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Abstract. We are interested in space-time refinement methods for linear wave propagation.
In1,2, some stable numerical schemes using non-conforming grids in space and time have been
proposed. These methods use a Lagrange multiplier to cope with the interface conditions. The
choice of the discretization space of this additional unknown can be in some cases not trivial.

In the present paper we propose an alternative method. The main new idea is to use different
variational formulations in the fine and in the coarse grids. We present a time discretization
that leads to the conservation of a discrete energy and provide a complete stability and error
analysis in the case where the time step is twice smaller in one domain than in the other one.

1 INTRODUCTION

When coupling two wave propagation problems in two different regions, it can be interesting,
in order to keep the same accuracy in the whole domain, to introduce non matching grids in
space. Concerning the time discretization, with explicit schemes, when a uniform time step is
used, it must be chosen in such a way that both CFL stability conditions for each region are
satisfied, which can be very restrictive in one of the domains. Furthermore, it can give rise
to large dispersion errors in the region where the time step is far from the largest value that
ensures the stability. A natural idea is then to introduce a local time step in order to reduce the
computational cost and to improve the accuracy.

In1,2, the authors have proposed methods allowing to use non conforming meshes in space
and in time. The space discretization is performed using a Lagrange multiplier in order to
ensure the transmission conditions. The time stepping is based on finite differences and on
a discrete energy conservation which gives a robust numerical method. Following the same
ideas, we propose an alternative method that avoids the use of a Lagrange multiplier by means
of using a so-called “primal-dual formulation”. The time discretization is based as the previous
ones, on a discrete energy conservation and therefore is stable by construction. This method
has been developed in an abstract framework and can be applied to several situations as space-
time mesh refinements in acoustics, elastodynamics and electromagnetics, and also to some
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situations where the equations are not the same in different regions of the domain, as for instance
fluid-structure interaction problems.

In this paper, we describe the method in a general setting. We give a stability result and
present the error estimates for the 2D and 3D problems in the case where the time step in
one region is twice smaller than the one in the other region. The main result concerns an L2

error estimate in O(h3/2) where h denotes the space discretization step. The proof is based on
energy techniques and boot-strap arguments, as the one given in3 for the method with Lagrange
multiplier in 1D. We would like to note that, with the new method, the absence of Lagrange
multiplier simplifies the proof and allows us to obtain the convergence for any dimension.

2 An abstract variational formulation

This paper deals with the simulation of coupled linear wave propagation problems. Let us
assume that the computational domain is composed by two sub-domains Ωl, l ∈ {c, f}. We
denote by (ul, pl) ∈ R

ml × R
nl, l ∈ {c, f} the unknowns of the problem that will satisfy the

following equations
∣

∣

∣

∣

∣

∣

∣

∣

Al
∂ul

∂t
+ D∗

l pl = gl,

Bl
∂pl

∂t
− Dl ul = fl.

(1)

We assume that Al and Bl are symmetric matrices depending on the space variable and that Dl

and D∗
l are first order differential operators in space that are adjoint in the distributional sense,

that is, for all functions ϕl and ψl that are regular enough and with compact support in Ωl we
have

∫

Ωl

Dl ϕ ψ dx =

∫

Ωl

D∗
l ψ ϕ dx.

Both systems are coupled by the continuity of the generalized traces of the solution through
the interface Γ = Ωc ∩ Ωf that will depend on the nature of the problem. In section 3 some
examples will be given.

We introduce the Hilbert spaces

Hl := [L2(Ωl)]
ml , Vl := [L2(Ωl)]

nl , l ∈ {c, f},

equipped with the usual norms and scalar products. We also define the Hilbert spaces

Xl := {ũl ∈ Hl / Dl ul ∈ Vl} , , l ∈ {c, f},

and their natural norms and scalar products

∣

∣

∣

∣

∣

(ul, ũl)Xl
:= (ul, ũl)Hl

+ (Dl ul,Dl ũl)Vl
, ∀ (ul, ũl) ∈ Xl ×Xl,

‖ũl‖2
Xl

:= ‖ũl‖2
Hl

+ ‖Dl ũl‖2
Vl
, ∀ ũl ∈ Xl.

(2)
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We introduce the following product spaces

H := Hc ×Hf , V := Vc × Vf , X := Xc ×Xf ,

equipped with the norms
∣

∣

∣

∣

∣

∣

∣

∣

∣

‖(uc, uf)‖2
H := ‖uc‖2

Hc
+ ‖uf‖2

Hf
, ∀(uc, uf) ∈ Hc ×Hf ,

‖(pc, pf)‖2
V := ‖pc‖2

Vc
+ ‖pf‖2

Vf
, ∀(pc, pf) ∈ Vc × Vf ,

‖(uc, uf)‖2
X := ‖uc‖2

Xc
+ ‖uf‖2

Xf
, ∀(uc, uf) ∈ Xc ×Xf .

In such a way, the abstract variational formulation that we deal with is
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Find (uc, uf) ∈ C1 ([0, T ];H) ∩ C0 ([0, T ];X) and (pc, pf) ∈ C1 ([0, T ];V ) such that

d
dt

(Ac uc, ũc)Hc
+ (Dc ũc, pc)Vc

− c(ũc, uf) = (gc, ũc)X′
c×Xc

, ∀ũc ∈ Xc,

d
dt

(Bc pc, p̃c)Vc
− (Dc uc, p̃c)Vc

= (fc, p̃c)V ′
c×Vc

, ∀p̃c ∈ Vc,

d
dt

(Af uf , ũf)Hf
+ (Df ũf , pf)Vf

+ c(uc, ũf) = (gf , ũf)X′
f
×Xf

, ∀ũf ∈ Xf ,

d
dt

(Bf pf , p̃f)Vf
− (Df uf , p̃f)Vf

= (ff , p̃f)V ′
f
×Vf

, ∀p̃f ∈ Vf ,

(3)

system that must be completed with the initial and boundary conditions that we will omit for
the sake of simplicity. The bilinear operator

∣

∣

∣

∣

∣

c : Xc ×Xf −→ R

(ũc, ũf) 7→ c(ũc, ũf),

couples the formulations on each domain and is supposed to be continuous, that is,

c(ũc, ũf) ≤ ‖c‖ ‖ũc‖Xc
‖ũf‖Xf

, ∀ (uc, uf) ∈ Xc ×Xf .

We will assume that the operators defined by the symmetric matrices Al and Bl belong to
L(Hl, Hl) and L(Vl, Vl) respectively and that there exists a constant C such that

∣

∣

∣

∣

∣

∀ ũl ∈ Hl, (Al ũl, ũl)Hl
≥ C‖ũl‖2

Hl
,

∀ p̃l ∈ Vl, (Bl p̃l, p̃l)Vl
≥ C‖p̃l‖2

Vl
.

Remark 2.1 If we take (ũc, ũf) = (uc, uf) and (p̃c, p̃f) = (pc, pf) in the equations (3) we
obtain

dE
dt

=
∑

l∈{c,f}

{

(gl, ul)X′
c×Xc

+ (fl, pl)V ′
c×Vc

}
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with
∣

∣

∣

∣

∣

∣

∣

E(t) = Ec(t) + Ef(t),

El(t) =
1

2
((Al ul, ul)Hl

+ (Bl pl, pl)Vl
) , l ∈ {c, f}.

In particular, in absence of external forces, the energy that we have defined above is conserved.

Remark 2.2 The functions in the space Xl, l ∈ {c, f} have more regularity in space than the
functions in the space Vl, l ∈ {c, f}. We point out that the coupling of both system, that is done
with the operator c(·, ·), makes appear only the unknowns ul, l ∈ {c, f} that we will call the
regular variables.

3 Some examples of application

1. Mesh refinement for acoustics in dimension d:


































uc ≡ vc, (the velocity field on Ωc, mc = d),

pc ≡ pc, (the pressure on Ωc, nc = 1),

Ac ≡ A
c
, (the anisotropy tensor on Ωc),

Bc ≡ ρc, (the density of the fluid on Ωc),

Dc ≡ div (·), D∗
c ≡ −∇(·),

(4)



































uf ≡ pf , (the pressure on Ωf , mf = 1),

pf ≡ vf , (the velocity field on Ωf , nf = d),

Af ≡ ρf , (the density of the fluid on Ωf ),

Bf ≡ A
f
, (the anisotropy tensor Ωf),

Df ≡ ∇ (·), D∗
f ≡ −div (·),

(5)

c(uc, uf) ≡ < vc · n , pf >H− 1
2 (Γ),H

1
2 (Γ)

. (6)

2. Mesh refinement for the 3-D Maxwell’s equations:


































uc ≡ Ec, (the electric field on Ωc, mc = 3),

pc ≡ Hc, (the magnetic field on Ωc, nc = 3),

Ac ≡ εc, (the dielectric permittivity on Ωc),

Bc ≡ µc, (the magnetic permeability on Ωc),

Dc ≡ −rot (·), D∗
c ≡ −rot (·),

(7)
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uf ≡ Hf , (the magnetic field on Ωf , mf = 3),

pf ≡ Ef , (the electric field on Ωf , nf = 3),

Af ≡ µf , (the magnetic permeability on Ωf ),

Bf ≡ εf , (the electric permittivity on Ωf ),

Df ≡ rot (·), D∗
f ≡ rot (·),

(8)

c(uc, uf) ≡ < Hf ∧ n , n ∧ (Ec ∧ n) >
H

− 1
2

‖
(divΓ,Γ),H

− 1
2

⊥ (rotΓ,Γ)
, (9)

where the space H
− 1

2

‖ (divΓ,Γ) and its dual H
− 1

2

⊥ (rotΓ,Γ) are defined in4. We point out
that this application is specially interesting because the primal and the dual formulations
are almost the same.

3. Mesh refinement for elastodynamics in dimension d. In this case we must change the
spaces Hc and Vf in order to impose the symmetry of the stress tensor:

∣

∣

∣

∣

∣

∣

∣

Hc :=
{

σ
c
∈ [L2(Ωc)]

d×d
/ σ

c
is symmetric

}

,

Vf :=
{

σ
f
∈ [L2(Ωf )]

d×d
/ σ

f
is symmetric

}

.

(10)

In this way we have


































uc ≡ σ
c
, (the stress tensor on Ωc, mc = d2 (= d× d)),

pc ≡ vc, (the velocity field on Ωc, nc = d),

Ac ≡ Ac, (the inverse of the elasticity tensor on Ωc),

Bc ≡ ρc, (the density of the material on Ωc),

Dc ≡ div (·), D∗
c ≡ −ε (·),

(11)



































uf ≡ vf , (the velocity field on Ωf , mf = d),

pf ≡ σ
f
, (the stress tensor on Ωf , nf = d2 (= d× d)),

Af ≡ ρf , (the density of the material on Ωf),

Bf ≡ Af , (the inverse of the elasticity tensor on Ωf ),

Df ≡ ε (·), D∗
f ≡ −div (·),

(12)

c(uc, uf) ≡ < σ
c
n , vf >H− 1

2 (Γ),H
1
2 (Γ)

. (13)

Remark 3.1 The symmetry in the spaces Hc and Vf must be imposed in order to ensure
that the ε(·) is the adjoint div (·) and the inversibility of the elasticity tensor.
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4. Fluid-solid interaction in dimension d. In this case we must also impose the symmetry in
the space Vf given in (10). We have then



































uc ≡ pc, (the pressure of the fluid, mc = 1),

pc ≡ vc, (the velocity field of the fluid, nc = d),

Ac ≡ ρc, (the density of the fluid),

Bc ≡ A
c
, (the anisotropy tensor),

Dc ≡ ∇ (·), D∗
c ≡ −div (·),

(14)



































uf ≡ vf , (the velocity field on the solid, mf = d),

pf ≡ σ
f
, (the stress tensor on the solid, nf = d2 (= d× d)),

Af ≡ ρf , (the density of the material),

Bf ≡ Af , (the inverse of the elasticity tensor),

Df ≡ ε (·), D∗
f ≡ −div (·),

(15)

c(uc, uf) ≡
∫

Γ

vf · n pc dγ. (16)

For numerical results obtained with this method for fluid-structure interaction, the reader
can refer to5.

In all examples, the continuity of the operator c(·, ·) can be shown using traces theorems adapted
for each situation.

4 Space discretization

For the space discretization of the problem (3) we follow a Galerkin approach. In this way we
construct finite dimensional spaces

∣

∣

∣

∣

∣

Xl,h ⊂ Xl, Vl,h ⊂ Vl, l ∈ {c, f},
Xh := Xc,h ×Xf,h, Vh := Vc,h × Vf,h,

(h is a discretization parameter) satisfying the usual approximation properties

lim
h→0

inf
ũh

l
∈Xl,h

∥

∥ul − ũh
l

∥

∥

Xl
= 0, ∀ ul ∈ Xl,

lim
h→0

inf
p̃h

l
∈Vl,h

∥

∥pl − p̃h
l

∥

∥

Vl
= 0, ∀ pl ∈ Vl,

∣

∣

∣

∣

∣

∣

∣

, l ∈ {c, f}.
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The semi-discrete problem is then
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Find (uh
c , u

h
f) ∈ C1 ([0, T ];Xh) et (ph

c , p
h
f) ∈ C1 ([0, T ];Vh) such that

d
dt

(Ac u
h
c , ũ

h
c )Hc

+ (Dc ũ
h
c , p

h
c )Vc

− c(ũh
c , u

h
f) = (gc, ũ

h
c )X′

c×Xc
,

d
dt

(Bc p
h
c , p̃

h
c )Vc

− (Dc u
h
c , p̃

h
c )Vc

= (fc, p̃
h
c )V ′

c×Vc
,

d
dt

(Af u
h
f , ũ

h
f)Hf

+ (Df ũ
h
f , p

h
f)Vf

+ c(uh
c , ũ

h
f) = (gf , ũ

h
f)X′

f
×Xf

,

d
dt

(Bf p
h
f , p̃

h
f)Vf

− (Df u
h
f , p̃

h
f)Vf

= (ff , p̃
h
f)V ′

f
×Vf

,

∀ ((ũh
c , ũ

h
f), (p̃

h
c , p̃

h
f)) ∈ Xh × Vh.

(17)

Remark 4.1 It is clear that in absence of external forces, the semi-discrete energy
∣

∣

∣

∣

∣

∣

∣

Eh(t) = Ec,h(t) + Ef,h(t),

El,h(t) =
1

2

(

(Al u
h
l , u

h
l )Hl

+ (Bl p
h
l , p

h
l )Vl

)

, l ∈ {c, f},
(18)

is conserved.

5 Time stepping

The interior scheme. A second order finite difference scheme that computes uh
l and vh

l in
different time steps is used for the time discretization. As it has been explained before, we will
use a time step 2∆t on the domain Ωc that is twice larger than the one on Ωf . In this way, we
have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Find (u2n
c , p

2n+1
c , un

f , p
n+ 1

2

f ) ∈ Xc,h × Vc,h ×Xf,h × Vf,h such that

(Ac
u2n+2

c − u2n
c

2∆t
, ũh

c )Hc
+ (Dc ũ

h
c , p

2n+1
c )Vc

− c(ũh
c , [[uf ]]

2n+1) = (g2n+1
c , ũh

c )X′
c×Xc

,

(Bc
p2n+1

c − p2n−1
c

2∆t
, p̃h

c )Vc
− (Dc u

2n
c , p̃

h
c )Vc

= (f 2n
c , p̃h

c )V ′
c×Vc

,

(Af

un+1
f − un

f

∆t
, ũh

f)Hf
+ (Df ũ

h
f , p

n+ 1

2

f )Vf
+ c([[uc]]

n+ 1

2 , ũh
f) = (g

n+ 1

2

f , ũh
f)X′

f
×Xf

,

(Bf

p
n+ 1

2

f − p
n− 1

2

f

∆t
, p̃h

f)Vf
− (Df u

n
f , p̃

h
f)Vf

= (fn
f , p̃

h
f)V ′

f
×Vf

,

∀ ((ũh
c , ũ

h
f), (p̃

h
c , p̃

h
f)) ∈ Xh × Vh.

(19)
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where [[uf ]]
2n+1 and [[uc]]

n+ 1

2 are approximations of uh
f(t

2n+1) and uh
c (n + 1

2
) respectively that

must be determined. We point out that for each time intervale [t2n, t2n+2] there are three of these
quantities. We must then write three linear independent equations that will allow us to obtain
them and to couple both systems.

The coupling equations: Energy conservation The additional equations that we will add in
order to couple the two systems in (19) will be chosen in such a way that the stability of the
scheme will be ensured a priori. A simple way to do that is to impose a discrete version of the
energy conservation property explained on the remarks 2.1 and 4.1. We introduce the discrete
energy at the even time steps by

E
2n := E

2n
c + E

2n
f , (20)

where

E
2n
c :=

1

2
((Ac u

2n
c , u

2n
c )Hc

+ (Bc p
2n+1
c , p2n−1

c )Vc
),

E
n
f :=

1

2
((Af u

n
f , u

n
f )Hf

+ (Bf p
n+ 1

2

f , p
n− 1

2

f )Vf
),

and so we can stablish the

Theorem 5.1 (Conservative scheme) In order to complete the interior scheme (19) and obtain
a numerical scheme that conserves the energy (20) in absence of external forces, the additional
equations must be compatible with the following equality

c([[uc]]
2n+ 1

2 ,
u2n

f + u2n+1
f

4
) + c([[uc]]

2n+ 3

2 ,
u2n+1

f + u2n+2
f

4
) = c(

u2n+2
c + u2n

c

2
, [[uf ]]

2n+1).

(21)

Proof: We introduce in the first equation of (19) the test function ũh
c = (u2n+2

c + u2n
c )/2 to

obtain
∣

∣

∣

∣

∣

∣

∣

∣

1

4∆t

(

(Ac u
2n+2
c , u2n+2

c )Hc
− (Ac u

2n
c , u

2n
c )Hc

)

=

− (Dc
u2n+2

c + u2n
c

2
, p2n+1

c )Vc
+ c(

u2n+2
c + u2n

c

2
, [[uf ]]

2n+1).

(22)

Using the second equation on (19) for two successive time steps we have

(Bc
p2n+3

c − p2n−1
c

4∆t
, p̃h

c )Vc
= (Dc

u2n+2
c + u2n

c

2
, p̃h

c )Vc
,

and then, taking p̃h
c = p2n+1

c ,

1

4∆t

(

(Bc p
2n+3
c , p2n+1

c )Vc
− (Bc p

2n+1
c , p2n−1

c )Vc

)

= (Dc
u2n+2

c + u2n
c

2
, p2n−1

c )Vc
. (23)

8
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We add the equations (22) and (23) to conclude that

1

2∆t

(

E
2n+2
c − E

2n
c

)

= c(
u2n+2

c + u2n
c

2
, [[uf ]]

2n+1). (24)

Using similar techniques it is easy to show that

1

∆t

(

E
n+1
f − E

n
f

)

= c([[uc]]
n+ 1

2 ,
un

f + un+1
f

2
). (25)

We conclude the proof combining (24) and (25) and the definition of the total discrete energy
(20). 2

We propose then the following equations in order to complete (19) and conserve the energy
∣

∣

∣

∣

∣

∣

∣

∣

[[uf ]]
2n+1 :=

u2n
f + 2u2n+1

f + u2n+2
f

4

[[uc]]
2n+ 1

2 :=
u2n+2

c + u2n
c

2
, [[uc]]

2n+ 3

2 :=
u2n+2

c + u2n
c

2
.

(26)

Corollary 5.1 The solution of the scheme (19)-(26), in absence of external forces, satisfies the
conservation of the discrete energy at even time steps:

E
2n = E

0, ∀n ≥ 0 (27)

6 Stability of the scheme

We define for l ∈ {c, f}

‖Dl,h‖ = sup
uh

l
,ph

l

(Dl u
h
l , p

h
l )Vl

(Al uh
l , u

h
l )

1/2
Hl

(Bl ph
l , p

h
l )

1/2
Vl

(28)

Proposition 6.1 (Stability) Assume that:

• the external forces are zero,

• E
0 is bounded by a constant independent of the discretization steps,

• there exists a constant Υ > 1 independent of the discretization steps, such that

‖Dc,h‖∆t ≤
√

1 − 1

Υ2
,

‖Df,h‖∆t

2
≤
√

1 − 1

Υ2
(29)

Then, there exists a constant C independent of the discretization steps such that (u2n
c , p

2n+1
c , un

f , p
n+ 1

2

f )
solution of (19)–(26) satisfies

∣

∣

∣

∣

∣

∣

‖u2n
c ‖Hc

+ ‖p2n+1
c ‖Vc

≤ C Υ
√

E0,

‖un
f‖Hf

+ ‖pn+ 1

2

f ‖Vf
≤ C Υ

√
E0.

(30)

This implies that the numerical scheme is stable.

9
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Proof: We recall that the numerical scheme has been constructed in such a way that, in absence
of external forces, the discrete energy is conserved, (27). We will show that this quantity is
equivalent to the L2 norm of the solution to complete the proof. Using the symmetry of the
matrix Bc we obtain that

(Bc p
2n+1
c , p2n−1

c )Vc
= (Bc

p2n+1
c + p2n−1

c

2
,
p2n+1

c + p2n−1
c

2
)Vc

−

(Bc
p2n+1

c − p2n−1
c

2
,
p2n+1

c − p2n−1
c

2
)Vc
.

(31)

Now, with the second equation of (19) and the first inequality in (29) we have

(Bc
p2n+1

c − p2n−1
c

2
,
p2n+1

c − p2n−1
c

2
)Vc

= ∆t (Dc u
2n
c ,

p2n+1
c − p2n−1

c

2
)Vc

≤
(

1 − 1

Υ2

)
1

2
(

Bc
p2n+1

c − p2n−1
c

2
,
p2n+1

c − p2n−1
c

2

)
1

2

Vc

(Ac u
2n
c , u

2n
c )

1

2

Hc
,

that implies

(Bc
p2n+1

c − p2n−1
c

2
,
p2n+1

c − p2n−1
c

2
)Vc

≤
(

1 − 1

Υ2

)

(

Ac u
2n
c , u

2n
c

)

Hc
.

Using this last inequality on (31) we easily obtain that

2 E
2n
c ≥ 1

Υ2

(

Ac u
2n
c , u

2n
c

)

Hc
+ (Bc

p2n+1
c + p2n−1

c

2
,
p2n+1

c + p2n−1
c

2
)Vc
. (32)

In particular
∣

∣

∣

∣

∣

∣

∣

(Ac u
2n
c , u

2n
c )

1

2

Hc
≤

√
2 Υ

√

E2n
c ,

(Bc
p2n+1

c + p2n−1
c

2
,
p2n+1

c + p2n−1
c

2
)

1

2

Vc
≤

√
2
√

E2n
c .

(33)

We use again the second equation of (19) to obtain

(Bc p
2n±1
c , p̃h

c )Vc
= (Bc

p2n+1
c + p2n−1

c

2
, p̃h

c )Vc
+ ∆t (Dc u

2n
c , p̃

h
c )Vc

.

Taking p̃h
c = p2n±1

c , using the Cauchy-Schwarz inequality and the abstract CFL condition on Ωc

we obtain

(Bc p
2n±1
c , p2n±1

c )Vc
≤ (Bc p

2n±1
c , p2n±1

c )
1

2

Vc

(

(Bc
p2n+1

c + p2n−1
c

2
,
p2n+1

c + p2n−1
c

2
)

1

2

Vc
+

(

Ac u
2n
c , u

2n
c

)
1

2

Hc

)

,

10
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and so

(Bc p
2n±1
c , p2n±1

c )
1

2

Vc
≤

√
2 (1 + Υ)

√

E2n
c . (34)

It is clear then that the first equation on (33) and (34) imply the first inequality on (30). In a
similar way, using the equations on Ωf we obtain

∣

∣

∣

∣

∣

∣

∣

(

Af u
n
f , u

n
f

)
1

2

Hf
≤

√
2 Υ

√

E
n
f ,

(Bf p
n± 1

2

f , p
n± 1

2

f )
1

2

Vf
≤

√
2 (1 + Υ)

√

En
f ,

(35)

that implies the second inequality on (30) for the even time steps. Finally we must bound u2n+1
f

in terms of the energy at the even time steps. Substracting two consecutif time steps of the third
equation of (19) we obtain

(Af u
2n+1
f , ũh

f)Hf
= (Af

u2n+2
f + u2n

f

2
, ũh

f)Hf
− ∆t

2
(Df ũ

h
f , p

2n+ 1

2

f − p
2n+ 3

2

f )Vf
.

We take ũh
f = u2n+1

f , we use the Cauchy-Schwarz inequality and the second inequality in (29)
(CFL condition on Ωf ) to conclude that

(Af u
2n+1
f , u2n+1

f )Hf
≤ (Af u

2n+1
f , u2n+1

f )
1

2

Hf

(

(Af

u2n+2
f + u2n

f

2
,
u2n+2

f + u2n
f

2
)

1

2

Hf
+

(Bf (p
2n+ 1

2

f − p
2n+ 3

2

f ), p
2n+ 1

2

f − p
2n+ 3

2

f )Vf

)

,

This implies

(Af u
2n+1
f , u2n+1

f )
1

2

Hf
≤ C Υ

(√
E2n +

√
E2n+2

)

,

and the proposition is proven. 2

7 Error analysis: the main results

We need here additional assumptions. First, we assume that there are spaces
∣

∣

∣

∣

∣

Yl ⊂ Xl, Wl ⊂ Vl, l ∈ {c, f},
Y := Yc × Yf , W := Wc ×Wf ,

equipped with the norms ‖ · ‖Yl
, ‖ · ‖Wl

and
∣

∣

∣

∣

∣

‖(uc, uf)‖2
Y := ‖uc‖2

Yc
+ ‖uf‖2

Yf
, ∀ (uc, uf) ∈ Y,

‖(pc, pf)‖2
W := ‖pc‖2

Wc
+ ‖pf‖2

Wf
, ∀ (pc, pf) ∈ W,

11
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such that

inf
ũh

l
∈Xl,h

∥

∥ul − ũh
l

∥

∥

Xl
≤ C hk ‖ul‖Yl

, ∀ ul ∈ Yl,

inf
p̃h

l
∈Vl,h

∥

∥pl − p̃h
l

∥

∥

Vl
≤ C hk ‖pl‖Wl

, ∀ pl ∈ Wl,

∣

∣

∣

∣

∣

∣

∣

, l ∈ {c, f}, with k ≥ 1
2
. (36)

In the applications, Yl and Wl are spaces of sufficiently regular functions and k represents the
order of the finite elements.

We also we assume that the following two hypothesis are satisfied
∣

∣

∣

∣

There exists a constant C > 0 such that ∀ uh
l ∈ Xl,h, ‖uh

l ‖Xl
≤ C

h
‖uh

l ‖Hl
, (37)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

There exists a constant C > 0 such that














∀(uc, u
h
f) ∈ Yc ×Xf,h, c(uc, u

h
f) ≤ C√

h
‖uc‖Yc

‖uh
f‖Hf

, (a)

∀(uh
c , uf) ∈ Xc,h × Yf , c(uh

c , uf) ≤ C√
h
‖uh

c‖Hc
‖uf‖Yf

. (b)

(38)

The first hypothesis can be interpreted as an inverse inequality. As Dl, l ∈ {c, f} are first order
differential operators in space, the definition of the norm ‖ · ‖Xl

given in (2) ensures that (37)
will be satisfied if we have uniformly regular meshes on each domain. The presence of the
factor h−1/2 in the second hypothesis may seem strange for the abstract problem. It is justified
by the applications for which proving (38) is equivalent to proving discrete trace estimates6.

Finally we will also assume that we have the following inclusion

Dl Xl,h ⊂ Vl,h, (39)

This assumption is satisfied in particular by a large class of mixed finite elements. For technical
reasons related to the proof of the main result we assume that the initial conditions are zero and
that the external forces are regular enough and such that

supp [((fc, ff), (gc, gf))] ⊂ (0, T ) × (Ωc ∪ Ωf ). (40)

Let us introduce the errors:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e2n
u,c := uc(2n ∆t) − u2n

c ,

en
u,f := uf(n ∆t) − un

f ,

e2n+1
p,c := pc((2n+ 1) ∆t) − p2n+1

c ,

e
n+

1

2
p,f := pf ((n+

1

2
) ∆t) − p

n+ 1

2

f ,

12



E. Bécache, P. Joly and J. Rodrı́guez

and, for each T > 0 the following norms of the errors
∣

∣

∣

∣

∣

∣

∣

∣

∣

‖(eu,c, eu,f)‖L∞
T

(H) := sup
t2n+ 3

2 ≤T

(

‖e2n
u,c‖Hc

+ ‖e2n
u,f‖Hf

+ ‖e2n+1
u,f ‖Hf

)

,

‖(ep,c, ep,f)‖L∞
T

(V ) := sup
t2n+ 3

2 ≤T

(

‖e2n+1
p,c ‖Vc

+ ‖e2n+ 1

2

p,f ‖Vf
+ ‖e2n+ 3

2

p,f ‖Vf

)

.

Finally, for each integer l ≥ 0 we define the space

C l
T (Y ×W ) := C l([0, T ], (Yc × Yf) × (Wc ×Wf )).

Theorem 7.1 Let h and ∆t be constants such that (29) is satisfied. Assume that ((uc, uf), (pc, pf)),
the solution of the continuous problem belongs to

C
max(3,l)
T+l∆t (Y ×W ),

where T > 0 is a real number and l ≥ 0 is an integer. We will also assume that the discrete
initial conditions are second order approximations of the continuous ones. Then we have the
following estimate:
∣

∣

∣

∣

∣

∣

‖(eu,c, eu,f)‖L∞
T

(H) + ‖(ep,c, ep,f)‖L∞
T

(V ) ≤ C (1 + T ) hmin(2,k) ‖(uc, uf), (pc, pf)‖C3
T

(Y ×W ) +

C T ∗ hmin( 3

2
− 1

2l
,k) ‖(uc, uf), (pc, pf)‖Cl+1

T∗ (Y ×W )

where T ∗ = T + l∆t.

Proof: We refer to6,7 for the proof and give here the main steps. The first term in the previous
estimate comes from the error due to the initial conditions and the interior schemes. The second
one is due to the coupling equations. The proof combines energy techniques and boot-strap
arguments, as in3 :

(i) by energy estimates we first get a O(h1/2) estimate,

(ii) by induction, one passes from O(h3/2−1/2l

) to O(h3/2−1/2l+1

).

Point (ii) uses successive time discrete derivatives of the error which require additional time
regularity on the exact solution. 2

Remark 7.1 Numerical experiments suggest that the estimate of theorem 7.1 is optimal6.

Remark 7.2 A post treatment in time of the solution allows us to restore the O(h2) accuracy6.
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