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Intersection Norms and One-faced
Collection of Curves

Abdoul Karim SANE

ENS Lyon, August 2nd 2018.

Abstract : Intersection norms are integer norms on the first homology
group of a surface. In this article, we prove that there are some polytopes
which are not dual unit balls of such norms. By the way, we prove that, up to
diffeomorphism, there are four collections of curves on Σ2 whose complement
is a disk.

Intersection norms on surfaces were first quickly introduced by Turaev [6]
(page 143), and studied by M. Cossarini and P. Dehornoy [1]. They use
intersection norms to classify, up to isotopy all surfaces transverse to the
geodesic flow on the complement of special links in the unit tangent bundle
of a closed oriented surface.
Their result makes explicit Thurston’s fiber faced theory for Thurston norms
on compact oriented 3-manifolds. It tells us that the intersection norm on a
surface (respectively the Thurston norm on a 3-manifold) encodes the open
book decompositions of the unit tangent bundle of that surface (respectively
the topology of a fibered 3-manifold ). 1

Our purpose in this article is to study intersection norms for their own.
Let Σg be a closed oriented surface of genus g ≥ 1, and Γ a collection of
closed curves on Σg. We assume that Γ has only double intersection points.
Let α be loop on Σg, we define the number iΓ(α) as follows :

iΓ(α) = inf{#{α′ ∩ Γ};α′ ∼ α;α′ t Γ};

where the symbol ∼ (respectively t) is the free homotopy relation (respec-
tively transversality).

1. Research supported by the laboratory UMPA-ENS LYON
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We define

NΓ : H1(Σg,R) −→ R
a 7−→ inf{iΓ(α); [α] = a}.

The functionNΓ defines a semi-norm onH1(Σg,R) and it takes integer values
on the lattice H1(Σg,Z). Using a standard basis for the homology, we shall
identify H1(Σg,R) and H1(Σg,R) with R2g. By a theorem of Thurston [5],
the dual unit ball of NΓ is a lattice polytope, ie, the convex hull of finitely
many integer vectors (by integer vector, we mean a vector in the integer
lattice H1(Σg,Z)).
Moreover, if Γ fills Σg, namely Σg−Γ is a union of topological disks, then NΓ

defines a norm, i.e, its dual unit ball has non empty interior in H1(Σg,R).
One constraint on the dual unit balls of intersection norms is that their

vertices are congruent modulo 2. This comes from the fact that geometric
and algebraic intersection have the same parity. In genus 1, this constraint
happens to be the only one. So, every symmetric convex lattice polygon with
mod 2 congruent vertices is the dual unit ball of an intersection norm on the
torus. The proof of this fact follows from an implicit argument in Thurston’s
paper [5]. We will explain it in Section 1 for completeness.

Now we raise the following problem:

Question 1. Fix g ≥ 2, and let P ⊂ H1(Σg,R) be a symmetric lattice
polytope all of whose vertices are congruent mod 2. Is it the dual unit ball of
some intersection norm on Σg ?

In this article, we give examples of lattice polytopes on R4 with mod 2
congruent vertices, which are not dual unit balls of intersection norms. More
precisely, we show that sub-polytopes –with eight vertices and non-empty
interior– of the cube [−1, 1]4, are not the dual unit balls of intersection
norms. It means that in higher dimension, dual unit balls of intersection
norms come with other constraints.

Let P8 be the set of all symmetric sub-polytopes having eight vertices
and non-empty interior. The set P8 is not empty ; it contains the polytope
generated by the following vectors (and their opposites):

v1 = (1, 1, 1, 1), v2 = (1,−1, 1, 1), v3 = (−1, 1, 1, 1), v4 = (1, 1,−1, 1).

Now, we state the main result of this article:

Theorem 1. Elements of P8 are not dual unit balls of intersection norms.
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If Γ is a filling collection of curves on a surface, whose complement is a
disk, we say that Γ is a one-faced collection .

The proof of Theorem 1 relies on:

Theorem 2. On a closed genus 2 surface, there are four orbits of one-faced
collections, under the mapping class group action.

The proof of Theorem 1 uses the natural (partial) order on the set func-
tions. We relate that partial order to a geometric operation on collection of
closed curves and we use it to show that if an element of P8 is the dual unit
ball of an intersection norm, then it must come from a one-faced collection Γ.
Finally, we check that none of the four collections of Theorem 2 realizes an
element of P8.

Organization of this article: In Section 1, we recall some facts on in-
tersection norms and we show that for the question of realizability, we can
restrict our attention to minimal collections.

In Section 2, we show that any intersection norm is bounded from below
by a norm defined by a one-faced collection.

Finally, in Section 3, we count orbits (under the mapping class group
action) of one-faced collection on Σ2 and we prove Theorem 1.

Acknowledgments: I am very thankful to my two supervisors J.-C Siko-
rav and P. Dehornoy for careful reading and discussion at every stage of the
writing of this article.

1 Preliminaries on intersection norms

In this section, we first recall some facts about integer norm. After, we
define the intersection norm and recall some basic notions about it (For more
details on intersection norms, see [1]).

We end this section by proving that, concerning the realizability of po-
lytopes, we can restrict our attention to minimal collections.

Let ∼ denote the free homotopy relation on curves, t be transversality
relation and [.] the homology class.

Integer norms: Let E be a vector space of dimension n and

L = L(u1, ..., un) := {a1u1 + ...+ anun, ai ∈ Z}
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the lattice generate by the vectors (ui)i=1,...,n.

Definition 1.1 (Integer norm).
A norm N : E −→ R+ is an integer semi-norm relatively to the

lattice L if the restriction of N to L takes positive integer values.

The following theorem states that the dual unit ball of an semi-integer
norm have a combinatorial description.

Theorem 3 (W.Thurston). If N is an integer semi-norm relatively to a
lattice R, then its dual unit ball is a convex hull of finitely many vectors in
the lattice ;

BN∗ = ConvHull{v1, ......, vn; vi ∈ R}.

One can find a sketch of proof of Theorem 3 in [5] (Page 107-112). For
a more complete proof, see [2] (Exposé Fourteen by David Fried). More
recently, de la Salle gives a new proof of Theorem 3 (see [3]).

Definition of intersection norms : We consider a genus g closed oriented
surface Σg and a collection Γ = {γ1, ..., γn} of closed curves on Σg. We
insist on the fact that Γ is fixed and is allowed to change only in is isotopy
class. Let a ∈ H1(Σg,Z) be a homology class and α an oriented multi-curves
representing a. Then we define :

iΓ(α) := inf{#{α′ ∩ Γ};α′ ∼ α;α′ t Γ}

and

NΓ(a) := inf{iΓ(α); [α] = a}.

If a multi-curves α representing a homology class a is such that

NΓ(a) = iΓ(α),

then α will be said Γ-minimizing .
One important thing is that Γ-minimizing multi-curves can be chosen to

be simple. In fact, if α is a (a priori non simple) Γ-minimizing multi-curves
then by smoothing all the self-intersection points of α with respect to its
orientation, we get a new oriented multi-curves α′ in the same homology
class as α and iΓ(α′) = iΓ(α). It implies that α′ is a simple Γ-minimizing
multi-curves as we claim.
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Proposition 1. The function NΓ : H1(Σg,Z) −→ N verifies :

— Linearity on rays : NΓ(na) = |n|NΓ(a) for all n ∈ Z and a ∈
H1(Σg,Z)

— convexity : NΓ(a+ b) ≤ NΓ(a) +NΓ(b) for all a, b ∈ H1(Σg,Z).

The proof of Proposition 1 is not trivial and one can see [1].

The linearity on rays implies that NΓ can be extended to homology with
rational coefficients since for all a ∈ H1(Σg,Z) and q ∈ N, we have :

NΓ(a) = NΓ(
q

q
.a) = qNΓ(

1

q
a).

It follows by convexity that NΓ extends uniquely to a positive function
on H1(Σg,R). Moreover, the extended function NΓ : H1(Σg,R) −→ R+ still
linear on rays and convex. Therefore, NΓ defines a semi-norm on H1(Σg,R)
and it takes integer values on the lattice H1(Σg,Z). So, NΓ is an integer
semi-norm. Theorem 3 implies that the dual unit ball BN∗Γ is a convex hull
of finitely many integer vectors.

If the collection is filling, then NΓ defines an integer norm.

Relation between the vectors of the dual unit ball: If α and β are
two transverse oriented closed curves , then the algebraic intersection number
between α and β is given by

ia(α, β) =
∑
p∈α∩β

ε(p, α, β);

where ε(p, α, β) is the algebraic sign of the intersection at p, relatively to the
orientation of Σg. We recall that ia depend only on the homology classes of α
and β, and defines a non degenerate skew-symmetric 2-form on H1(Σg,R).

Then, if α and α′ are two homologous curves, by taking an orientation
of Γ, we have

iΓ(α) = ia(α,Γ) mod 2;

iΓ(α′) = ia(α
′,Γ) mod 2;

ia(α,Γ) = ia(α
′,Γ).
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Thus, iΓ(α) = iΓ(α′) mod 2 for every orientation of Γ. Therefore, if v1

and v2 are two integer vertices in the dual unit sphere of NΓ,

v1 = v2 mod 2.

The relation above is a necessary condition for a symmetric lattice poly-
tope to be the dual unit ball of an intersection norm. The following statement
shows that it is sufficient in the genus one case and the idea of the proof is
from Thurston.

Proposition 2. If P is a symmetric lattice polygon in the plane with
congruent mod 2 vertices, then P is the dual unit ball of an intersection
norm.

Proof. First, if P is a symmetric lattice segment in R2, then there is a ma-
trix A ∈ SL(2,Z) such that P ′ := A(P ) is a vertical segment with extremities
in Z2. Moreover, A has a geometric realization since Mod(T2) = SL(2,Z).
That is there is a homeomorphism φ of T2 such that

φ∗ : H1(T2,R) ≈ R2 −→ H1(T2,R) ≈ R2

is equal to A.
Now, let l := 1

2 length(P′) ; l ∈ Z. If α and β are the canonical basis
of H1(T2,R), by taking l parallel curves to β, we get a collection Γ′ in T2

such that BN∗
Γ′

= P ′. So, Γ := φ−1(Γ′) is such that BN∗Γ = P .

Secondly, if Γ := {γ1, ..., γn} is a collection of closed geodesics on T2

(with the flat metric of constant curvature equal to 1), and if a is a homology
class represented by a collection α of oriented simple closed curves which are
pairwise disjoint then

NΓ(a) = iΓ(α) =

n∑
j=1

iγj (α) =

n∑
j=1

Nγj (a).

It follows that the dual unit ball of NΓ is equal to the Minkowski sum of
the dual unit balls of Nγj ; which are symmetric lattice segments:

BN∗Γ =
⊕
j

BN∗γj
.

Finally, every symmetric lattice polygon of R2 is the Minkowski sum of
finitely many symmetric lattice segments.
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Combining the three arguments above we construct, for any symmetric
lattice polygon P with mod 2 congruent vertices, a geodesic collection Γ such
that

BN∗Γ = P.

Minimality of the collection: Now, we show that we can restrict to
collections in minimal position.

Definition 1.2. Let γ1 and γ2 be two transverse closed curves on Σg. They
are in minimal position if they realize the geometric intersection in their
free homotopy classes that is

i(γ1, γ2) = card{γ1 ∩ γ2}.

A collection Γ is minimal if all the curves in Γ are pairwise in minimal
position.

Remark 1.1. One-faced collections are minimal.

Lemma 1.1. Let Γ be a collection of closed curves in Σg, then there is a
minimal collection Γmin such that NΓ = NΓmin .

Proof. One can apply a generic homotopy so that we get a collection in mi-
nimal position. Such a generic homotopy consists in a finite number of Rei-
demester moves (1, 2 and 3 as depicted in Table 1). By Hass and Scott [4],
one can choose a decreasing homotopy with respect to the intersection num-
ber of the collection. Moves 1 and 3 do not change the norm, while Move 2
(deleting a bigon) changes the norm.

Then, we replace Move 2 by a crossing (see Table 1). This new move
changes the homotopy class of Γ but it does not change the norm. By chan-
ging deleting bigon by a crossing, the self-intersection decreases by one. As
we can choose a descending homotopy, we get a collection Γmin in mini-
mal position after applying finitely many Reidemester’s move 1 and 3 and
crossing move. Doing so, the norm does not change ; hence we built a new
collection Γmin in minimal position such that NΓ = NΓmin .
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Table 1 – From left to right, we have the three Reidemeister’s moves and
the last one is the crossing move. The curves in red color represents the local
configuration of Γ, and curves in black are sub-arcs of curves in Σg. One can
see that Reidemeister’s move 1 and 3 and crossing move do not change the
intersection. Otherwise, the bigon deleting does change the intersection.

2 Partial order and lower bound in the set of in-
tersection norms on Σg

In this section, we first recall an important tool for computing the dual
unit ball of intersection : Eulerian co-orientation.

Then, we define a geometric operation on collections of closed curves and,
relate it to the partial order on the set of all intersection norms.

We finish by proving that every intersection norm is bounded from below
by an intersection norm define by a one-faced collection.

2.1 Eulerian Co-orientation:

We consider a collection of closed curves Γ on Σg such that Σg − Γ is a
union of topological disks. The collection Γ defines a cellular graph on Σg.
We denote by V (Γ) the set of its vertices, defines as self-intersection points
of Γ. Let E(Γ) be the set of edges and F (Γ) the set of faces.

The Euler characteristic of Σg is given by :

χ(Σg) = 2− 2g = |V | − |E|+ |F |.

Definition 2.1. A co-orientation of Γ is a choice of a positive way to
cross (transversally) every edge of Γ.
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A co-orientation is Eulerian if a small oriented circle centered at a vertex
crosses positively two edges and negatively the other two, relatively to the
co-orientation.

Figure 1 – Non alternating and alternating co-orientation.

Remarks 2.1.
— Up to rotation, we distinguish two types of Eulerian co-orientations

around a vertex (See Figure 1). A vertex is non-alternating if the arcs
emanating from it, and belonging to the same curve are co-oriented
in the same direction, otherwise it is alternating.

— To a co-orientation of an arc A correspond an orientation of it. It is the
one that gives, together with the co-orientation of A, the orientation
of Σg.

— A collection Γ with c curves has at least 2c Eulerian co-orientations
given by all the different ways to co-orient Γ only by non-alternating
vertices (this is equal to the number of possibilities to orient Γ).

Let α be an oriented closed curve on Σg transverse to Γ, and let ν be a
co-orientation of Γ. We define,

ν(α) :=
∑
p∈αtΓ

ε(p, α,Γν),

where ε(p, α,Γν) = ±1 depending on whether α crosses Γ at p in the direction
of the co-orientation ν or not. Moreover, if ν is a Eulerian co-orientation,

ν(α) = 0 if [α] = 0.
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Therefore, a Eulerian co-orientation ν defines a map

[ν] : H1(Σg,R) −→ R+

H1(Σg,Z) −→ N.

So, a Eulerian co-orientation defines an integer cohomology class. We denote
by Eulco(Γ) the set of all Eulerian co-orientations of Γ and by [Eulco(Γ)] the
set of their cohomology classes (different co-orientations can give the same
cohomology class).

Theorem 4 (M. Cossarini & P. Dehornoy). The set [Eulco(Γ)] is a subset
of the unit dual ball BN∗Γ . Moreover, every integer vector in BN∗Γ , mod 2
congruent to the vertices of BN∗Γ belongs to [Eulco(Γ)].

The proof of Theorem 4 is well explained in [1].

2.2 Geometric operation on collections of curves

Now, we explain how we can geometrically compare collections of curves.
Let p be a self-intersection point of Γ. We construct two collections Γ1 and Γ2

by smoothing the collection Γ at p in the two possible ways (see Figure 2).
After this smoothing, we get two collections, namely Γ̃1 and Γ̃2, a priori

not in minimal position. By Corollary 1.1, there are two minimal collections
Γ1 and Γ2 such that N

Γ̃1
= NΓ1 and N

Γ̃2
= NΓ2 .

Figure 2 – Smoothing at a self-intersection point.
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Lemma 2.1. The collections Γ̃1 and Γ̃2 obtained by smoothing an intersec-
tion point of Γ are such that

[Eulco(Γ)] = [Eulco(Γ̃1)] ∪ [Eulco(Γ̃2)].

In particular, we have

BN∗Γ = conv(BN∗Γ1
∪ BN∗Γ2

).

Proof. Let p be an intersection point of Γ and Γ̃1 one of the collections
obtained by smoothing Γ at p. The collection Γ differs to Γ1 only in a small
neighborhood (which is a disk) of p. To a co-orientation ν1 of Γ̃1, we associate
a co-orientation ν of Γ in the following way :

We keep the same co-orientation of Γ̃1 on Γ outside a small neighborhood
of p. As ν1 is an Eulerian co-orientation, the boundary of the neighborhood
around p intersects two times ν1 in a positive direction and two times in
a negative direction. It implies that the induced co-orientation on Γ by ν1

outside the neighborhood of p can be completed in a unique way in the neigh-
borhood of p ; the point p at the end could be non-alternating or alternating.
We then obtain an Eulerian co-orientation ν of Γ.

As the coordinates of a vector associated to a Eulerian co-orientation
are obtained by evaluating this co-orientation on a basis of H1(Σg,Z), one
can choose the basis such that they do not enter in the neighborhood of p.
It implies that ν and ν1 evaluated on that basis will give the same vector.
Hence, [Eulco(Γ̃1)] ⊂ [Eulco(Γ)].

Now let ν be a Eulerian co-orientation of Γ. Then, by smoothing Γ at p
with respect to the co-orientation ν at p (or with respect to the induced
orientation of the four arcs emanating from p), we obtain a co-orientation ν1

of Γ̃1 or Γ̃2 which is equal to ν outside a small neighborhood of p. Therefore,

[ν] = [ν1].

So, we have

[Eulco(Γ)] ⊂ [Eulco(Γ̃1)] ∪ [Eulco(Γ̃2)]

and the equality

[Eulco(Γ)] = [Eulco(Γ̃1)] ∪ [Eulco(Γ̃2)]

holds.
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Finally, by Lemma 1.1 and Lemma 4, we have

BN∗Γ = conv(BN∗Γ1
∪ BN∗Γ2

).

Definition 2.2. Let Γ1 and Γ2 two collections of curves on Σg. We say
that NΓ1 ≤ NΓ2 holds if the inequality holds as functions of H1(Σg,R).
This is equivalent to have BN∗Γ1

⊂ BN∗Γ2
.

Lemma 2.2. If Γ1 is a collection obtained by smoothing Γ at a point p, then

NΓ1 ≤ NΓ.

Proof. By Lemma 2.1, BN∗Γ1
⊂ BN∗Γ1

.

Definition 2.3. A filling collection Γ is one-faced (respectively two-faced)
if Σg − Γ is a disk (two disks).

For a graph defined by a collection of curves with only double points, we
have |E| = 2|V |. Then, the Euler characteristic of the surface is :

χ(Σg) = 2− 2g = |F | − |V |.

It follows that for a filling collection, we have |V | = |F | + 2g − 2 ≥ 2g − 1.
Therefore, the minimum is obtained for one-faced collections. In particular,
in genus two, a one-faced collection has self-intersection number equal to 3.

Definition 2.4. A norm NΓ is even if it is so as a function of H1(Σg,Z) ;
otherwise, it is odd.

The following lemma will play a key role.

Lemma 2.3 (Lower bound for intersection norms). Every intersection norm
defined by a filling collection is bounded from below by a norm defined by a
two-faced collection. Moreover, if the norm is odd, it is bounded from below
by a one-faced collection.

Proof. Let Γ be a filling collection on Σg. We assume that |F (Γ)| ≥ 2. Let p
a double point of Γ such that two different faces, say F1 and F2, are opposed
at p.
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By smoothing Γ at p so that the faces F1 and F2 are joined (see Figure 3),
we define a new filling collection with one face less. Step by step, following
this process of smoothing intersection points at which two different faces are
opposed, we reach a filling collection Γn on which opposed faces at double
point are the same and satisfy NΓn ≤ NΓ.

Now, let p be one of the double points of Γn, e := (v1 = p, v2, ...., vn = p)
a Eulerian cycle based at p, Fa and Fb the two faces at p such that when we
turn around p, we read Fa − Fb − Fa − Fb.

The faces Fa and Fb are again the faces at the vertex v2 as p := v1

and v2 share a common edge. So, the point v2 has the same configuration
Fa − Fb − Fa − Fb.

Since v3 shares an edge with v2 the faces Fa and Fb are again the faces
at v3, and v3 again has the same configuration of faces. By applying this
process step by step at each vertex of the Eulerian cycle, we show that
around every vertex, we have the configuration Fa − Fb − Fa − Fb. Then Γn
has one or two faces according to whether Fa is equal to Fb or not.

Suppose that Γn is two-faced without any possibility of reduction. Then
by the above argument any edge of Γn separates two different faces. There-
fore, NΓn is even. In fact, if γ is a transverse curve to Γn, then γ alternates
between Fa and Fb at each intersection with Γ. It implies that iΓn(γ) is
even. So is iΓ(γ) since smoothing does not change the parity of intersection
number.

Finally, an odd norm reduced to a one-faced collection.

Figure 3 – Addition of two different faces.
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Corollary 2.1. Every intersection norm with dual unit ball in the cube [−1, 1]2g

is bounded from below by a norm defined by a one-faced collection.

Proof. If BN∗Γ is a sub-polytope of [−1, 1]2g, then NΓ is odd and applying
Lemma 2.3, we obtain the result.

3 Orbits of one-faced collections

Now, we show that there are four orbits, under the mapping class group
action, of one-faced collections (Theorem 2).

Partial configuration. We consider a collection of closed (non oriented)
curves Γ = {γ1, .....γn} in Σ2 whose complement is one disk.

In what follows α1, β1, α2 and β2 are the oriented simple closed curves,
that canonically represent the generators of the first homology group (see
Figure 4). Let η := α1β1α

−1
1 β−1

1 be the curve depicted in red and Aη be a
tubular neighborhood of η.

α1 α2

β1 β2

η

Figure 4 – Canonical symplectic basis.

The following lemma gives a canonical partial configuration for one-faced
collections.

Lemma 3.1. If Γ is a one-faced collection on Σ2, then there exists a diffeo-
morphism ψ of Σ2 such that

i(αi, ψ(Γ)) = i(βi, ψ(Γ)) = 1; i = 1, 2.

14



Hence, up to diffeomorphism and outside Aη, Γ looks like in Figure 5.

a1

b1
a2

b2

Figure 5 – Partial configuration of the collection ψ(Γ) ; with labelled arcs.

Proof. Since Γ is a one-faced collection, Σ2 is obtained by a polygon, let us
say P , with identified sides. Therefore, there exists a simple closed curve α
intersecting Γ once. The curve α is obtained by taking a simple arc on P
with end points in two identified sides. Moreover, α is not separating ; so we
claim that there exists a simple closed curve β such that

i(α, β) = i(β,Γ) = 1.

This comes from the fact that the arc representing α on P separates the
polygon in to two components and, since α is not not separating, these two
components share two identified sides. So, by taking a simple arc in P joining
these two sides, we construct β as above.

Now, by the classification of simple closed curves on surfaces, there exists
a diffeomorphism φ such that φ(α) = α1 and φ(β) = β1.

Let Σ1,1 be the left component of Σ2 − η on Figure 4. Then φ(Γ) ∩ Σ1,1

is a one-faced collection (eventually with arcs) on Σ1,1. Again, by the same
argument, there are two simple curves α′ and β′ on Σ1,1 such that

i(α′, β′) = i(φ(Γ) ∩ Σ1,1, α
′) = i(φ(Γ) ∩ Σ1,1, β

′) = 1.

Again, there is a diffeomorphism φ′ : Σ1,1 −→ Σ1,1 such
that φ′(α′) = α2 and φ′(β′) = β2.

15



Therefore, ψ := φ′ ◦ φ : Σ2 −→ Σ2 is a diffeomorphism such that

i(ψ(Γ), αi) = i(ψ(Γ), βj) = 1, i = 1, 2.

Remark 3.1. Lemma 3.1 remains true on a genus g surface and the proof
is the same.

Lemma 3.1 implies that, up to diffeomorphism, a one-faced collection is
obtained by connecting the extremities of the partial configuration by arcs
in the annulus Aη. Moreover, the self-intersection number of Γ is determi-
ned by the intersection between those arcs we use to complete the partial
configuration.

Let a1, b1, a2 and b2 be the four oriented arcs in the partial configuration
(see Figure 5). A closed curved from the partial configuration will be labelled
by the arcs being used and the number of twists we make around η when we
walk along that curve. For instance, a1η

2b−1
1 b2 is the closed curve depicted

on Figure 6.

Figure 6 – The curve a1η
2b−1

1 b2

As we are dealing with non oriented curves, the labeling of curves is
defined up to cyclic permutation and reversing. For example, a1η

2b−1
1 b2 and

a−1
1 b−1

2 b1η
−2 are labels of the same curve.

Intersection of arcs in an annulus : As we say above, the geometric
intersection of a one-faced collection is completely determined by the inter-
section of arcs in an annulus. Here, the intersection number is computed

16



over the homotopy class of arcs with fixed end points. Now, let λ be a simple
oriented arc joining the two boundaries of A. Cutting along λ, we obtain a
rectangle with two opposite sides identified. Let X and Y be two points in
the boundary components of A. An oriented arc from X to Y will be denoted
by

→
XYp where p ∈ Z is the algebraic intersection between

→
XYp and λ.

A

C

B

D
η

Figure 7 – End-points in annulus.

Let A,B,C and D four points in the boundaries of A as in Figure 7.

Lemma 3.2. The following formulas give the intersection between two orien-
ted arcs in A :

— i(
→
ABp,

→
CDq) = i(

→
BAp,

→
DCq) = |p− q|

— i(
→
ABp,

→
DCq) = i(

→
BAp,

→
CDq) = |p+ q|

— i(
→
ADp,

→
CBq) = i(

→
DAp,

→
BCq) = |p− q − 1|

— i(
→
ADp,

→
BCq) = |p+ q − 1|

— i(
→
DAp,

→
CBq) = |q + p+ 1|

Proof. Up to the Dehn twist τ−qη on the configuration of the arcs, one can
assume that q is equal to 0 in all cases, that is one the arc is untwisted.

Therefore, we have :

i(
→
ABp,

→
CDq) = i(

→
ABp′ ,

→
CD) = |p′|

with →
ABp′ = τ−qη (

→
ABp).

Moreover, p′ = p− q. Hence, we obtain the result.
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Again, for the second formula, we have :

i(
→
ABp,

→
DCq) = i(

→
ABp′ ,

→
CD) = |p′|

and p′ = p+ q. The difference between the first two cases show how crucial
is the orientation for the computing of intersection.

We treat the third case, the other are done in a similar way.
We still have that

i(
→
ADp,

→
CBq) = i(

→
ADp′ ,

→
CB) = |p′ − 1|

and
p′ = p− q.

The appearance of −1 in this case comes from the cross configuration of the
extremities.

List of one-faced collections: Now, we are able to count all one-faced
collections. Before that, we define some diffeomorphisms which will be useful
for the proof.

If γ is an oriented simple closed curve on Σ2, we recall that τγ is the
right-handed Dehn twist along γ.

D

Figure 8 – Rotations R1 and R2

Let R1 (respectively R2) be the rotation of angle π along the axis D (res-
pectively the horizontal axis) as depicted in Figure 8. The diffeomorphism R1

18



(respectively R2) is an involution and it maps α1 to α2, β1 to β2 and η to η−1

(respectively αi to α−1
i , βi to β−1

i and η to η).
We recall that αi and βi can be interchanged by a diffeomorphism. More

precisely, there is a diffeomorphism sending αi to βi and βi to α−1
i . This fact

implies that in the writing of the label of curve, ai can be replaced by bi and
bi by a−1

i ; we will call this operation interchanging.

Definition 3.1. Let Γ be a collection of closed curves on Σ2. A cycle γ in Γ
(Γ seen as graph on Σ2) is separating if Σ2−γ has more than one component.

The following lemma gives a necessary condition for a collection to be
one-faced.

Lemma 3.3. If Γ is a one-faced collection, then Γ does not contain a sepa-
rating cycle.

Proof. Assume that Γ contain a separating cycle γ, then Σ2− γ has at least
two connected components. We have in this case more than one disc in the
complement. So if Γ is one-faced, it does not contain a separating cycle.

Now, we can state the main result of this section which is an elaborate
form of Theorem 2.

Theorem 5 (Orbits of one-faced collections). If Γ is a one-faced collection
on Σ2, then Γ has at most three closed curve. Moreover, up to diffeomor-
phism,

— if Γ is made of three closed curves, then Γ = {a1, a2, b1b
−1
2 }

— if Γ is made of two closed curves, then

Γ = {a1a
−1
2 , b1b2η} or Γ = {a1,b1b2ηa2}

— if Γ is made by one closed curve, then Γ = {a1a
−1
2 b−1

1 b2η}

Proof. If Γ is one-faced, then i(Γ,Γ) = 3 (its comes from an Euler characte-
ristic argument ; cf Section 2).

Now, if Γ has at least four closed curves, then the arcs ai, bi(i = 1, 2)
belong to four different closed curves αiηpi , βiηqi ; otherwise Γ would contain
a separating cycle. Therefore, i(Γ, η) = 0 which is absurd as Γ is filling. So,
if Γ is one-faced |Γ| ≤ 3.

Case 1 : If |Γ| = 3, then two arcs of the partial configuration belong
to the same closed curve and the others two belong to two different closed
curves. Moreover, as Γ is filling, the two arcs containing in the same closed
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curve are in different handles. As one can interchange ai and bi, we can
assume that the curve containing two arcs is γ := b1η

pb−1
2 ηq ; the other

curves being α1η
r and α2η

s. Since Γ is one-faced, it does not contain a
separating cycle that is r = s = 0, and up to a Dehn twist along η, one can
take p=0 that is γ = b1b

−1
2 ηq. The fact that i(Γ,Γ) = 3 implies that

i(γ, γ) = 1.

By Lemma 3.2 i(γ, γ) = |q+ 1| = 1 ; it implies that q = 0 or q = −2 and one
check that Γ1 = {a1, a2, a1a

−1
2 } and Γ2 = {a1, a2, b1b

−1
2 η−2} are in the same

orbit under the mapping group action.

Figure 9 – One-faced collection with three curves

Case 2 : If |Γ| = 2, then one of the curves of Γ is simple. Otherwise if
the two curves are not simple, one can smooth intersection point of one of
the curves in Γ –let g1 be that curve– such that each smoothing separate g1

in to two component. we obtain at least two simple curves λj , j = 1, .., n.
The curves λj , as they are all parallels to g1, intersects g2. Then

i(Γ,Γ) ≥ i(g1, g1) + i(g2, g2) +
∑
j

i(λj , g2) > 3

which is absurd since Γ is one-faced. Therefore, one of the two curves is
simple, say g1.

Up to diffeomorphism (interchanging and rotations), one can assume that
a1 is contained in g1.
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Case 2.1 : If g1 does not contain another arc, then

g2 = b1b2η
paε

with ε = ±1. In this case,

i(Γ,Γ) = i(g1, g2) + i(g2, g2)

and
i(g1, g2) = 1.

Its implies that i(g2, g2) = 2. The solution of this equation is p = 1
and ε = 1.

So
Γ = {a1, b1b2ηa2}

which indeed is a one-faced collection(see Figure 10).

Case 2.2 : If g1 contains another arc than a1, that arc cannot be in
the same handle as a1 (otherwise, the filling condition would fail). Up to
interchanging, one can suppose that

g1 = a1η
pa−1

2 η−p

and again by applying a Dehn twist around η, one can take g1 = a1a
−1
2 and

g2 = b1η
pbε2η

q with ε = ±1. Moreover,

i(Γ,Γ) = i(g1, g2) + i(g2, g2).

We have i(α1 ∪ α2, β1 ∪ β2) ≡ i(g1, g2)mod 2 since α1 ∪ α2 (respectively
β1 ∪ β2) is homologous to g1 (respectively g2). It implies that

i(g1, g2) = 2

and,
i(g1, g2) = 1.

Case 2.2.1 : If ε = −1, by applying the formulas of Lemma 3.2, we
have :

i(g2, g2) = |p+ q + 1|

and
i(g1, g2) = |p|+ |q|+ |q + 1|+ |p+ 1|.
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The solution of the equations i(g2, g2) = 1 and i(g1, g2) = 2 are {p =
0, q = 0} and {p = −1, q = −1}. The two collections obtained are not filling
since i(b1b2,Γ) = 0.

Case 2.2.2 : If ε = 1, then i(g2, g2) = |p− q| and i(g1, g2) = 2(|p|+ |q|).
The solution of the equations i(g2, g2) = 1 and i(g1, g2) = 2 are {p = 0, q =
±1} and {p = ±1, q = 0}.

We check that Γ1 = {a1a
−1
2 , b1η

±1b2} and Γ2 = {a1a
−1
2 , b1b2η

±1} are
one-faced (here, Γi is a union of two collection according on whether the
power of η is 1 or −1 ). The rotation R1 maps elements Γ1 to elements of Γ2.
Finally, the collection {a1a

−1
2 , b1b2η} is the mirror image of {a1a2, b1b2η

−1}.

Hence, up to diffeomorphism, we have two one-faced collections with two
curves (see Figure 10) namely

Γ1 = {a1a
−1
2 , b1b2η}

and
Γ2 = {a1, b1b2ηa2}

Figure 10 – One-faced collections with two curves

Case 3 : If Γ has only one curve g, then up to diffeomorphism (inter-
changeability and rotations)

g = a1a
−1
2 ηpbε11 η

qbε22 η
r
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or
g = a1η

pbε11 a
−1
2 ηqbε22 η

r,

where εi = ±1.

If g = a1η
pbε11 a

−1
2 ηqbε22 η

r, we check that Γ is either not filling, either
filling with more than one disk in its complement.

For g = a1a
−1
2 ηpbε11 η

qbε22 η
r, R1 sends g := g(ε1, ε2) to g := g(−ε1,−ε2).

If we start with g = a1a
−1
2 ηpb−1

1 ηqb2η
r and we change a1 to b1 by a dif-

feomorphism (that diffeomorphism will map b1 to a−1
1 ), g gets mapped

to g′ = b1a
−1
2 ηpa1η

qb2η
r. Now, if we reverse the orientation of g′ starting

at a1, we have g′ = a−1
1 ηpa2b

−1
1 ηrb−1

2 ηq, and R2(g′) = a1η
pa−1

2 b1η
rb2η

q.
Finally, τη−p ◦R2(g′) = a1a

−1
2 ηpb1η

qb2η
r.

Hence, up to diffeomorphism, one can look at the case where

ε1 = 1; ε2 = −1

In this case we have

i(Γ,Γ) = |p|+ |q|+ |r|+ |p+ q + 1|+ |p− r|+ |q + r + 1|.

The equation i(Γ,Γ) = 3 has two solutions {p = 0, q = 0, r = −1}
and {p = −1, q = 0, r = 0}. The collections Γ1 = {a1a

−1
2 b1b

−1
2 η−1} and

Γ2 = {a1a
−1
2 η−1b1b2} are one-faced. Moreover R1(Γ1) = Γ2. Therefore, up

to diffeomorphism, we have one one-faced collection with one curve (See
Figure 11), namely

Γ = {a1a
−1
2 b1b

−1
2 η}.

Proof of Theorem 1. By Lemma 1.1, we can restrict our attention to mi-
nimal collections. By Corollary 2.1, if P ∈ P8 is the dual unit ball associated
to a collection Γ, then Γ is one-faced. Otherwise, if Γ had more than one
face, it would have been possible to reduced Γ to a filling collection Γ′ such
that NΓ′ ≤ NΓ that is BN ′∗Γ has less than eight vectors with non empty
interior, which is impossible.

It follows that Γ is one of the collection in Theorem 5. We check that
dual unit balls of those collections are not in P8 (see bellow for their dual
unit balls) ; which finally proves that elements of P8 are not realizable.
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Figure 11 – One-faced collection made of one curve

Computation of dual unit balls : We compute the dual unit ball of an
intersection norm by evaluating all Eulerian co-orientations on the canonical
homology basis [1]. By doing so, we obtain the vertices (of the dual unit
balls) below :

{a1, a2, b1b
−1
2 } 7→ [−1, 1]4

{a1a
−1
2 , b1b2η} 7→ {±(1, 1, 1,−1);±(1,−1, 1, 1);±(1, 1, 1, 1);±(1, 1,−1,−1);

± (1,−1,−1, 1)}
{a1, b1b2ηa2} 7→ {±(1, 1, 1,−1);±(1,−1, 1,−1);±(1, 1,−1,−1);±(−1, 1, 1, 1);

± (−1, 1,−1, 1)}
{a1a

−1
2 b−1

1 b2η} 7→ {±(1, 1,−1,−1);±(1,−1,−1, 1);±(1,−1, 1, 1);±(1, 1, 1, 1);

± (−1, 1, 1, 1)}.

The first collection has the whole unit cube as dual unit ball ; the others
three have dual unit balls with ten vectors.
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