H = A † ΩA, (18a) 
resulting in the motion equations

Ȧ = {A, H} = -iΩA (18b) 
which can be directly derived from (16b).

At this step, one should keep in mind that the correspondence between the Glauber variables α n on the one hand and the couples (θ p , σ p ) on the other hand is not straightforward. As a consequence indeed of Q = SΘ and P = t P Σ, we have, owing to (15a),

A = 1 √ 2 (Ω 1/2 J 1/2 Θ + iΩ -1/2 J -1/2 Σ), (19a) 
i.e.

α n = 1 √ 2 p √ J(Ω 1/2 ) np θ p + i √ J (Ω -1/2 ) np σ p (19b)
or equivalently, setting r = ± 1/2 in (14b) for the real and imaginary parts of α n ,

α n = 1 √ 2 Jω 0 (1 -κ∆ 2 ) 1/4 {θ} n + i √ Jω 0 (1 -κ∆ 2 ) -1/4 {σ} n . (19c) 
This above compact expression will prove handy in section IV when passing to the continuous limit. It should nevertheless be kept in mind that, although it has apparently disappeared from (19b), the p summation is still implicitly present: due to the very definition of operator ∆ (see (13a-c)), the value of the Glauber variable α n involves the values of angles θ p and angular momenta σ p for p = n. In this sense, the correspondence between the sets {α n } and {θ p , σ p } should be regarded as "nonlocal". We shall come back to this remark in the following of the present paper. At last, we leave it to the reader to check that considering the motion equation

αn = -i p Ω np α p (20) 
(see (18b)) with Ω np given by (14b) (in which r is set equal to unity), and then respectively identifying the real and imaginary parts, one readily gets the set

θn = σ n J , σn = -Jω 2 0 (1 -κ∆ 2 ){θ} n , (21) 
then recovering the Lagrange equation (7a).

D. Canonical linear transformation of the dynamic variables

As explained at the begining of subsection II C, we have chosen to parametrize the position of our pendula chain with the set {θ n } of the angular deviations with respect to equilibrium. Although "natural", this choice is far from unique: any set of N (independent) linear combinations of the θ n would yield a quadratic Lagrangian analogous to (3) (with just inertia and stiffness matrices J and C different), and new standard variables Q (Q). More precisely, Lagrangian (15b) is invariant under transformations Q = U Q , where U is any orthogonal matrix, and Ω = U Ω t U . Even more general transformations can be performed in the Hamiltonian formalism: the most general linear canonical transformation {Q = Q(Q , P ), P = P (Q , P )} that leaves Hamiltonian (16a) or (18a) invariant reads

Q + iP = U (Q + iP ) A = U A , (22) 
with U a unitary matrix. Note in passing that, in the particular case where U is real (i.e. orthogonal), Q and P are separately transformed:

Q = U Q , P = U P , (23) 
which corresponds to the above-mentioned transformation of Q in Lagrangian (15b). This particular case in inter alia encountered when looking for the eigenmodes of the pendula chain. Since the matrix Ω 2 defined in (6d) and diagonalized in (11a) is symmetrical, not only are its eigenmodes real (see (10)), but also an orthogonal basis of real eigenvectors can be found for it. Note that this statement is not inconsistent with the complex expression of the passage matrix P d displayed in (11a): due to the degeneracy m ↔ -m of the eigenvalues (see (10)), adding (resp. subtracting) columns m and -m in matrix (6d) would yield new eigenvectors of Ω 2 with components proportional to cos(2πnm/N ) (resp. sin(2πnm/N )), corresponding to standing waves. Our choosing a basis made of travelling waves should be regarded as a pure question of convenience. Whatever choice is made, substituting P d for U in the canonical transformation (22) we get

A = P d A e H = A † ΩA = A † e ΩA e = m ω em |α em | 2 , (24) 
where the α em are the so-called normal Glauber variables. We thus recover a well known result: H can be regarded as the sum of the Hamiltonians H em of N independent HO1s.

III. A FIRST BRIDGE WITH QUANTUM MECHANICS

Let us proceed with our purpose. At this stage, it is important to clearly distinguish the physical state of the chain and the representation we choose to describe this state. This issue is discussed at some length in [START_REF]The harmonic oscillator as a tutorial introduction to quantum mechanics[END_REF], for it is of general import and concerns any HON , not only the HON we consider in the present paper, namely our pendula chain. In subsection III A, we briefly recall the main conclusions of this general discussion.

A. The state space

As explained in subsection II D, the Glauber column-vector A that we have introduced in (17) is associated to our choice of parametrizing the present position of the rods of our chain by the set {θ n } of the angles they make with their rest position. Any transformation of the form A = U A , with U a unitary matrix (see ( 22)), would leave the Hamiltonian of the chain unchanged, and corresponds to a linear canonical transformation of the standard dynamical variables. The set {A, A , A , . . . } of Glauber column-vectors linked by the equivalence relation ( 22) is known as an equivalence class, and is denoted by the so-called "ket" |ψ . Moreover, the usual addition and multiplication of the column-vectors by a complex number allow to define the kets |ψ 1 + |ψ 2 and λ|ψ . The latter induced operations provide the set E N of the physical states of the chain with a C-vector space structure. Furthermore, a Hermitian dot product of two kets can be defined as

ϕ(|ψ 1 , |ψ 2 ) = ψ 2 |ψ 1 = A † 2 A 1 = A † 2 A 1 = A † 2 A 1 = • • • (25)
with {A 1 , A 1 , A 1 , } and {A 2 , A 2 , A 2 , } linked by relations of the type (22) and where the linear one-form ψ 2 | is referred to, in the Dirac formulation, as a "bra". The vector space E N is thus a pre-Hilbertian space (it can be argued that it is a Hilbertian space too).

In an analogous way, we can define operators acting in E N , which are but the equivalence classes of similar matrices, i.e. matrices describing the same endomorphism of E N in different representations. At last, as in any vector-space, we can build bases. Choosing a given representation and introducing the canonical set of column-vectors {A i } with Glauber components α in = δ in , we define a basis {|e i } of E N . Moreover, allowing for (25), this basis is orthonormalized:

e i |e j = δ ij . (26a) 
Next, expanding any vector |ψ on basis {|e i } we get

|ψ = i |e i e i |ψ i |e i e i | = 1, ( 26b 
)
where 1 is the identity operator in E N . The latter is known as the "closure relation" of basis {|e i }.

B. The Schrödinger equation

Let us multiply each side of (18b) by i . We get the matrix motion equation

i Ȧ = ΩA. ( 27a 
)
This equation is left invariant by the representation change A = U A , Ω = U Ω U † (the unitary matrix U does not depend on time). As explained in the preceding subsection, we can derive the intrinsic vector Schrödinger equation

i d|ψ(t) dt = H|ψ(t) , ( 27b 
)
where H is the operator of E N associated with the similar matrices Ω, Ω , Ω , . . . Since the latter matrices are Hermitian, H is an observable of E N , referred to as the Hamiltonian (operator). As a consequence of H being Hermitian, the evolution of |ψ is unitary:

d ψ|ψ dt = 0 |ψ(t) = U (t, 0)|ψ(0) , (28a) 
where, as a consequence of H being time-independent,

U (t, 0) = e -i Ht/ . (28b) 
In the particular case of our pendula chain, Hamiltonian H reads

H = n p |e n e n | H|e p e p | = n p |e n Ω np e p |, (29a) 
with matrix Ω in the same representation as that used to define basis {|e n }. This also reads symbolically, owing to (14b),

H = ω 0 n p |e n 1 -κ∆ 2 {δ} n,p e p |. (29b) 

IV. A CONTINUOUS DESCRIPTION OF THE CHAIN AND ITS MOTION

At scales large compared to the inter-pendulum distance a, the chain can be regarded as a continuum, namely a kind of ribbon with distributed parameters: moment of inertia, elasticity, angular momentum and so on. Let us consider this point below.

A. Passage to the continuous limit Henceforth, we suppose that the total number N of pendula tends towards infinity, while the total length L c = N a of the chain remains constant. As a consequence, the distance a between two next-neighbour pendula tends towards zero. The discrete dynamical variables θ n (t) become a continuous function θ(x, t) with the correspondence

θ n (t) → θ(x = na, t) (30a) 
whereas their conjugate momentum σ n (t) are spatially distributed:

σ n (t) → aς(x = na, t). (30b) 
In this connection, any discrete sum over the pendula is substituted by a spatial integral over the length of the chain

N n=1 → Lc 0 dx a , (31a) 
whereas the discrete derivative with respect to the pendulum number n is substituted by the usual derivative with respect to abscissa x:

∆ → a ∂ ∂x . (31b) 
Moreover the moment of inertia J of the rods, the angular return stiffness C 0 and the coupling stiffness C 1 are distributed along the chain:

J → aJ , C 0 → aC 0 , C 1 → T a , (31c) 
hence

1 -κ∆ 2 → 1 - T C 0 ∂ 2 ∂x 2 . (31d) 
Note that the sum m over the eigenmodes of the chain remains a priori discrete as long as the total length L c of the chain remains finite. Nevertheless, lemma (11b) is turned into

1 N m e 2iπm(x-x )/N a → aδ(x -x ), ( 32a 
)
where δ is the usual Dirac distribution. As a consequence, the symbolical result (14b) becomes

(Ω r ) np → aω r 0 1 - T C 0 ∂ 2 ∂x 2 r/2 δ(x -x ). (32b) 
The discrete Hamiltonian H(Θ, Σ) displayed in (5b) is turned into

H = Lc 0 H θ, ∂θ ∂x , ς dx, ( 33a 
)
where the Hamiltonian density reads

H = 1 2 ς 2 J + C 0 θ 2 + T ∂θ ∂x 2 . ( 33b 
)
In a perfectly analogous way, one can easily write Langrangian (2), but we rather use the Hamiltonian formulation in the following of this paper. 

B. Motion equation in the continuous limit

The continuous Hamilton equations read, allowing for (33b),

∂θ ∂t = ∂H ∂ς = ς J ∂ς ∂t = - ∂H ∂θ + ∂ ∂x ∂H ∂(∂θ/∂x) = -C 0 θ + T ∂ 2 θ ∂x 2 . ( 34 
)
Combining the above two equations together, the Klein-Gordon (KG) equation ruling θ(x, t) (or ς(x, t) as well) is easily obtained:

∂ 2 θ ∂t 2 -c 2 ∂ 2 θ ∂x 2 = -ω 2 0 θ, (35) 
where we have introduced the celerity

c = T J . ( 36 
)
Observe that the KG equation ( 35) can be straightforwardly derived from (7a), simply using the passage-to-the-limit procedure displayed in subsection IV A. In this connection, the discrete dispersion relation (10) can be turned into a continuous dispersion relation: assuming indeed m N (the eigenmodes associated with integers m are therefore referred to as the "centre of first Brillouin zone modes") and consequently linearizing the sin(πm/N ) term, we are left with

ω em = ω 0 1 + 2πm N 2 κ = ω 2 0 + 2πm N a 2 T J = ω 2 0 + (k m c) 2 , (37a) 
where we have introduced the wavevector

k m = 2π L c m. (37b) 
In passing, we note that the so-called Klein-Gordon dispersion relation (37a) can be directly derived from the KG equation (35) in which a solution of the form θ(x, t) ∝ e i(kmx-ωemt) should be looked for, with k m given by (37b).

The KG dispersion relation is displayed in figure 3, in which the discrete dispersion relation (10) is reproduced on a comparison purposes.

Owing to (37a-b), we can define the phase velocity of mode m by

v ϕm = ω em k m = c 1 + ω 0 k m c 2 . ( 38 
) kc/ω 0 0 0 -1 1 2 3 v g /c and v φ /c -2 -4 2 4
FIG. 4: Phase and group velocities as functions of the wavevector k.

Not surprisingly, v ϕm is larger than c. In the fundamental mode m = 0, it is infinite. In this mode, all the rods oscillate in phase at the angular frequency ω 0 and, for observers sitting here and there along the chain, each local rod acts as a clock, beating time as it were. This somehow naive remark will meet its importance in the relativistic considerations of subsection VI B. Besides, let us recall that, as long as L c is finite, the set of wavevectors {k m } is discrete, although a → 0. Owing to (37b), the difference between two consecutive values of k m is indeed ∆k = 2π/L c . Henceforth we shall assume that L c is large enough to allow us to define the group velocity of mode m by

v gm = dω em dk m = c 1 + ω 0 k m c 2 k m |k m | . ( 39 
)
The phase velocity and the group velocity are displayed in figure 4. As is well known, and as can be checked by considering ( 38) and (39), we have |v ϕm v gm | = c 2 , ∀m. Note that v gm is smaller than c and that the group velocity of the fundamental mode m = 0 is zero. Note too that the KG dispersion relation (37a) can be written

ω em = γ m ω 0 , with γ m = 1 1 - v 2 gm c 2 . ( 40 
)
C. The chain's momentum

At first sight, no mechanical piece of the chain moves along the longitudinal (x) direction. Nevertheless, a fine analysis of this question reveals that, when oscillating, our chain exerts a longitudinal net force upon the devices that maintain its both ends at abscissae x = 0 and x = L c , or equivalently upon the device that ensures the BvK boundary condition (1) (for instance by looping the ribbon on itself at a length L c ). This longitudinal net force is perfectly analogous to that exerted by a (transversally) vibrating Melde string and should be regarded as a kind of elastic radiation pressure. It would be useless to detail here the very mechanism resulting in this force. We shall just calculate its value by means of a simple energy balance. Let us suppose that an operator loosens the above-mentioned BvK device and let the chain's length increase slowly from L c to L c + dL c . By "slowly", we mean "adiabatically" in the Ehrenfest sense. If we denote by F the force exerted by the chain, the operator will do the elementary work δW = -F dL c . Now, suppose that the chain is oscillating in eigenmode m, with a Glauber variable equal to α em . Allowing from (24), its energy E is ω em |α em | 2 . Since the chain length's variation is adiabatic, |α em | 2 is invariant, and the energy balance of the transformation consequently reads

dE = dω em |α em | 2 = dk m v gm |α em | 2 , ( 41a 
)
with, owing to (37b),

dk m = -k m dL c L c . ( 41b 
)
Now, equalling dE with δW , we get

F = k m |α em | 2 v gm L c . ( 41c 
)
The above result can be given a very simple interpretation. The duration ∆t = L c /v gm is the time necessary for a particle (or a quasi-particle) to travel through the whole chain at the group velocity v gm . On the other hand, F ∆t is the mechanical momentum received by the operator (or the BvK device) during ∆t, i.e. the mechanical momentum p m of the whole chain itself, so that

p m = k m |α em | 2 . ( 42a 
)
In the general case, the motion of the chain results from a combination of eigenmodes, and the overall momentum is

P = m p m = m k m |α em | 2 , ( 42b 
)
to be compared with the expression (24) of Hamiltonian H.

D. The Glauber variables in the continuous description

In subsections IV A and IV B, we have deliberately omitted any passage to the continuous limit of the Glauber variables. We should set this question now. As can be checked on expression (19c), implementing the correspondence (30a-b) leads to complete this correspondence by

α n (t) → √ a ψ(x = na, t) (43a) 
which turns the discrete results (19c) into

ψ(x, t) = 1 √ 2 J ω 0 1 - c 2 ω 2 0 ∂ 2 ∂x 2 1/4 θ(x, t) + i √ J ω 0 1 - c 2 ω 2 0 ∂ 2 ∂x 2 -1/4 ς(x, t) . (43b) 
Il this connection, the semi-classical quanta number becomes

A † A = n |α n | 2 → dx |ψ| 2 , ( 44a 
)
and the discrete motion equation ( 20) is turned into

∂ψ ∂t = -i ω 2 0 + 1 i ∂ ∂x 2 c 2 ψ. (44b) 
V. RESUMING THE BRIDGE WITH QUANTUM MECHANICS

A. The state space in the continuous description

To begin with, let us observe that since our chain is now an infinite-degree-of-freedom oscillator, the dimension of the associated state vector, henceforth denoted by E, is also infinite. We shall not recall here the results displayed in section III in the general framework of the discrete description of the chain, but merely introduce the new features associated with the continuous description. Among them is the so-called "|x -representation". Corresponding to our initial choice of the set {θ n , σ n } of dynamical variables for our discrete description of the state of the chain -and consequently to our definition (19b) of the Glauber variable α n -we have introduced the continuous set {θ(x), ς(x)} corresponding to the wave function (43b). Accordingly, corresponding to our choosing the canonical set of columnvectors {A i } with α in = δ in to build a basis {|e i } of E N (see subsection III A), we should introduce the canonical set of column-vectors {ψ x } with ψ x (x) = δ(x -x ) to define a continuous basis {|x } of E. The latter basis is referred to in QM textbooks as the "|x -representation". Let us just mention that the orthonormalization (26a) and closure (26b) relations simply become

x |x = δ(x -x ), dx |x x| = 1, ( 45 
)
where 1 is the identity operator in E. It is consequently possible to define the observable X by

x | X|x = x δ(x -x ) X = dx |x x x|, (46a) 
as well as any observable depending on X:

V ( X) = dx |x V (x) x|. (46b) 
On the other hand, it is noteworthy that, as far as L c remains finite, no passage to the continuous limit is required when using the eigenmodes |k m -representation, and the Hamiltonian and momentum operators (see ( 24) and (42b)) read

H = m ω em |k m k m |, P = m k m |k m k m |, (47) 
where the (infinite) basis {|k m } of E is associated to the canonical set of Glauber column-vectors {A em } with (A em ) m = α em m = δ mm , as explained in subsection III A in the general case. According to the above definition of representations {|x } and {|k m }, and to the definition (25) of the Hermitian dot product, one easily checks that

x|k m = 1 √ L c e ikmx . (48) 
Consequently we have, using lemma (32a) when summing over the eigenmodes

x| P |ψ = m k m x|k m k m |ψ = dx m k m x|k m k m |x x |ψ = dx m k m L c e ikm(x-x ) ψ(x ) = dx i ∂δ(x -x ) ∂x ψ(x ) = i ∂ψ ∂x , (49a) 
entailing the commutation relation relation [ X, P ] = i . We get similarly, allowing for (37a),

x| H|ψ = ω 2 0 + c i ∂ ∂x 2 ψ(x). (49b) 
Note that we have symbolically

H = ( ω 0 1) 2 + (c P ) 2 . (49c) 

B. The Schrödinger equation in the continuous description

Multiplying both sides of (44b) by i , we are left with

i ∂ψ ∂t = ( ω 0 ) 2 + c i ∂ ∂x 2 ψ, (50) 
which is the Schrödinger equation in the |x -representation. The above equation is but the projection of the vectorial equation (27b) onto basis {|x }. The stationary solutions of this Schrödinger equation are the eigenstates of P ( H and P commute, as is obvious from (49c)), i.e. the plane monochromatic waves

|ψ m (t) = e -iωemt |k m . (51) 
C. Introducing a potential

So far, we have considered a homogeneous pendulum chain. Henceforth we shall examine the case of a slightly modified chain, and begin with a discrete description.

Discrete description of the inhomogeneous chain

We consider the same chain as in figure 1, with nevertheless the following difference. The return torque exerted onto pendulum n is now -C 0n θ n , with C 0n n-dependent:

C 0n = C 0 (1 + ε n ), with |ε n | 1. ( 52 
)
Hence the stiffness matrix (6b) now reads C + δC, where δC is the diagonal matrix with the nonzero elements (δC) nn = C 0 ε n . The matrix Ω 2 defined in (6d) is thus turned into

Ω 2 + δ(Ω 2 ) = C + δC J = ω 2 0 (1 + 2κ)1 -κ(T + T -1 ) + E , ( 53 
)
where E is the small dimensionless matrix with off-diagonal elements zero and diagonal elements E nn = ε n . The next step of our calculation consists in diagonalizing the matrix Ω 2 + δ(Ω 2 ). With this aim, and since ε n 1, it is tempting to use a perturbative method. The zero-order eigenvectors of the matrix Ω 2 /ω 2 0 are represented by the column-matrices Θ (m) with θ m n = e 2iπmn/N / √ N as displayed in ( 9), associated with the eigenvalues 1+4κ sin 2 (πm/N ) as displayed in (10). In fact, in order to write the generalized Schrödinger equation, we just need to determine the new matrix

Ω 2 + δ(Ω 2 ). Since δ(Ω 2 ) = ω 2 0 E, we can set Ω 2 + δ(Ω 2 ) = Ω + M ΩM + M Ω + M 2 = ω 2 0 E
, and simplify this quadratic equation into the linear equation

ΩM + M Ω = ω 2 0 E. (54a) 
This also reads, since Ω = P d Ω e P -1 d ,

Ω e P -1 d M P d + P -1 d M P d Ω e = ω 2 0 P -1 d EP d , (54b) 
or simplier

Ω e R + RΩ e = ω 2 0 S, (54c) 
where we have set

R = P -1 d M P d and S = P -1 d EP d . (54d) 
It is easy to solve equation (54c) for R, since Ω e is diagonal. We have indeed

ω em R mm + R mm ω em = ω 2 0 S mm R mm = ω 2 0 S mm ω em + ω em . (55a) 
Next, coming back to matrices M = P d RP -1 d and E = P d SP -1 d , we get

M np = 1 N 2 q ε q m m e 2iπ[m(n-q)+m (p-q)]/N ω 2 0 ω em + ω em . ( 55b 
)
Let us first recall that the above result is but the exact solution of the approximate equation (54a), in which terms of order ε 2 have been neglected. Now, in the exact motion equation

αn = -i p (Ω + M ) np α p , (56) 
the exact Glauber variable set A is supposed to be defined (see (19a-b)) using the exact matrix Ω+M = Ω 2 + δ(Ω) 2 . Nevertheless, to be consistent at the first order in ε, the corrective term M np α p on the right-hand side of (56) should be calculated using the unperturbed definition of α p . In other words, we can use (56) with M np given by (55b)

disregarding the fact that α p itself is perturbed by the imperfect homogeneity of the chain. That being said, let us focus to the latter corrective term. To begin with, let us simplify the expression (55b) of the matrix element M np . However unexpected it may seem, the double summation over m and m can be carried out exactly, using the very same procedure we used to derive (14b) in subsection II B. Setting indeed

u = 4κ sin 2 πm N , u = 4κ sin 2 πm N , (57a) 
the angular frequency factor on the right-hand side of (55b) can be expanded as a double series in increasing powers of u and u :

ω 2 0 ω em + ω em = ω 0 √ 1 + u + √ 1 + u = ∞ s=0 ∞ s =0 c ss u s u s (57b) 
(disregarding the convergence issue). Then, using (12e) and lemma (11b), we obtain

M np = ω 0 q ε q ∞ s=0 ∞ s =0 c ss (-κ) s+s 2s k=0 2s k =0 (-1) k+k 2s k 2s k δ n-q+s-k,0 δ n-q+s -k ,0 . (57c) 
Next, using (13c), the above expression simplifies into

M np = ω 0 q ε q ∞ s=0 ∞ s =0 c ss (-κ) s+s ∆ 2s {δ} nq ∆ 2s {δ} pq = ω 0 q ∞ s=0 ∞ s =0 c ss (-κ∆ 2 ) s+s {ε q }δ nq δ pq = ω 0 2 √ 1 -κ∆ 2 {ε p }δ np . (57d) 
As a conclusion, matrix M is diagonal. It is then easy to apply the motion equation (56). Using (14b) with r = 1, we have

αn = -iω 0 p 1 -κ∆ 2 {δ} np + 1 2 √ 1 -κ∆ 2 {ε} n δ np α p = -iω 0 1 -κ∆ 2 {α} n + 1 2 √ 1 -κ∆ 2 {ε} n α n , (58a) 
or equivalently

αn = -iω 0 1 -κ∆ 2 + ε n 2 √ 1 -κ∆ 2 {α} n = -iω 0 1 + ε n -κ∆ 2 {α} n , (58b) 
since we limit ourselves to the first order in ε n .

Continuous description of the inhomogeneous chain

Passing to the continuous limit is straightforward. Equation (52) should just be substituted by

C 0 (x) = C 0 (1 + ε(x)) with |ε(x)| 1. ( 59 
)
The motion equation (44b) can equally well be written

∂ψ(x, t) ∂t = -i ω 2 0 (1 + ε(x)) + c i ∂ ∂x 2 ψ(x, t), (60) 
which suggests that the inhomogeneity of the chain results in a local change of its fundamental eigenfrequency ω 0 (x) = ω 0 1 + ε(x)

2

. In the usual Schrödinger form, we obtain

i ∂ψ(x, t) ∂t = ( ω 0 ) 2 + c i ∂ ∂x 2 ψ(x, t) + V (x)ψ(x, t), (61a) 
where

V (x) = ω 0 2 1 - c ω 0 ∂ ∂x 2 ε(x) ω 0 2 ε(x) (61b) 
is referred to as the "potential" (the latter simplification will be justified below). Of course, the Schrödinger equation can be written in the vectorial form (27b), where the Hamiltonian operator H = H 0 + V ( X), with H 0 displayed in (49c). In the present section we have deliberately disregarded the case of a time-dependent inhomogeneity of the chain, corresponding to ε n = ε n (t) in (52) or ε = ε(x, t) in (59). This case is discussed at some length in [START_REF]The harmonic oscillator as a tutorial introduction to quantum mechanics[END_REF]. Grosso modo it can be argued that the Schrödinger equation (61a) remains valid as long as V (x, t), in addition to be very small compared to ω 0 , varies slowly with t compared to ω 0 t. This requirement being also available in the rest frame of any observer moving along the chain, the quantity c ∂V /∂x should be small compared to ω 0 V as well, hence our simplification of the expression (61b) above. Note that we have been able to recover the Schrödinger equation thanks to a toy-model involving a chain of classical pendula. It may be entertaining to simulate a quantum harmonic oscillator with this chain by designing an ad hoc inhomogeneity. In principle it is very simple: let V (x) = 1 2 Kx 2 be the desired potential. In fact, as displayed in figure 5, V (x) should vanish at infinity, so that one could choose for instance

ε(x) = -ε(0) e -βx 2 -ε(0) + ε(0)βx 2 + O(x 4 ), (62a) 
which fulfills our requirement provided that ε(0) and β satisfy the condition

ω 0 ε(0)β = K. (62b) 
A rapid calculation shows that the proper angular frequency Ω 0 of the simulated harmonic oscillator is

Ω 0 = Kc 2 ω 0 . (63a) 
Consequently, to obtain a large number of (equidistant) levels for the latter oscillator, one should choose β such that

ω 0 ε(0) = K β Ω 0 β K Ω 0 . (63b) 

VI. CONCLUSION AND PROSPECTS

A. What has been done

In the present paper, we have presented a toy-model: a chain made of classical oscillators, coupled from one to the next. We have essentially drawn inferences from the translational invariance of the system. Gathering both Hamilton equations, we have shown that a complex equation of first order in time, formally identical to the Schrödinger equation of a free 1D particle, can be derived without any approximation in the continuous limit. Moreover, we have extended this result to the case of a small inhomogeneity in the chain parameters. This inhomogeneity introduced in the Klein-Gordon equation ruling the chain's dynamics results in a potential term in the Schrödinger-like equation ruling the wave function ψ(x, t). An interesting illustration of this situation is obtained when considering the potential in figure 5, which can be regarded as parabolic in the vicinity of x = 0. Limiting ourselves to the first term in ∂ 2 /∂x 2 in the expansion of the unperturbed Hamiltonian in (61a), we are then left with

i ∂ψ(x, t) ∂t = ω 0 (1 + ε(0)) - 2 2 ω0 c 2 ∂ 2 ∂x 2 + 1 2 Kx 2 ψ(x, t). (64) 
Il is well known and solved for ψ in most QM textbooks, save for the additive constant energy term ω 0 (1 + ε(0)) which results in a global multiplicative phase factor e -iω0(1+ε(0))t in the found solution.

ℏω 0 ℏω 0 (1 + ε(x))

x FIG. 5: A potential well designed to simulate a quantum harmonic oscillator in the vicinity of the origin.

B. What can be done

The present article is long enough and should not be further overloaded. Nevertheless we would mention here a few topics that could easily be developped in, say, a following paper.

First, it is noteworthy that our 1D toy-model can be extended to 3D. In the discrete description, oscillator n should become oscillator (n, n , n ) and would have, say in the cubic configuration, three pairs of next neighbours to be coupled with. Of course figure 1 will not be extended in three dimensions and θ n (now θ n,n ,n ) will no longer be regarded as an angle, but rather as some kind of internal degree of freedom of a local oscillator with proper angular frequency ω 0 . In this connection, the eigenmodes of the full HON 3 (N oscillators per direction) will be indexed by three integers (m, m , m ). In the continuous description, the motion θ( r, t) of the whole system will be ruled by the 3D KG equation 

Next, although on a much more speculative plane, it is not forbidden to dream that these mysterious "local oscillators with proper angular frequency ω 0 " might be constituent of space itself. In this conception, c would stand for the speed of light. This idea, however vague it may seem at this stage, is supported by the fact that the d'Alembertian operator is left invariant by the Lorentz transformation and that equation (65a) is consequently covariant provided that the dynamical variable θ should be Lorentz-invariant. Note that, following this idea, the time itself should be regarded as an observable on equal footing with R, and no longer as a mere parameter. It is noteworthy that, introducing the 4-vectors (µ = 0, 1, 2, 3)

∂ µ = 1 c ∂ ∂t , ∇ , K µ = - ω e ( k) c , k , P µ = - H c , P , (67a) 
both equations (66a) and (66b) can be gathered in the covariant form

r t| K µ |ψ = 1 i ∂ µ r t|ψ . (67b) 
In this formalism, the Schrödinger equation simply reads

P µ = K µ . (67c) 
The above result shows that, as long as we are not able to specify the numerical value of the Planck constant, we are unable to derive the Schrödinger equation.

C. What has not been done yet

First of all, we have not derived the true Schrödinger equation from classical considerations, since we are not able to derive the value of from the latter considerations. We have just shown that its form was plausible, in particular as concerns the presence of the imaginary factor i. It is noteworthy indeed that is just a multiplicative factor in all the equations we have presented in this paper. We have not tackled the quantum measurement issue, and the entanglement question has been disregarded. Moreover, nowhere in this paper does the notion of particle emerge. In this sense, we have done half the job: what is lacking is the so-called "second quantization".

Although the process might seem to be somehow schizophrenic, it is interesting to admit QM as concerns the latter second quantization, and to consider our chain again, but now with θ n regarded as an observable and no longer as a classical dynamical variable. Let us consider equation (24). Hamiltonian H is now an operator, as well as the Glauber variables α em and α * em , which reads

H = m ω em α † em α em + 1 2 = m ω em N (m) . ( 68 
)
Due to the Poisson commutation relation {α em , α * em } = 1/i , we have now [ α em , α † em ] = 1, and the spectrum of N (m) is N = {0, 1, 2, . . . }. Now the full Hilbert space of the chain is the tensor product of the Hilbert spaces of each mode m:

E = E (0) ⊗ E (1) ⊗ E (2) ⊗ • • • E (m) ⊗ • • • . (69a) 
Besides, each E (m) is the direct sum of the eigensubspaces associated with the eigenvalues of N (m) :

E (m) = E (m) 0 ⊕ E (m) 1 ⊕ E (m) 2 ⊕ • • • E (m) nm ⊕ • • • . ( 69b 
)
Consequently we have

E = {nm} E (0) n0 ⊗ E (1) n1 ⊗ E (2) n2 ⊗ • • • E (m) nm ⊗ • • • , (69c) 
with the occupation-number basis {|n 0 , n 1 , . . . , n m , . . . }. Next, setting p = n 0 + n 1 + • • • + n m + . . . as the total quanta number and ordering the summation (69c) in increasing values of p, we obtain that E is the direct sum of the vector subspaces associated with zero particle (vacuum), one particle and so on. Space E is thus the so-called Fock space of a boson with spin zero (let us recall that Θ is a scalar operator) and with (rest) mass

m 0 = ω 0 c 2 . ( 70 
)
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 02 FIG.2: Angular frequencies ωem of the eigenmodes (here N = 24). Note the degeneracy ωe-m = ωem.
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 3 FIG.3: Angular frequency ωem of the eigenmodes versus wavevector km: the dots are the discrete values, the line is the continuous KG dispersion relation (37a).

  k• r-ωe( k)t) with ω e ( k) = ω 2 0 + ( kc) 2 . (65b)In this connection, the state-vector |ψ( r, t) will satisfy the Schrödinger-like equationi d|ψ dt = ω e ( k)|ψ = (ω 0 1) 2 + (c k) 2 |ψ ,(66a)with operator k defined in the | r -representation by r| k|ψ = 1 i ∇ r|ψ .
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