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In the paper, by virtue of an explicit formula for higher order derivatives of the ratio between two differentiable functions in terms of the Hessenberg determinant, the author presents determinantal expressions and recurrence relations for generalized Fubini polynomials. Hereafter, by virtue of relations between Eulerian polynomials and the (generalized) Fubini numbers and polynomials, the author derives a determinantal expression for Eulerian polynomials and several recurrence relations for the Fubini and Eulerian polynomials.

Introduction

For n ≥ 0, let

F n = n k=0 k!S(n, k), (1.1) 
where S(n, k), which can be generated by the exponential function

(e x -1) k k! = ∞ n=k S(n, k) x n n!
and can be computed by the explicit formula

S(n, k) = 1 k! k =1 (-1) k-k n ,
denotes the Stirling numbers of the second kind [START_REF] Qi | Diagonal recurrence relations, inequalities, and monotonicity related to the Stirling numbers of the second kind[END_REF]. One calls these numbers F n the Fubini numbers [START_REF] Dasef | Some sums of some importance[END_REF], ordered Bell numbers [START_REF] Gross | Preferential arrangements[END_REF], or geometric numbers [START_REF] Tanny | On some numbers related to the Bell numbers[END_REF]. A Fubini number F n has been interpreted in [START_REF] Gross | Preferential arrangements[END_REF][START_REF] Tanny | On some numbers related to the Bell numbers[END_REF] combinatorially: it counts all the possible set partitions of an n element set such that the order of the blocks matters. In [START_REF] Gross | Preferential arrangements[END_REF], the Fubini numbers F n were connected with preference arrangements and the recursion for F n was derived. In [START_REF] Gross | Preferential arrangements[END_REF][START_REF] James | The factors of a square-free integer[END_REF], the exponential generating function

G(t) = 1 2 -e t = ∞ n=0 F n t n n! (1.2)
and an asymptotic estimate for F n were established.

In [START_REF] Tanny | On some numbers related to the Bell numbers[END_REF], the Fubini polynomials F n (y) were defined by

F n (y) = n k=0 S(n, k)k!y k . (1.3)
These polynomials can be generated [36, pp. 735-736] by

G(t, y) = 1 1 -y(e t -1) = ∞ n=0 F n (y) t n n! . (1.4)
It is clear that F n (1) = F n . Due to the relation

y d d y m 1 1 -y = ∞ k=0 k m y k = 1 1 -y F m y 1 -y , |y| < 1
in [START_REF] Boyadzhiev | A series transformation formula and related polynomials[END_REF], one also calls F n (y) the geometric polynomials.

In [12, Section 2], the Fubini polynomials F n (x, y) of two variables x, y are defined by means of the generating function

G(t, y, x) = e xt 1 -y(e t -1) = ∞ n=0 F n (x, y) t n n! .
It is apparent that F n (0, y) = F n (y).

In [START_REF] Kim | Two variable higher-order Fubini polynomials[END_REF], the bivariate Fubini polynomials F (r) n (x, y) of order r for r ∈ N, generated by

G(t, y, x, r) = e xt [1 -y(e t -1)] r = ∞ n=0 F (r) n (x, y) t n n! ,
were studied. It is obvious that F

n (x, y) = F n (x, y). The generating functions of F n , F n (y), F n (x, y), and F (r) n (x, y) remind us to consider the generating function

G(t, y, x, q, z) = e xt [z -y(e t -1)] q = ∞ n=0 F n (x, y, z, q) t n n! , x, q ∈ R (1.5)
and generalized Fubini polynomials F n (x, y, z, q) of four variables x, y, z, q. It is clear that, since

G(t, y, x, q, z) = 1 z q G t, y z , x, r ,
we have

F n (x, y, z, r) = F (r) n (x, y/z) z r .
In this paper, we will establish some properties of generalized Fubini polynomials F n (x, y, z, q) and, consequently, derive some known results.

A new determiantal expression of the Fubini polynomials

At first, we simply establish a new determinantal expressions of the Fubini polynomials and numbers F n (y) and F n respectively.

Theorem 2.1. The Fubini polynomials F n (y) for n ≥ 0 can be represented determinantally by

F n (y) = 1 -1 0 0 • • • 0 0 0 0 y -1 0 • • • 0 0 0 0 y 2 1 y -1 • • • 0 0 0 0 y 3 1 y 3 2 y • • • 0 0 0 • • • • • • • • • • • • . . . • • • • • • • • • 0 y n-2 1 y n-2 2 y • • • n-2 n-3 y -1 0 0 y n-1 1 y n-1 2 y • • • n-1 n-3 y n-1 n-2 y -1 0 y n 1 y n 2 y • • • n n-3 y n n-2 y n n-1 y . (2.1)
Consequently, the Fubini numbers F n can be represented determinantally by

F n = 1 -1 0 0 • • • 0 0 0 0 1 -1 0 • • • 0 0 0 0 1 2 1 -1 • • • 0 0 0 0 1 3 1 3 2 • • • 0 0 0 • • • • • • • • • • • • . . . • • • • • • • • • 0 1 n-2 1 n-2 2 • • • n-2 n-3 -1 0 0 1 n-1 1 n-1 2 • • • n-1 n-3 n-1 n-2 -1 0 1 n 1 n 2 • • • n n-3 n n-2 n n-1 .
Proof. Let u(t) and v(t) = 0 be differentiable functions, let U (n+1)×1 (t) be an (n + 1) × 1 matrix whose elements u k,1 (t) = u (k-1) (t) for 1 ≤ k ≤ n + 1, let V (n+1)×n (t) be an (n + 1) × n matrix whose elements 

v i,j (t) =    i -1 j -1 v (i-j) (t), i -j ≥ 0; 0, i -j < 0 for 1 ≤ i ≤ n +
W (n+1)×(n+1) (t) = U (n+1)×1 (t) V (n+1)×n (t) .
Then the nth derivative of the ratio u(t) v(t) can be computed by

d n d x n u(t) v(t) = (-1) n W (n+1)×(n+1) (t) v n+1 (t) . (2.2)
See [1, p. 40, Exercise 5)], the papers [START_REF] Qi | Derivatives of tangent function and tangent numbers[END_REF][START_REF] Qi | Two closed forms for the Bernoulli polynomials[END_REF] and closely related references. Taking u(t) = 1 and

v(t) = 1 -y e t -1 in (2.2) yields d n d t n G(t, y) = (-1) n G n+1 (t, y) × 1 0 0 1 -y e t -1 0 • • • 0 0 1 0 -ye t 1 1 1 -y e t -1 • • • 0 0 2 0 -ye t 2 1 -ye t • • • 0 • • • • • • • • • . . . • • • 0 n-2 0 -ye t n-2 1 -ye t • • • 0 0 n-1 0 -ye t n-1 1 -ye t • • • n-1 n-1 1 -y e t -1 0 n 0 -ye t n 1 -ye t • • • n n-1 -ye t → (-1) n 1 0 0 0 • • • 0 0 1 0 (-y) 1 1 • • • 0 0 2 0 (-y) 2 1 (-y) • • • 0 • • • • • • • • • . . . • • • 0 n-2 0 (-y) n-2 1 (-y) • • • 0 0 n-1 0 (-y) n-1 1 (-y) • • • n-1 n-1 0 n 0 (-y) n 1 (-y) • • • n n-1 (-y) , t → 0 = 1 -1 0 • • • 0 0 1 0 y -1 • • • 0 0 2 0 y 2 1 y • • • 0 • • • • • • • • • . . . • • • 0 n-2 0 y n-2 1 y • • • 0 0 n-1 0 y n-1 1 y • • • -1 0 n 0 y n 1 y • • • n n-1 y .
The determinantal expression (2.1) is thus proved. The proof of Theorem 2.1 is complete.

Two recurrence relations of the Fubini polynomials

Basing on Theorem 2.1 and the binomial inversion theorem, we now derive two recurrence relations of the Fubini polynomials F n (y).

Theorem 3.1. The Fubini polynomials F n (y) satisfy

F n (y) = y n-1 r=0 n r F r (y), n ∈ N (3.1)
and

F n (y) = (-1) n+1 (1 + y) n-1 k=0 (-1) k n k F k (y) - 1 y , n ≥ 0. (3.2)
Proof. Let M 0 = 1 and

M n = m 1,1 m 1,2 0 . . . 0 0 m 2,1 m 2,2 m 2,3 . . . 0 0 m 3,1 m 3,2 m 3,3 . . . 0 0 . . . . . . . . . . . . . . . . . . m n-2,1 m n-2,2 m n-2,3 . . . m n-2,n-1 0 m n-1,1 m n-1,2 m n-1,3 . . . m n-1,n-1 m n-1,n m n,1 m n,2 m n,3 . . . m n,n-1 m n,n
for n ∈ N. Then the main theorem on page 222 in [START_REF] Cahill | Fibonacci determinants[END_REF] reads that the sequence M n for n ≥ 0 satisfies 

M 1 = m 1,1 and M n = m n,n M n-1 + n-1 r=1 (-1) n-r m n,r n-1 j=r m j,j+1 M r-1 , n ≥ 2. ( 3 
s n = n k=0 n k S k if and only if S n = n k=0 (-1) n-k n k s k
for n ≥ 0, where s n and S n are sequences of complex numbers. The relation (3.1) can be rearranged as

1 + 1 y F n+1 (y) = n+1 r=0 n + 1 r F r (y), n ≥ 0.
Therefore, we obtain

F n (y) = n k=0 (-1) n-k n k 1 + 1 y F k (y) - (-1) n y , n ≥ 0
which can be rewritten as (3.2). The proof of Theorem 3.1 is complete.

A determinantal expression for generalized Fubini polynomials

In this section, We establish a determinantal expression for generalized Fubini polynomials F n (x, y, z, q) of four variables x, y, z, q. Theorem 4.1. Generalized Fubini polynomials F n (x, y, z, q) can be determinantally expressed as

F n (x, y, z, q) = (-1) n z q(n+1) × 1 0 0 z q 0 • • • 0 x 1 0 m 1 (z, y, q) 1 1 z q • • • 0 x 2 2 0 m 2 (z, y, q) 2 1 m 1 (z, y, q) • • • 0 • • • • • • • • • . . . • • • x n-2 n-2 0 m n-2 (z, y, q) n-2 1 m n-3 (z, y, q) • • • 0 x n-1 n-1 0 m n-1 (z, y, q) n-1 1 m n-2 (z, y, q) • • • n-1 n-1 z q x n n 0 m n (z, y, q) n 1 m n-1 (z, y, q) • • • n n-1 m 1 (z, y, q) (4.1)
and satisfy the recurrence relation

F n (x, y, z, q) = 2 z q x n - n-1 r=0 n r m n-r (z, y, q)F r (x, y, z, q) , (4.2) 
where

m k (z, y, q) = k =0
(-1) S(k, ) q z q-y , k ≥ 0.

Proof. In [6, p. 134, Theorem A] and [6, p. 139, Theorem C], the Bell polynomials of the second kind B n,k (x 1 , x 2 , . . . , x n-k+1 ) for n ≥ k ≥ 0 are defined by

B n,k (x 1 , x 2 , . . . , x n-k+1 ) = 1≤i≤n-k+1 i∈{0}∪N n-k+1 i=1 i i=n n-k+1 i=1 i=k n! n-k+1 i=1 i ! n-k+1 i=1 x i i! i .
The Faà di Bruno formula can be described in terms of the Bell polynomials of the second kind B n,k (x 1 , x 2 , . . . , x n-k+1 ) by

d n d t n f • h(t) = n k=0 f (k) (h(t)) B n,k h (t), h (t), . . . , h (n-k+1) (t) . (4.3) 
In [6, p. 135], it is given that

B n,k abx 1 , ab 2 x 2 , . . . , ab n-k+1 x n-k+1 = a k b n B n,k (x 1 , x 2 , . . . , x n-k+1 ) (4.4) 
and B n,k (1, 1, . . . , 1) = S(n, k), (4.5) where a and b are complex numbers.

By the Faà di Bruno formula (4.3) and the identities (4.4) and (4.5), we obtain

d k d t k z -y e t -1 q = k =0 d u q d u B k, -ye t , -ye t , . . . , -ye t = k =0 q u q--ye t B k, (1, 1, . . . , 1) = k =0 q z -y e t -1 q--ye t S(k, ) → k =0
(-1) S(k, ) q z q-y as t → 0, where u = u(t) = z -y e t -1 and

q n = n-1 k=0 (q -k) = q(q -1) • • • (q -n + 1), n ≥ 1 1, n = 0
is the falling factorial of the number q.

In the formula (2.2), taking u(t) = e xt and v(t) = z -y e t -1

q yields d n d t n G(t, y, x, q, z) = (-1) n [z -y(e t -1)] q(n+1) × e xt 0 0 z + y -ye t q 0 • • • 0 xe xt 1 0 z + y -ye t q 1 1 z + y -ye t q • • • 0 x 2 e xt 2 0 z + y -ye t q 2 1 z + y -ye t q • • • 0 • • • • • • • • • . . . • • • x n-2 e xt n-2 0 z + y -ye t q (n-2) n-2 1 z + y -ye t q (n-3) • • • 0 x n-1 e xt n-1 0 z + y -ye t q (n-1) n-1 1 z + y -ye t q (n-2) • • • n-1 n-1 z + y -ye t q x n e xt n 0 z + y -ye t q (n) n 1 z + y -ye t q (n-1) • • • n n-1 z + y -ye t q → (-1) n z q(n+1) 1 0 0 z q 0 • • • 0 x 1 0 m 1 (z, y, q) 1 1 z q • • • 0 x 2 2 0 m 2 (z, y, q) 2 1 m 1 (z, y, q) • • • 0 • • • • • • • • • . . . • • • x n-2 n-2 0 m n-2 (z, y, q) n-2 1 m n-3 (z, y, q) • • • 0 x n-1 n-1 0 m n-1 (z, y, q) n-1 1 m n-2 (z, y, q) • • • n-1 n-1 z q x n n 0 m n (z, y, q) n 1 m n-1 (z, y, q) • • • n n-1 m 1 (z,
y, q) as t tends to 0. The determinantal expression (4.1) is thus proved.

Applying (3.3) to the determinant in (4.1) gives

(-1) n z q(n+1) F n (x, y, z, q) = n n -1 m 1 (z, y, q)(-1) n-1 z qn F n-1 (x, y, z, q) +(-1) n-1+1
x n z qn (-1) 1-2 z q(1-1) F 1-2 (x, y, z, q)

+ n r=2 (-1) n-r+1 n r -2
m n-r+2 (z, y, q)z q(n-r+1) (-1) r-2 z q(r-1) F r-2 (x, y, z, q), where F -1 (x, y, z, q) = -1. This can be simplified as (4.2). The proof of Theorem 4.1 is complete.

Relations between Fubini and Eulerian polynomials

It is known [START_REF] Qi | Explicit formulas and recurrence relations for higher order Eulerian polynomials[END_REF][START_REF] Qi | Some identities related to Eulerian polynomials and involving the Stirling numbers[END_REF] that Eulerian polynomials A n (t) for n ≥ 0 can be generated by

1 -t e x(t-1) -t = ∞ n=0 A n (t) x n n! , t = 1 (5.1)
and that higher order Eulerian polynomials A (α) n (t) for n ≥ 0 and α ∈ R can be generated by

1 -t e x(t-1) -t α = ∞ n=0 A (α) n (t)
x n n! , t = 1.

(5.2)

Comparing (1.2) with (5.1) and (5.2) reveals that

A n (2) = A (1) n (2) = F n = F n (1) = F n (0, 1) = F (1)
n (0, 1) = yF n (0, y, y, 1), n ≥ 0.

(5.

3)

The equations (1.4) and (5.1) can be rewritten as

1 e w -1 + 1 y = -y ∞ n=0 F n (y) w n n! and 1 e w -t = - ∞ n=0 A n (t) (t -1) n+1 w n n! .
This means that

F n (y) = y n A n 1 + 1 y (5.4) 
and

A n (t) = (t -1) n F n 1 t -1 . (5.5) 
Similarly, the equations(1.5) and (5.2) can be rewritten as

1 e w -1 + z y q = y q e -xw ∞ n=0 F n (x, y, z, q) w n n! and 1 (e w -t) α = ∞ n=0 A (α) n (t) (1 -t) n+α w n n! .
Then we can conclude that

F n (0, y, z, q) = (-1) n+q y n z n+q A (q) n 1 + z y and A (α) n (t) = (1 -t) n+α F n (0, 1, t -1, α). (5.6) 
In [23, Theorem 1], it was obtained that Eulerian polynomials A n (t) and higher order Eulerian polynomials A (α) n (t) for n ≥ 0 and α > 0 can be computed by

A n (t) = n k=0 k!S(n, k)(t -1) n-k (5.7) 
and

A (α) n (t) = 1 Γ(α) n k=0 Γ(k + α)S(n, k)(t -1) n-k , (5.8) 
where Γ(z) denotes the classical Euler gamma function [START_REF] Qi | Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities[END_REF][START_REF] Qi | Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function[END_REF]. Taking t = 2 in (5.7) and using (5.3) recover (1.1). Substituting (5.5) into (5.7) yields

(t -1) n F n 1 t -1 = n k=0 k!S(n, k)(t -1) n-k
which is equivalent to (1.3). Combining (5.6) and (5.8) results in

F n (0, 1, t -1, α) = 1 Γ(α) n k=0 (-1) n-k Γ(k + α)S(n, k) (1 -t) k+α .
Substituting (5.4) into (2.1), (3.1), and (3.2) arrives at a nice determinantal expression

A n (t) = 1 1 1-t 0 0 • • • 0 0 0 0 1 1 1-t 0 • • • 0 0 0 0 1 2 1 1 1-t • • • 0 0 0 0 1 3 1 3 2 • • • 0 0 0 • • • • • • • • • • • • . . . • • • • • • • • • 0 1 n-2 1 n-2 2 • • • n-2 n-3 1 1-t 0 0 1 n-1 1 n-1 2 • • • n-1 n-3 n-1 n-2 1 1-t 0 1 n 1 n 2 • • • n n-3 n n-2 n n-1
, n ≥ 0 and two recurrence relations

A n (t) = (t -1) n-1 n-1 r=0 n r A r (t) (t -1) r , n ∈ N, A n (t) = (-1) n+1 (t -1) n-1 t 1 -t + n-1 k=0 (-1) k n k A k (t) (t -1) k , n ≥ 0.
Theorem 2 in [START_REF] Qi | Explicit formulas and recurrence relations for higher order Eulerian polynomials[END_REF] reads that the function

F (t, x) = 1 e x(t-1) -t , t = 1
satisfies the nonlinear ordinary differential equation

∂ n F (t, x) ∂x n = (t -1) n n i=0 n k=i (-1) k k!S(n, k) k i t i F i+1 (t, x), n ≥ 0.
(5.9)

The equation (5.9) was simplified in [START_REF] Qi | Some identities related to Eulerian polynomials and involving the Stirling numbers[END_REF]Theorem 5] as

∂ n F (t, x) ∂x n = (1 -t) n n k=0 S(n + 1, k + 1)k!t k F k+1 (t, x), n ≥ 0.
(5.10)

As an inversion formula of (5.10), Theorem 4 in [START_REF] Qi | Some identities related to Eulerian polynomials and involving the Stirling numbers[END_REF] states that

F n+1 (t, x) = 1 n!t n n i=0 s(n + 1, i + 1) (1 -t) i ∂ i F (t, x) ∂x i , n ≥ 0, (5.11) 
where s(n, k), which can be generated by

[ln(1 + x)] k k! = ∞ n=k s(n, k) x n n! , |x| < 1,
stands for the Stirling numbers of the first kind. Taking t = 2 in (5.10) and (5.11) leads to

G (n) (x) = (-1) n n k=0 (-1) k 2 k k!S(n + 1, k + 1)G k+1 (x), n ≥ 0 (5.12)
and

G n+1 (x) = (-1) n n!2 n n i=0 (-1) i s(n + 1, i + 1)G (i) (x), n ≥ 0.
(5.13)

The equations (5.12) and (5.13) were also established in [START_REF] Qi | Simplification of coefficients in two families of nonlinear ordinary differential equations[END_REF]Theorem 1] by three alternative approaches. By similar methods to those in [START_REF] Qi | Explicit formulas and recurrence relations for higher order Eulerian polynomials[END_REF][START_REF] Qi | Simplification of coefficients in two families of nonlinear ordinary differential equations[END_REF][START_REF] Qi | Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations[END_REF][START_REF] Qi | Some identities related to Eulerian polynomials and involving the Stirling numbers[END_REF][START_REF] Qi | Some identities for a sequence of unnamed polynomials connected with the Bell polynomials[END_REF] and closely related references therein, we can easily deduce

∂ n G(t, y) ∂t n = (-1) n n m=0 (-1) m (1 + y) m m!S(n + 1, m + 1)G m+1 (t, y), n ≥ 0 and G n+1 (t, y) = (-1) n n!(1 + y) n n m=0 (-1) m s(n + 1, m + 1) ∂ m G(t, y) ∂t m , n ≥ 0.
In [START_REF] Qi | Explicit formulas and recurrence relations for higher order Eulerian polynomials[END_REF]Theorem 3] and [START_REF] Qi | Some identities related to Eulerian polynomials and involving the Stirling numbers[END_REF]Theorem 6], it was obtained that

n k=0 (-1) k n k S(n -k, 0) (1 -t) k-1 + S(n -k, 1) (1 -t) k A k (t) = 0, n ∈ N (5.14) and n k=0 s(n, k) (t -1) k A k (t) = n! (t -1) n , n ≥ 0.
(5.15) Substituting (5.5) into (5.14) and (5.15) arrives at

n k=0 n k S(n -k, 1) - S(n -k, 0) t F k (t) = 0, n ∈ N and n k=0 s(n, k)F k (t) = n!t n , n ≥ 0.

Remarks

Finally, we list several remarks. 

F n = n-1 r=0 n r F r , n ∈ N and F n = (-1) n 2 1 - n-1 k=0 (-1) k n k F k , n ≥ 0.
These two recurrence relations appeared in [START_REF] Dil | Investigating geometric and exponential polynomials with Euler-Seidel matrices[END_REF] in different forms. This recovers once again that the Fubini numbers and polynomials F n and F n (y) have generating functions 1 2-e t and 1 1-y(e t -1) .

Remark 6.3. On 24 July 2018, when commenting on the paper [START_REF] Qi | Some identities related to Eulerian polynomials and involving the Stirling numbers[END_REF] on ResearchGate, Professor Dr. Boyadzhiev (Ohio Northern University) recommended the website http://www.luschny.de/ math/euler/EulerianPolynomials.html and two papers [START_REF] Boyadzhiev | Apostol-Bernoulli functions, derivative polynomials and Eulerian polynomials[END_REF][START_REF] Foata | Eulerian polynomials: from Euler's time to the present[END_REF]. He said that, when writing about Eulerian polynomials, it is good to mention that they originate from Euler and their theory is very classical-generating function and other formulas have been known for very long time. He pointed out that the paper [START_REF] Boyadzhiev | Apostol-Bernoulli functions, derivative polynomials and Eulerian polynomials[END_REF] is a review where Eulerian polynomials are linked to geometric polynomials and Apostol-Bernoulli polynomials. On 15 May 2019, Professor Dr. Boyadzhiev (Ohio Northern University) commented on Research-Gate again that the author should take in consideration the paper [START_REF] Boyadzhiev | Geometric polynomials: properties and applications to series with zeta values[END_REF] and that the name "geometric polynomials" is established in the mathematics community while "Fubini polynomials" is not.

Remark 6.4. The ideas in this paper and the formulas (2.2) and (3.3) have been utilized in the papers [START_REF] Qi | Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials[END_REF][START_REF] Qi | A determinantal expression and a recurrence relation for the Euler polynomials[END_REF][START_REF] Qi | Expressing the generalized Fibonacci polynomials in terms of a tridiagonal determinant[END_REF][START_REF] Qi | Some determinantal expressions and recurrence relations of the Bernoulli polynomials[END_REF][START_REF] Qi | Two nice determinantal expressions and a recurrence relation for the Apostol-Bernoulli polynomials[END_REF][START_REF] Qi | Alternative proofs of some formulas for two tridiagonal determinants[END_REF][START_REF] Qi | A determinantal expression for the Fibonacci polynomials in terms of a tridiagonal determinant[END_REF][START_REF] Qi | A representation for derangement numbers in terms of a tridiagonal determinant[END_REF][START_REF] Qi | Some properties of the Bernoulli numbers of the second kind and their generating function[END_REF][START_REF] Qi | Closed forms for derangement numbers in terms of the Hessenberg determinants[END_REF] and closely related references therein. Remark 6.5. This paper is an extension of the preprint [START_REF] Qi | On generalized Fubini polynomials[END_REF] and a slight revision of the preprint [START_REF] Qi | Determinantal expressions and recurrence relations for Fubini and Eulerian polynomials[END_REF].

Remark 6 . 1 .

 61 When y = 1, the recurrence relations (3.1) and (3.2) becomes

Remark 6 . 2 .

 62 Let u = u(t) = y(e t -1). Then, by the Faà di Bruno formula (4.3) and the identities (4.4) and (4.5)B n,k ye t , ye t , . . . , ye t u) k+1 ye t k B n,k (1, 1, . . . , 1) = n k=0 S(n, k)k!y k = F n (y).