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Using an axisymmetric numerical code, we perform an extensive study of the magnetic field
configurations in non-rotating neutron stars, varying the mass, magnetic field strength and the
equation of state. We find that the monopolar (spherically symmetric) part of the norm of the
magnetic field can be described by a single profile, that we fit by a simple eighth-order polynomial,
as a function of the star’s radius. This new generic profile applies remarkably well to all magnetized
neutron star configurations built on hadronic equations of state. We then apply this profile to build
magnetized neutron stars in spherical symmetry, using a modified Tolman-Oppenheimer-Volkov
(TOV) system of equations. This new formalism produces slightly better results in terms of mass-
radius diagrams than previous attempts to add magnetic terms to these equations. However, we
show that such approaches are less accurate than usual, non-magnetized TOV models, and that
consistent models must depart from spherical symmetry. Thus, our “universal” magnetic field
profile is intended to serve as a tool for nuclear physicists to obtain estimates of magnetic field
inside neutron stars, as a function of radial depth, in order to deduce its influence on composition
and related properties. It possesses the advantage of being based on magnetic field distributions
from realistic self-consistent computations, which are solutions of Maxwell’s equations.

PACS numbers: 97.60.Jd, 26.60.-c, 26.60.Dd, 04.25.D-, 04.40.Dg

I. INTRODUCTION

The macroscopic structure and observable astrophys-
ical properties of neutron stars depend crucially on its
internal composition and thus the properties of dense
matter. The Equation of State (EoS) determines global
quantities such as observed mass and radius. Transport
properties such as thermal conductivity and bulk viscos-
ity have an effect on cooling observations as well as emis-
sion of gravitational waves. As we enter an era of multi-
messenger astronomy, it is crucial to construct consistent
microscopic and macroscopic models in order to correctly
interpret astrophysical observations.
There are a large number of astrophysical observa-

tions, e.g. soft-gamma repeaters (SGR) or anomalous
X-ray pulsars (AXP), that indicate the existence of ultra-
magnetized neutron stars or magnetars [1]. While such
observations only probe the surface magnetic field, there
is no way to measure directly the maximum magnetic
field in the interior. Using the simple virial theorem, one
may estimate the maximum interior magnetic field to be
as high as 1018 G. If such large fields exist in the inte-
rior, they may strongly affect the energy of the charged
particles by confining their motion to quantized Landau
levels and consequently modify the particle population,
transport properties as well as the global structure [2–
14]. However, it is necessary to know the magnetic field
amplitude at a given location in the star, i.e. a magnetic
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field distribution, in order to determine its effect on the
internal composition and EoS.
The ideal way to tackle that problem would of course

be to self-consistently solve the neutron star structure
equations endowed with a magnetic field, i.e. combined
Einstein, Maxwell and equilibrium equations, together
with a magnetic field dependent EoS, as done by Chat-
terjee et al. [15]. This solution is complicated by the
fact that in presence of a magnetic field, the neutron star
structure strongly deviates from spherical symmetry and
the spherically symmetric Tolman-Oppenheimer-Volkov
(TOV) equations are no longer applicable for obtaining
the macroscopic structure of a the neutron star [15–17].
For small magnetic fields, perturbative solutions have
been developed [18], but can no longer be applied for
field strengths which might influence matter properties.
There have been several attempts to determine neutron

star structure assuming an ad hoc profile of the mag-
netic field, without solving Maxwell’s equations, within
the TOV system (see e.g. [19–21]). To that end, many
authors employ the parameterization introduced twenty
years ago by Bandyopadhyay et al. [22], where the vari-
ation of the magnetic field norm B with baryon number
density nB from the centre Bc to the surface Bs of the
star is given by the form

B(nB/n0) = Bs + Bc[1− exp(−β(nB/n0)
γ)] , (1)

with two parameters β and γ, chosen to obtain the de-
sired values of the maximum field at the centre and at
the surface. This is an arbitrary profile, which possesses
the same symmetries as the baryon density distribution
in the star. Parameters (β, γ) are chosen such that the
surface field is consistent with observations and the max-
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imum field prevailing at the center conforms to the virial
theorem.

Lopes and Menezes [23] later introduced a variable
magnetic field, which depends on the energy density
rather than on the baryon number density:

B = Bc

(

ǫM
ǫ0

)γ

+Bs , (2)

where ǫM is the energy-density of the matter alone, ǫ0
is the central energy density of the maximum mass non-
magnetic neutron star and a parameter γ > 0, arguing
that this formalism reduces the number of free parame-
ters from two to one. The authors put forward as addi-
tional motivation the fact that it is the energy density and
not the number density that is relevant in TOV equations
for structure calculations. To account for anisotropy
in the shear stress tensor, they applied the above field
profile in a formalism [24], where the different elements
containing the pressure are “averaged”, leading to shear
stress tensor of the form diag(B2/24π,B2/24π,B2/24π)
[11, 25]. Nevertheless, this approach within the TOV
system is still spherically symmetric and the parameter
γ not related to any experimental or observational con-
straint. There have also been suggestions of the magnetic
field profile being a function of the baryon chemical po-
tential [11] as:

B(µB) = Bs +Bc

[

1− exp(b
(µB − 938)a

938
)

]

, (3)

with a = 2.5, b = −4.08 × 10−4 and µB given in MeV.
In contrast to the profiles in Eqs. (1,2), such a formula
avoids that a phase transition induces a discontinuity in
the effective magnetic field.

However, it was subsequently pointed out by Menezes
and Alloy [26] that any of the above ad hoc formulations
for magnetic field profiles are physically incorrect since
they do not satisfy Maxwell’s equations. In particular,
it is obvious that assuming such a magnetic field profile
in a spherically symmetric star implies a purely monopo-
lar magnetic vector field distribution, which is incorrect.
The inconsistency of this type of approach can be seen,
too, by inspecting the most general solution of the equa-
tions of hydrostatic equilibrium in general relativity for
a spherically symmetric star. In Schwarzschild coordi-
nates,

(

t̄, r̄, θ̄, ϕ̄
)

, the line element reads:

ds2 = −e−2Φ dt̄2+

(

1−
2Gm

r̄

)−1

dr̄2+r̄2
(

dθ̄2 + sin2 θ̄dϕ̄2
)

,

(4)
wherem(r̄) and Φ(r̄) are the two relativistic gravitational
potentials defining the metric (at the Newtonian limit,
m represents the total mass enclosed in the sphere of
radius r̄, and Φ/c2 becomes the Newtonian gravitational
potential). The resulting coupled system of equations
for the star’s structure has been derived by Bowers and

Liang [27] and reads

dm

dr̄
= 4πr̄2ε

dΦ

dr̄
=

(

1−
2Gm

r̄c2

)−1 (
Gm

r̄2
+ 4πG

pr
c2

r̄

)

dpr
dr̄

= −
(

ε+
pr
c2

) dΦ

dr̄
+

2

r̄
(p⊥ − pr) , (5)

with an energy-momentum tensor of the form T µν =
diag(ε, pr, p⊥, p⊥), where pr and p⊥ are the radial and
tangential pressure components. This is the most general
energy-momentum tensor one can use assuming spheri-
cal symmetry and it goes beyond the perfect-fluid model,
for which pr = p⊥. One may be tempted to cast a gen-
eral electromagnetic energy-momentum tensor assuming
a perfect conductor and isotropic matter, and for a mag-
netic field pointing in z-direction (see e.g. [15]) into this
form. However, in the case of the electromagnetic energy-
momentum tensor T θθ 6= T φφ (look at Eqs. (23d)-(23e)
of [15]), in clear contradiction with the assumption of
Bowers and Liang (5) in spherical symmetry. Another
problem arises from the fact that limr→0(T

rr −T θθ) 6= 0
and thus, the last term in Eq. (5) diverges at the ori-
gin (from the first line in this equation, one sees that the
quantitym(r̄) ∼ r̄3 and thereforem/r̄2 does not diverge).
This discussion shows that there cannot be any correct
description of the magnetic field in spherical symmetry.
Starting from two-dimensional numerical models, Dex-

heimer et al. [28, 29] performed a fit to the shapes of the
magnetic field profiles following the stellar polar direc-
tion as a function of the chemical potentials (as in [11])
by quadratic polynomials instead of exponential ones as

B(µB) =
(a+ bµB + cµ2

B)

B2
c

µ , (6)

where a, b, c are coefficients determined from the numer-
ical fit. Unfortunately, no check of the validity of this fit
has been shown in these works for other directions. In
Ref. [30], a density dependent profile is applied within
a perturbative axisymmetric approach à la Hartle and
Thorne [31], but without solving Maxwell’s equations. It
remains, however, that the star’s deformation due to the
magnetic field implies that such a density (or equivalent)
dependent profile depends on the direction, thus will be
different looking e.g. in the polar or the equatorial direc-
tion.
In view of all these intrinsic difficulties, we will not

propose here a simple scheme for solving structure equa-
tions of magnetized stars – to that end we refer to the
publicly available numerical codes assuming axial sym-
metry [15, 32]. Instead, since in many cases it might
be sufficient to have an idea of the order of the value
of the magnetic field strength to test its potential effect
on matter properties, our aim is to provide a “universal”
magnetic field strength profile from the surface to the in-
terior obtained from the field distribution in a fully self-
consistent numerical calculation from one of these codes.
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Further, we probe the applicability of this profile for de-
termining the structure of magnetized neutron stars in an
approximate way in spherical symmetry compared with
full numerical structure calculations. As we will show,
qualitatively the correct tendency can be reproduced for
some NS properties, but to reproduce quantitatively cor-
rect results, the full solution has to be applied.
The paper is organized as follows. Sec. II describes

our physical models, including the EoSs we use in this
manuscript, together with the numerical techniques ap-
plied to solve the models. Sec. III provides the mag-
netic field profiles derived numerically by varying certain
physical parameters, to achieve a generic profile for the
monopolar part of the norm of the magnetic field. This
profile is then applied in Sec. IV to a modified TOV sys-
tem, to see its effect on NS masses and radii. Finally,
Sec. V gives a summary of our work, together with some
concluding remarks.

II. FORMALISM AND MODELS

In this section, we summarize the numerical approach
for self-consistently modelling magnetized neutron stars.
More details can be found in in [15, 16, 33].

A. Non-rotating magnetized neutron stars in

general relativity

Due to the high compactness of neutron stars, we con-
sider models within the theory of general relativity and
solve coupled Einstein-Maxwell partial differential equa-
tions. We follow the scheme described in Bonazzola et al.
[37], who considered the general case of rotating neu-
tron stars, with the assumptions of stationarity, axial and
equatorial symmetry, and circular spacetime, where the
metric is given in the quasi-isotropic gauge, different from
that used in TOV systems (4), by:

ds2 = −N2 dt2 + C2r2 sin2 θ (dϕ−Nϕ dt)
2

+A2
(

dr2 + r2 dθ2
)

, (7)

where N,Nϕ, A and C are the relativistic gravitational
potentials which are, as all other fields in Secs. II-III,
functions of the coordinates (r, θ) only (independent from
the ϕ-coordinate).
In this work, we shall restrict ourselves to the case

without rotation, which in particular implies that there
is no electric field in the models (perfect conductor). Nev-
ertheless, as said in the introduction, the presence of a
magnetic field induces a distortion of the stellar struc-
ture, which cannot remain spherically symmetric. Due to
spacetime symmetries and circularity condition, only two
magnetic field geometries can be described within this
framework: a purely poloidal magnetic field (see Boc-
quet et al. [16]) or a purely toroidal one (see Kiuchi
and Yoshida [38] and later Frieben and Rezzolla [39]).

In this work, we consider only purely poloidal magnetic
fields, meaning that the only non-trivial components are
Br(r, θ) and Bθ(r, θ). This choice results in an asymp-
totically dipolar magnetic field distribution.
Matter is supposed to be composed of a perfect fluid

coupled to the magnetic field. In Chatterjee et al. [15],
it has been shown that the use of a magnetic field de-
pendent EoS and inclusion of magnetization in the equa-
tions have negligible effects on neutron star structure, at
least up to a polar magnetic field Bpole ∼ 5 × 1017 G
(roughly corresponding to to a central magnetic field
value bc ∼ 2 × 1018 G) with a simple quark model EoS.
We therefore neglect magnetic field dependency of the
EoS and magnetization here, but they could be included
in a straightforward way [15]. Matter is also assumed
to be perfectly conducting and the magnetic field origi-
nates from free currents, moving independently from the
perfect fluid. Equilibrium equations are obtained from
the divergence-free condition of the energy-momentum
tensor, and can be written as a first integral of motion,
[15, 37]. It is mostly the Lorentz force term in this equi-
librium equation which distorts the stellar structure and
makes it deviate from spherical symmetry. To summa-
rize, given an equation of state (EoS) for nuclear matter
(see Sec. II C hereafter), we thus solve the system of cou-
pled Einstein-Maxwell equations, together with magneto-
static equilibrium. These models are then characterized
by their gravitational mass (MG, see [37] for a definition),
their EoS (see Sec. II C) and the central magnetic field,
bc.

B. Numerical methods

The equations to be solved to get axisymmetric solu-
tions form a set of six non-linear elliptic (Poisson-like)
partial differential equations, coupled together with non-
compact support (sources for gravitational field extend
up to spatial infinity). These equations are solved us-
ing the same procedure as described in Bocquet et al.

[16], employing the numerical library lorene [40] based
on spectral methods for the representation of fields
and the resolution of partial differential equations (see
Grandclément and Novak [41]).
Numerical accuracy of the axisymmetric solutions is

checked through an independent test, the so-called rel-

ativistic virial theorem (Bonazzola and Gourgoulhon
[42] and Gourgoulhon and Bonazzola [43]). This gives an
upper bound on the relative accuracy of the obtained nu-
merical solution, and we checked that it always remained
lower than 10−4 for the axisymmetric models presented
in Sec. III.

C. Equations of state

The system of equations described above is closed by
the EoS for nuclear matter relating the pressure p to the
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Model nsat EB K Esym L Mmax R1.4 Λ̃(q = .8)
(fm−3) (MeV) (MeV) (MeV) (MeV) (M⊙) (km)

HS(DD2) 0.149 16.0 243 31.7 55 2.42 13.2 810
SFHoY 0.158 16.2 245 31.6 47 1.99 11.9 399
STOS 0.145 16.3 281 36.9 111 2.23 14.5 1420
BL EOS 0.17 15.2 190 35.3 76 2.08 12.3 466
SLy9 0.15 15.8 230 32.0 55 2.16 12.5 533
SLy230a 0.16 16.0 230 32.0 44 2.11 11.8 401

TABLE I. Saturation density , nsat, the binding energy at saturation EB, the compression modulus K, the symmetry energy,
Esym and its slope, L, of symmetric nuclear matter are listed for the different EoS models employed. The neutron star maximum
gravitational mass and radius at a fiducial mass of MG = 1.4M⊙ are given for cold spherical stars. Λ̃ is the tidal deformability
during inspiral of a binary neutron star merger, calculated with the chirp mass as measured for GW170817 [34, 35]. Λ̃ is
only very weakly dependent on the mass ratio of the two stars, q = M1/M2 and is given here for a reference value of q = 0.8

(the same EoS is assumed for both stars). Note that the STOS EoS is as well excluded by the constraints on Λ̃ obtained by
GW170817 [35] as by nuclear physics experiments indicating much lower values for the slope of the symmetry energy [36]. We
will nevertheless keep this EoS model as representative of an extreme case with large neutron star radius and symmetry energy
slope.

baryon density nB. Our selection of EoSs for the present
work has been guided by the idea to represent a large va-
riety of different neutron star compositions and nuclear
properties, derived from completely different nuclear
physics formalisms. This was done in order to achieve
an unbiased universal parameterization applicable to any
realistic nuclear EoS. We consider one EoS model re-
sulting from a microscopic calculation (“BL EOS”) [44]1.
It uses the Brueckner-Hartree-Fock formalism to tackle
the many-body-problem and employs chiral interactions
for the basic two- and three-body nuclear interactions.
In addition, we consider several phenomenological mean
field models. These models are unified models in the
sense that the crust EoS has been obtained with the
same nuclear interaction than the one for the core guar-
anteeing consistency at the crust-core transition. They
include two non-relativistic Skyrme parameterizations
(“SLy9”and “SLy230a”)[45, 46] with the crust model
from Gulminelli and Raduta [47], two relativistic mean
field models (“STOS” and “HS(DD2)”) [48, 49] with the
crust obtained from the model in Hempel and Schaffner-
Bielich [50], supposing a temperature of 0.1 keV. The for-
mer one contains non-linear interactions whereas the lat-
ter one is constructed with density-dependent couplings.
One model with hyperons (“SFhoY”) [51] completes our
list of EoS models. It is a nonlinear model where the
crust is again obtained from Ref. [50]. Hyperonic inter-
actions have been chosen to correctly reproduce hypernu-
clear data and a neutron star maximum mass above cur-
rent observational limits. Some nuclear and neutron star
properties of the different EoS models are listed in Ta-
ble I. All EoS data are available from the on-line database
CompOSE [52].

1 The model calculation exist only for homogeneous matter and a

crust has been added, see the CompOSE entry for details.

FIG. 1. Magnetic field lines in the (x, z)-plane for a MG =
2M⊙ neutron star model endowed with a magnetic field which
central value is bc = 5 × 1017 G and using the SLy203a EoS
of Tab. I. Thick line denotes the surface of the star and the
magnetic moment is along the z-axis.

III. GENERIC MAGNETIC FIELD PROFILE

The numerical models of neutron stars endowed with a
magnetic field described in Sec. II A consider two compo-
nents (Br and Bθ) of the magnetic field vector, as mea-
sured by the Eulerian observer (see Bocquet et al. [16]
for details). In the case of non-rotating stars considered
here, this magnetic field is the same as that measured in
the fluid rest-frame, denoted as br and bθ in Chatterjee
et al. [15]. As an example, the magnetic field distribu-
tion of a full neutron star model is displayed in Fig. 1,
for a central value of the magnetic field bc = 5× 1017 G.
The surface of the star (thick line) does not exhibit any
significant deviation from spherical shape, but it is clear



5

that the magnetic field distribution is dominated by the
dipolar structure and cannot be accurately described by
any spherically-symmetric model.
When trying to parameterize the magnetic field pro-

file, the simplest approach is to consider the norm of the
magnetic field, namely

b =

√

grr (br)
2 + gθθ (bθ)

2
= A

√

(br)2 + (bθ)
2
, (8)

where the relativistic gravitational potential A(r, θ) has
been defined in Eq. (7). Note that b is the quantity that
enters the EoSs which take into account magnetization,
as explained e.g. in [15]. The central value of this mag-
netic field norm is denoted as bc = b(r = 0) (independent
of θ). In the rest of this work, we will consider this field
as the main object of our study.
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FIG. 2. Magnetic field norm b (8) as a function of the baryon
density for two angular directions for the same stellar model
as in Fig. 1.

As stated in the introduction, several authors have con-
sidered a parameterization of the magnetic field norm
by the baryon density nB. In Fig. 2 we have plotted,
for the same neutron star model of MG = 2 M⊙ and
bc = 5 × 1017 G as in Fig. 1, the norm of the magnetic
field as a function of baryon number density nB, along
two radial directions: for θ = 0 (passing through the
pole) and for θ = π/2 (passing through the equator). As
these two curves show noticeable differences, including
close to the center of the star (nB ∼ 0.8 fm−3), it seems
that this type of parameterization can induce some in-
consistency when describing magnetic field in a neutron
star. We therefore try to improve it and adopt a different
approach, taking a multipolar expansion of the magnetic
field norm (Y m

ℓ (θ, ϕ) being the spherical harmonic func-
tions):

b(r, θ) ≃

Lmax
∑

ℓ=0

bℓ(r) × Y 0
ℓ (θ). (9)
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FIG. 3. Radial profiles of the first four even multipoles, bℓ, ℓ =
0, 2, 4 and ℓ = 6, see definition (9), of the magnetic field norm
b(r, θ) computed for the stellar model described in Fig. 1.
From symmetry arguments odd multipoles are all zero.

In Fig. 3 we have plotted the first four non-zero terms
of this multipolar decomposition as functions of the co-
ordinate radius r. Note that, because of the symme-
try with respect to the equatorial plane, odd-ℓ terms in
the decomposition (9) are all zero. It appears that, at
least in the high-density central regions of the star, the
monopolar term b0(r), which is spherically symmetric, is
dominant over the others. It is important to stress here
that, contrary to the magnetic (vector) field, which has
no monopolar part in terms of vector spherical harmon-
ics, the norm of the vector field considered here is a scalar
field which can possess a monopolar component.
We then look at the behavior of the radial profile of

b0 when varying the neutron star model in Fig. 4. On
the left panel, we vary the gravitational mass of the star
(either 1.6 M⊙ or 2 M⊙), as well as the amplitude of
the magnetic field central value bc (1015 G, 1017 G and
1018 G). On the right panel of Fig. 4, we vary the EoS
used in the stellar model, keeping the gravitational mass
to be 2 M⊙ and the central magnetic field bc = 5 ×
1017 G. These profiles are no longer displayed as functions
of the quasi-isotropic coordinate radius r, defined by the
line element (7), but in view of the application to TOV-
systems in Sec. IV, we consider here the Schwarzschild
coordinate radius r̄, defined by the line element (4). The
gauge transformation is obtained numerically and profiles
are displayed as functions of this radius divided by the
star’s mean radius rmean which is such that the integrated
(coordinate-independent) surface of the star reads A =
4πr2mean. Indeed, when the star gets distorted because
of the magnetic field, it is difficult to define uniquely a
relevant radius. In that sense, rmean is directly connected
to the star’s surface and some of its emission properties.
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FIG. 4. Monopolar part of the magnetic field profile b0(r), normalized to its central value for different magnetized neutron
star models, as functions of the radius expressed in Schwarzschild coordinates r̄ (see expression (4)) divided by the star’s mean
radius (see text). Left panel (a): all models are using SLy230a EoS (see Tab. I) but have different masses (1.6 M⊙ or 2 M⊙) and
different central magnetic fields bc (1015 G, 1017 G or 1018 G). Right panel (b): all are 2 M⊙ models, with a central magnetic
field bc = 5× 1017 G, but with different EoSs, see Tab. I for details.

It is remarkable that, although all possible parameters
defining a magnetized stellar model (mass, central mag-
netic field, EoS) have been varied, all profiles are quite
similar and deviate one from another only by a few per-
cent. The only case where a noticeable difference appears
is when using quark matter EoS. Therefore, we make the
following conjecture: the monopolar part of the norm of
the magnetic field follows a universal profile, up to minor
variations, when considering different neutron star mod-
els with realistic hadronic EoSs. This “universal” profile
has been fitted using a simple polynomial:

b0(x) = bc ×
(

1− 1.6x2 − x4 + 4.2x6 − 2.4x8
)

, (10)

where x = r̄/rmean is the ratio between the radius r̄ in
Schwarzschild coordinates (4) and the star’s mean (or
areal) radius. Let us stress that the aim of the present
investigation is to obtain a universal profile for realis-
tic EoSs and that we have therefore excluded polytropic
EoSs. A preliminary calculation showed that the gen-
eral parameterization applicable to the family of realistic
EoSs is not applicable directly to the case of polytropes
without specific fine tuning.
Going further, we display in Fig. 5 profiles for the dipo-

lar part b2(r), defined in Eq. (9). A larger dispersion is
visible in these plots, in particular in terms of EoSs (right
panel of Fig. 5) and for the largest value of magnetic
field (bc = 1018 G, left panel of Fig. 5). This last point
can be understood from the large deformation undergone
by the star at this value of central magnetic field, when
the contribution from higher-order multipoles starts to
become important. Together with Fig. 3, these curves
show that spherical symmetry is not a good approxima-
tion for strongly magnetized neutron stars, where higher

multipoles can have a non-negligible effect. However, the
relative robustness of the profiles shown in Fig. 5 indi-
cates that, for not too large magnetic fields, the dipolar
correction may be included in an EoS-independent way
and some perturbative approach to spherical symmetry
may be devised, in a way similar to Konno et al. [18]. We
leave these investigations to further studies.

IV. APPLICATION TO A TOV-LIKE SYSTEM

As discussed in the introduction, it is fundamentally
inconsistent to solve spherically symmetric equations for
magnetized neutron star models since it completely ne-
glects the star’s deformation due to the electromagnetic
field. It is, however, tempting, to have a simple ap-
proach at hand which allows at least to qualitatively re-
produce the effects of the magnetic field on (some) neu-
tron star properties performing calculations only slightly
more complicated than solving TOV equations. To that
end, we modify the TOV system by adding the contribu-
tion from the magnetic field to the energy density and a
Lorentz force term to the equilibrium equation:

dm

dr̄
= 4πr̄2(ε+

b2

µ0

)

dΦ

dr̄
=

(

1−
2Gm

r̄c2

)−1 (
Gm

r̄2
+ 4πG

p

c2
r̄

)

dp

dr̄
= −

(

ε+
b2

µ0

+
p

c2

)(

dΦ

dr̄
− L(r̄)

)

. (11)

L(r̄) denotes here the Lorentz force contribution, which
is noted dM/dr in Bonazzola et al. [37] (see this reference
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FIG. 5. Same as Fig. 4 but for the dipole term b2(r) of the multipolar expansion (9) of the magnetic field norm.

for more details). Note that these equations (11) are not
derived from any first principle, but only motivated by
Eq.(5), in which we have replaced the diverging term by
some phenomenological term, supposed to better take
into account the magnetic pressure and the Lorentz force
acting on the fluid.

Similar to the magnetic field norm b, we found from
the full numerical calculations the following parametric
form

L(r̄) = 10−41 × b2c
(

−3.8 x+ 8.1 x3 − 1.6 x5 − 2.3 x7
)

,
(12)

where x = r̄/rmean and the central magnetic field, bc, is
given in units of G. For the magnetic field b in Eqs. (11),
the profile (10) is applied.

In order to get an idea of the quality of this “TOV-like”
approach, we show in Figs. (6,7) a comparison between
stellar sequences (described in mass vs. radius diagrams)
obtained with the TOV-like approach in spherical sym-
metry and the full numerical solution in axial symmetry.
In Fig. (6) the gravitational mass vs. the mean radius
is displayed for a central magnetic field of bc = 1017 G
(l.h.s.) and bc = 1018 G (r.h.s). As expected, devia-
tions become larger at smaller masses since the ratio of
magnetic to matter pressure increases and thus the stars
are more strongly deformed and the relation between the
mean radius and the radius of a spherically symmetric
configuration is no longer obvious. The same is true if
the central magnetic field is increased. For further com-
parisons, we show in addition the solutions obtained with
TOV applying the “averaged” shear stress tensor [24],
mentioned in Sec. I, and those obtained without any mag-
netic field (B = 0), too. We display here results from
the former approach since it has been used several times
in the literature [11, 24, 25] for studying properties of
magnetized stars. Let us emphasize, however, that the
procedure to obtain the “averaged” stress-energy tensor

is mathematically ill-defined, as it is not possible to di-
rectionally “average” elements of a tensor. Moreover,
looking at Fig. 6 results with this approach for the mass-
radius relation most strongly differ from the full solution.
Surprisingly, the usual TOV solution with no magnetic
field (B = 0), on the contrary, very well reproduces the
full solution. Thus, although the star becomes strongly
deformed, the mean radius is only marginally influenced
by the magnetic field.

Masses should be less sensitive to the deformation. As
can be seen in Fig. (7), indeed the TOV-like solution
for the maximum gravitational mass as well as the grav-
itational mass for fixed baryon mass as function of the
central magnetic field show the correct qualitative behav-
ior. Both increase with bc and the TOV-like approach
overestimates the masses up to a factor two in the cor-
rection (with respect to the non-magnetized case) at cen-
tral fields of bc = 1018G. This difference shows the dif-
ficulty of “spherically-symmetric” approaches to model
magnetized neutron stars. The limits of the TOV-like
approach can be clearly seen in the determination of ef-
fects due to the magnetic field. Finally, note that the
“averaged” TOV approach gives a wrong qualitative be-
havior for the dependence of the maximum mass on the
central magnetic field value.

Thus, although our investigations can serve as a guide-
line and reproduce at least for gravitational mass as func-
tion of magnetic field the correct qualitative tendency, it
should be stressed that it is strongly recommended to
use some consistent axisymmetric or three-dimensional
approach (e.g. employing publicly available software), to
determine properties of magnetized neutron stars or to
draw any quantitative conclusion.
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V. CONCLUSIONS

Many attempts can be found in the literature trying
to study strongly magnetized neutron stars and to in-
clude magnetic field effects on the matter properties. As
mentioned in the introduction, most of these investiga-
tions suffer from different assumptions and approxima-
tions motivated by the complexity of the full system of
equations. First, in order to avoid solving Maxwell’s
equations in addition to equilibrium and Einstein equa-
tions, often an ad hoc profile for the magnetic field is as-
sumed, which has no physical motivation. Second, spher-
ical symmetry is assumed for modelling the star.
In this work, we tackle the first point: we proposed a

“universal” parameterization of the magnetic field profile
(Eq. 10) as a function of dimensionless stellar radius, ob-

tained from a full numerical calculation of the magnetic
field distribution. We tested this profile against several
realistic hadronic EoSs, based on completely different ap-
proaches, and with different magnetic field strengths in
order to confirm its universality. For the case of quark
matter EoSs, preliminary investigations showed that al-
though MIT bag models conform to the universality,
other quark matter EoSs may not necessarily do so. The
profile is intended to serve as a tool for nuclear physi-
cists for practical purposes, namely to obtain an esti-
mate of the maximum field strength as a function of ra-
dial depth, within the error bars observed in our study,
e.g. in Fig. (4), in order to deduce the composition and
related properties.

We applied the proposed magnetic field profile in a
modified TOV-like system of equations, that include the
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contribution of magnetic field to the energy density and
pressure, and account for the anisotropy by introduc-
ing a Lorentz force term. Compared with full numerical
structure calculations, we find that qualitatively the cor-
rect tendency is reproduced and quantitatively the agree-
ment is acceptable for large masses and small magnetic
fields (bc . 1017 G). However, we find that the standard
TOV system with no magnetic field reproduces much
better mass-radius relations, even for strong magnetic
fields, than any modified TOV system, with poorly de-
fined magnetic corrections. This is mostly due to the fact
that the mean radius is only marginally changed by the
magnetic field. We thus think that future studies should
employ the profile proposed here to conclude about the
importance of magnetic field effects on matter properties,

and use TOV system atB = 0 for calculating mass-radius
diagrams. For any other property of magnetized stars, we
can only recommend the use of a full axisymmetric nu-
merical solution for modelling magnetized neutron stars.
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