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ABSTRACT. In the paper, by virtue of an explicit formula for higher order derivatives of the ratio
between two differentiable functions in terms of the Hessenberg determinant, the author presents
determinantal expressions and recurrence relations for generalized Fubini polynomials. Hereafter,
by virtue of relations between Eulerian polynomials and the (generalized) Fubini numbers and
polynomials, the author derives a determinantal expression for Eulerian polynomials and several
recurrence relations for the Fubini and Eulerian polynomials.
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1. INTRODUCTION

For n > 0, let
F,=> kS(n k), (1.1)
k=0

where S(n, k), which can be generated by the exponential function
(ez _ 1)k e "
=k

and can be computed by the explicit formula

k
00.0) = 15 300 () e
T =1

denotes the Stirling numbers of the second kind [I6]. One calls these numbers F,, the Fubini
numbers [7], ordered Bell numbers [I0], or geometric numbers [36]. A Fubini number F, has been
interpreted in [I0, B6] combinatorially: it counts all the possible set partitions of an n element
set such that the order of the blocks matters. In [I0], the Fubini numbers F,, were connected
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with preference arrangements and the recursion for F,, was derived. In [I0, 1], the exponential

generating function
(o]

Glt) = — — ZFH:% (1.2)

2 — et
n=0

and an asymptotic estimate for F, were established.
In [36], the Fubini polynomials F,(y) were defined by

= zn:S(n,k)k!yk. (1.3)

k=0

These polynomials can be generated [36, pp. 735-736] by

G(ty) = % = ;Fn(y):; (1.4)

It is clear that F,,(1) = F,,. Due to the relation

d y
= — F, (2 1
<ydy) T—y kz —y m<1—y>’ Il <

in [2], one also calls F,,(y) the geometric polynomials.
In [I2] Section 2], the Fubini polynomials F,(x,y) of two variables z,y are defined by means of
the generating function

G(tayaz):ﬁ ZF x y

It is apparent that F,,(0,y) = F,,(y).
In [I3], the bivariate Fubini polynomials F,(LT)(I y) of order r for r € N, generated by

xt

€ K
G(t,y,z,r) = I ZF( (x y

were studied. It is obvious that F,Sl)(x, y) = Fu(z,y).

The generating functions of F,,, Fy,(y), F,(z,y), and FT(LT)(sc, y) remind us to consider the gener-
ating function

ezt

(oo}
t'(l
G(ty,x,q,2) = S Z:Fn(%ll,Z’Q)m, r,geR (1.5)
and generalized Fubini polynomials F,,(z,y, 2, q) of four variables x,y, z, ¢. It is clear that, since

1
G(t’ y? x7q’ Z) = ’ZqG<t7 %7'2:’ 7")7

we have
E (2,y/2)
2" '
In this paper, we will establish some properties of generalized Fubini polynomials F,,(z,y, 2, q) and,
consequently, derive some known results.

F7l(x7yaz7r) =
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2. A NEW DETERMIANTAL EXPRESSION OF THE FUBINI POLYNOMIALS

At first, we simply establish a new determinantal expressions of the Fubini polynomials and
numbers F),(y) and F,, respectively.

Theorem 2.1. The Fubini polynomials F,(y) for n > 0 can be represented determinantally by

1 -1 0 0 0 0 0

0 y -1 0 0 0 0

0y (v -l 0 0 0

0y Gy Gy 0 0 0

FTL(y) - DY DY DR DRI '. ... DRI DRI ’ (2.1)
O T T = TR S
0w (")y (v - Gy Gy 1
0y My Gy o Gy Gl)y Gy

Consequently, the Fubini numbers F, can be represented determinantally by
1 -1 0 0 e 0 0 0
0 1 -1 0 0 0 0
0 1 (i) -1 0 0 0
P L A B B
01 (") () e () -1 0
o 1 (D) () o (o) () -t

Proof. Let u(t) and v(t) # 0 be differentiable functions, let Ug,41)x1(t) be an (n + 1) x 1 matrix
whose elements uy,1(t) = uF =V (t) for 1 < k < n+ 1, let Vi, 11)xn(t) be an (n + 1) x n matrix

whose elements
1—1 o
@), i—7i>0:
. v 9 ? .7 — Yy
v;,(t) = (7—1) )

0, i—j<0

for1 <i<n+1land1<j <n,andlet [We41)xnt1)(t)] denote the lower Hessenberg determinant
of the (n+ 1) x (n + 1) lower Hessenberg matrix

Winsn)x(n+1) ) = [Umsnyx1(®)  Vinryxn(®)] -

Then the nth derivative of the ratio % can be computed by

dd;Ln |:’U,(t):| — (_1)n ’W(n‘:};):l(gt-;l)(t” )

v(t)
See [II, p. 40, Exercise 5)], the papers [I4] 21] and closely related references. Taking u(t) = 1 and
v(t) =1—y(e' — 1) in (2.2) yields

dn

TGy = (-G (k)

(2.2)



L @ -y(e -1)] 0 0
o ) O sl 1) !
0 (o) (=ve’) (1) (=ye) 0
0 (TP ) (e 0
I L 1 B e (R
T N () (e
1 @ 0 0
o Ol O o
0 Gy Oy 0
= (=" . , t—0
0 (")) (") (=y) 0
0 ("D () e (D)
0 @y Dy - )y
1 -1 0 0
0 (é)y ~1 0
0 Gy Qo 0
o ey e o
o "Ny (" y o -1
0 @y Wy - Gy
The determinantal expression is thus proved. The proof of Theorem [2.1]is complete. O

3. TWO RECURRENCE RELATIONS OF THE FUBINI POLYNOMIALS

Basing on Theorem and the binomial inversion theorem, we now derive two recurrence rela-
tions of the Fubini polynomials F,(y).

Theorem 3.1. The Fubini polynomials F, (y) satisfy

n—1 n
Fay) =y (T>Fr(y), neN (3.1)
r=0

and
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Proof. Let My =1 and

mi mi,2 0 0 0
ma 1 ma 2o mo3 0 0
m31 m3. 2 ms3s e 0 0
M, =
Mp_21 Mp_22 Mp_23 ... Mp 2,1 0
mp—-11 Mp-12 Mp-13 ... Mp_1n-1 Mp-1n
Mn,1 Mn,2 mnp,3 e Mp,n—1 Mnp,n

for n € N. Then the main theorem on page 222 in [5] reads that the sequence M, for n > 0 satisfies
M1 =mi and

n—1 n—1
M, = mann_] + Z(—l)"‘rmn,r (H mj)j_;,_l) M,._1, n>2. (33)
r=1 j=r

Applying (3.3) to the determinantal expression (2.1) and simplifying yield the recurrence rela-
tion (3.1)).

Tt is well known [6l pp. 143-144] that the binomial inversion theorem reads that

n

n . . - k(M
an(k>Sk if and only if S, =» (~1) k(k>sk

k=0 k=0
for n > 0, where s,, and S,, are sequences of complex numbers. The relation (3.1 can be rearranged

) (1 )R =5 (" )R, wzo

r=0
Therefore, we obtain

=3 (1 D aw - E zo

k=0
which can be rewritten as (3.2)). The proof of Theorem is complete. O

4. A DETERMINANTAL EXPRESSION FOR GENERALIZED FUBINI POLYNOMIALS

In this section, We establish a determinantal expression for generalized Fubini polynomials
F,(x,y, z,q) of four variables x,y, z, q.

Theorem 4.1. Generalized Fubini polynomials F,,(x,y,z,q) can be determinantally expressed as

(="

Fo(z,y,2,q) = poesy)

1 X 0 e 0
z (mi(zy,q) (1) e 0
2 (5)ma(z, v, q) Cymilz.y,q) - 0
X | ... ’ (4.1)
a2 (") mn—2(z,y.9) ("7 mn-s(z,y.9) - 0
et ("m0 (M7 )me—a(z,y,9) - (P20
" (6)mn(2,9,9) (Dmn-1(z0,9) - (,")mi(z,9,9)
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and satisfy the recurrence relation

n—1
20, n
Fn(xa Y, z, Q) = ; [l‘ - Z% (7’) mn—r(za Y, Q)Fr(xa Y, z, Q)] 9 (42)
where
k
Z Y, 4 Z >€Zq_ey€7 k Z 0.
0

=
Proof. In [6, p. 134, Theorem A] and [6, p. 139, Theorem C], the Bell polynomials of the second
kind By, k(z1, %2, ..., Zpn_k+1) for n >k > 0 are defined by

' n—k+1 0.
n: T\
Bui(ri, 22, 2 py1) = E — = H (—') .
H l;) 2!
1<i<n—k+1 =1
£;€{0}UN
Z" k41 ili=n
o L timk

The Faa di Bruno formula can be described in terms of the Bell polynomials of the second kind
Bn,k(l'l, o, ... axn—k-&-l) by

Wf h(t) = Z FER) Bg (B (), B (), ..., A" FD (1)), (4.3)

k=0
In [6, p. 135], it is given that

bnkarl

Bk (abxl, ab’zs, ..., a xn_k_H) = drpn By k(z1,22,. .., Tpn_ky1) (4.4)

and
Bni(l,1,...,1) = S(n, k), (4.5)
where a and b are complex numbers.
By the Faa di Bruno formula (4.3) and the identities (4.4)) and (4.5]), we obtain
a* 0 e~ dlul
ﬁ[z—y(etfl)] = Tl Bkg( ,—yet,...,fyet)
£=0

,Z yeut (—ye') Bro(1,1,...,1)
k

= Z<Q>e[z —y(e' - 1)]q76(—yet)eS(k,£)

£=0

=

= D (1) Sk, O)(g)ez " y"
£=0

ast — 0, where u = u(t) =z — y(e’ — 1) and

<Q>n=1:[(q—k):{q(q1)"'(qn+1), ni(l)

o 1, n=

is the falling factorial of the number q.
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In the formula (2.2), taking u(t) = e** and v(t) = [z — y(e! — 1)]” yields

" 1)
TGy, w,,.2) = e y(e(t _)1)]q(n+1)
e ) (z+y—ye)’ 0 0
ze™ (o) [(z+ 5 —ye')"] () (2 +y — yet)" 0
et ([ ve)] A1+ - vet)] 0
X
Z—2emt (naz) [(z+y yet)‘I] (n—?) (n;2) [(z+y— yet)q}( _z) 0
wtert (N[ —ye) T (T [ 4y - ve)))” ) ) (" (z+y - ye)
et Ol @) )E -]
L (0)2* 0 0
N O LOERT) BE . 0
_1)n x? (0)m2(zayaQ) (?)ml(z,y,q) 0
z" 2 (n82)mn72(z, v,0) ("7 ma—s(z,y.9) - 0
1 ( 0 1)mn,1(z, Y,q) (”Il)mn,g(z, v, q) - (Zj)zq
z" (g)mn(za Y,q) (?)mn_l(z’ Y, q) . (nil)ml(z, v.q)

as t tends to 0. The determinantal expression (4.1f) is thus proved.
Applying (3.3)) to the determinant in (4.1]) gives

n —
(IR ) = () )k () (5 20)

+(_1)n—1+1xn2qn(_1)1—22(](1—1)Fliz(x’y’ 27(])

- —r n n—r r— r—
+Z(_l)n + (7‘ _ Q)mnT+2(Zvyaq)Zq( +1)(_]‘) 2zq( 1)Fr72(x7yaz7Q)v

r=2

where F_1(x,v,2,q) = —1. This can be simplified as (#.2]). The proof of Theorem [4.1]is complete.

O
5. RELATIONS BETWEEN FUBINI AND EULERIAN POLYNOMIALS
It is known [23, [29] that Eulerian polynomials A, (¢) for n > 0 can be generated by
1—-1t z"
ey ZA —!, t#1 (5.1)

and that higher order Eulerian polynomials AE;“)(t) for n > 0 and « € R can be generated by

1—¢ o ) . 20
n=0 ’

Comparing (1.2)) with (5.1)) and (5.2)) reveals that
An(2) = A’E’L )( )=F,= Fn(l) = F,(0,1) = Fr(zl)(ov 1) =yFu(0,y,y,1), n=>0. (5.3)
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The equations (|1.4)) and (5.1)) can be rewritten as

1 > w"
w = —ynz:%Fn(y)*

e y
and .
Z t— 1 "+1 n'
This means that )
Fo(y) =y"An (1 + ;) (5.4)
and
An(t) = (t—1)"F, ( L 1) (5.5)

Similarly, the equations(l.5) and (5.2)) can be rewritten as

1 > w™

——— YA _
[ew_(l—’_i)]q ye Ef Fn(x7yazvq) n!

and

1 B i Ay wm

(ew —t)o (1 —t)nte -

n=0
Then we can conclude that

n+q (@)
Ful00) = (-1 a0 (142

and
A ) =1 —t)"F,(0,1,t —1,a). (5.6)
In [23, Theorem 1], it was obtained that Eulerian polynomials A, (¢) and higher order Eulerian
polynomials AS?‘)(t) for n > 0 and « > 0 can be computed by

n

An(t) =Y KIS(n k) (t —1)" " (5.7)
k=0
and
Al (1) ZF k+a)S(n, k)t —1)"F, (5.8)

where I'(z) denotes the classical Euler gamma functlon [17,25]. Taking ¢ = 2 in (5.7 and using ([5.3))

recover . Substituting (5.5)) into (5.7 yields
(t—1)"F, ( ) Zk'Snk )t —1)""

which is equivalent to . Combining (5.6 and ( results in
i L(k + a)S(n, k)

F,(0,1,t—
( 1_t)k+a

=0
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Substituting (5.4)) into (2.1]), (3.1), and (3.2)) arrives at a nice determinantal expression

1 = 0 0 - 0 0 0
0 1 = 0 0 0 0
0 1 ) = 0 0 0
0 1 3 3 0 0 0
(D) = G G s
v e I -
0 1 ( }l ) ( % ) (n7—13) ("52) ?
o 1 1) (G (s Gl ()

and two recurrence relations

An(t) = (t—1)""" nz_:l <2) ;4_

Ag(t)
. n+1 n—1
A, (t) = (-1t - 1) tl1t+z (> —F | n>0
k=0
Theorem 2 in [23] reads that the function
1
F(taz):mv t#1
satisfies the nonlinear ordinary differential equation
O"F(t,x) i k R\ i i
—an = (=1 ;l;(n RS k) () [£FF (), n>0. (5.9)
The equation (5.9)) was simplified in [29, Theorem 5| as
OF(t -
OFE2) (g _ gy 3 S(n+ 1k + DR FS (t2), n>0. (5.10)
ox" —
As an inversion formula of (5.10]), Theorem 4 in [29] states that
1 &Ks(n+1,i+1)0F(t,x)
Frl(t,z) = - . >0 5.11
( ’x) n!t" Z (1 _ t)l axl ) n e ) ( )

where s(n, k), which can be generated by

o+ o) _ S st k) fal <1,

k!
n==k

stands for the Stirling numbers of the first kind. Taking ¢ = 2 in and (5.11)) leads to

G D)™ (DR RIS(n + 1,k + 1)GF(2), n >0 (5.12)
k=0
and
1) & , ,
G"(x) <,221 (=1)fs(n+1,i+1)GD(z), n>0. (5.13)
n.
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The equations (5.12) and (5.13) were also established in [19, Theorem 1] by three alternative
approaches. By similar methods to those in [23] 19, 28 29, BI] and closely related references
therein, we can easily deduce

O"G(t,y n
oot ” ! m—+1 >
o mZ=O "4yt miSn 4+ 1m 4+ DG Y), 20
and
n+1 I G VAR o P . "Gty N
G <t7y) n!(1+y)” n;)( ) S(?’L+ ,m—+ ) e . n>0.
In [23] Theorem 3] and [29, Theorem 6], it was obtained that
. S(n—k,0) _S(n—k1)
Axlt) = 14
Z0 ( )[ (1—t)k—1 + (1—t)k k(t)=0, neN (5.14)
and
" s(n, k) !
= > . .
kzo(t—l)kAk(t) G- n>0 (5.15)

Substituting (5.5) into and (5.15]) arrives at
- —k
3 <Z> {S(n k1) - S(nt’O)}Fk(t) =0, neN

k=0

and
n

Z s(n, k)F(t) = nlt"™, n>0.
k=0

6. REMARKS
Finally, we list several remarks.

Remark 6.1. When y = 1, the recurrence relations (3.1) and (3.2) becomes

n—1
F,=Y" (Z)Fr neN

r=0

n—1
n
F,=(-1D"2(1=Y (=D ") F
(1) [ > (7)m
These two recurrence relations appeared in [§] in different forms.

Remark’ 6.2. Let u = u(t) = y(e' — 1). Then, by the Faa di Bruno formula (4.3)) and the identi-
ties and ., we have

. d” 1 o= db . .
M T T e 1) A 2 Far T Do (0w vef)

and

, n>0.

n

. k! Ny <
:}g% m(ye) Bnr(l,1,... ZSnkk'y = F.(y).
k=0 k=0
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This recovers once again that the Fubini numbers and polynomials F,, and F,,(y) have generating
functions ﬁ and ﬁ

Remark 6.3. On 24 July 2018, when commenting on the paper [29] on ResearchGate, Professor
Dr. Boyadzhiev (Ohio Northern University) recommended the website http://www.luschny.de/
math/euler/EulerianPolynomials.html and two papers [3, [9]. He said that, when writing about
Eulerian polynomials, it is good to mention that they originate from Euler and their theory is very
classical—generating function and other formulas have been known for very long time. He pointed
out that the paper [3] is a review where Eulerian polynomials are linked to geometric polynomials
and Apostol-Bernoulli polynomials.

On 15 May 2019, Professor Dr. Boyadzhiev (Ohio Northern University) commented on Research-
Gate again that the author should take in consideration the paper [4] and that the name “geometric
polynomials” is established in the mathematics community while “Fubini polynomials” is not.

Remark 6.4. The ideas in this paper and the formulas (2.2]) and (3.3) have been utilized in the
papers [20] 22] 241 26], 27, [30L B2} 33| [34], B5] and closely related references therein.

Remark 6.5. This paper is an extension of the preprint [I8] and a slight revision of the preprint [15].
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