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TRANSFER OF QUADRATIC FORMS AND OF

QUATERNION ALGEBRAS OVER QUADRATIC FIELD

EXTENSIONS

KARIM JOHANNES BECHER, NICOLAS GRENIER-BOLEY,
AND JEAN-PIERRE TIGNOL

Abstract. Two different proofs are given showing that a quaternion
algebra Q defined over a quadratic étale extension K of a given field has
a corestriction that is not a division algebra if and only if Q contains
a quadratic algebra that is linearly disjoint from K. This is known in
the case of a quadratic field extension in characteristic different from
two. In the case where K is split the statement recovers a well-known
result on biquaternion algebras due to Albert and Draxl.

Keywords: isotropy, Witt index, corestriction, Albert form, charac-
teristic two

Classification (MSC 2010): 11E04, 11E81, 12G05, 16H05

1. Introduction

A well-known theorem of Albert states that if a tensor product of two
quaternion division algebras Q1, Q2 over a field F of characteristic different
from 2 is not a division algebra, then there exists a quadratic extension L
of F that embeds as a subfield in Q1 and in Q2; see [6, (16.29)]. The same
property holds in characteristic 2, with the additional condition that L/F
is separable: this was proved by Draxl [2], and several proofs have been
proposed: see [3, Th. 98.19], and [7] for a list of earlier references.

Our purpose in this note is to extend the Albert–Draxl Theorem by sub-
stituting for the tensor product of two quaternion algebras the corestriction
of a single quaternion algebra over a quadratic extension.

Let F always denote a field and let charF denote its characteristic. Let
K be a quadratic étale F -algebra. In other words, either K/F is a separable
quadratic field extension or K ' F × F .
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A quaternion algebra over F is an F -algebra obtained from an étale qua-
dratic F -algebra L and an element a ∈ F× by endowing the 4-dimensional
F -vector space L⊕Lz with the multiplication determined by the equations

z2 = a and z` = ι(`)z for ` ∈ L,

where ι is the nontrivial F -automorphism of L; this F -algebra is denoted
by (L/F, a).

Our main result is the following.

1.1. Theorem. Let F be an arbitrary field and let K be a quadratic étale
F -algebra. For every quaternion K-algebra Q, the following conditions are
equivalent:

(i) Q contains a quadratic F -algebra linearly disjoint from K;
(ii) Q contains a quadratic étale F -algebra linearly disjoint from K;

(iii) CorK/F Q is not a division algebra.

Note that when K = F × F the quaternion K-algebra Q has the form
Q1×Q2 for some quaternion F -algebras Q1, Q2, and CorK/F Q = Q1⊗FQ2.
Thus, in this particular case Theorem 1.1 is equivalent to the Albert–Draxl
Theorem. The more general case is needed for the proof of the main result
in [1]: see [1, Lemma 7.5].

In the case where charF 6= 2 Theorem 1.1 is proved in [6, (16.28)]. The
proof below is close to that in [6], but it does not require any restriction
on the characteristic. The idea is to use a transfer of the norm form nQ
of Q to obtain an Albert form of CorK/F Q, which allows us to substitute
for (iii) the condition that the transfer of nQ has Witt index at least 2. To
complete the argument, we need to relate totally isotropic subspaces of the
transfer to subforms of nQ defined over F . This is slightly more delicate
in characteristic 2. Therefore, we first discuss the transfer of quadratic
forms in Section 2, and give a first proof of Theorem 1.1 in Section 3. In
the last section, we sketch an alternative proof of Theorem 1.1 based on a
proof of the Albert–Draxl Theorem due to Knus [5]. This alternative proof
relies on an explicit construction of an Albert form for the corestriction of
a quaternion algebra.

2. Isotropic transfers

For quadratic and bilinear forms, we generally follow the conventions of
[3]. Let V be a finite-dimensional F -vector space and let ϕ : V → F be a
quadratic form on V . We denote by bϕ : V × V → F the polar form of ϕ,
which is defined by

bϕ(x, y) = ϕ(x+ y)− ϕ(x)− ϕ(y) for x, y ∈ V .
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We set

rad bϕ = {x ∈ V | bϕ(x, y) = 0 for all y ∈ V }
radϕ = {x ∈ rad bϕ | ϕ(x) = 0}

and observe that these sets are F -subspaces of V with radϕ ⊆ rad bϕ. If
charF 6= 2 then ϕ(x) = 1

2bϕ(x, x) for all x ∈ V and thus radϕ = rad bϕ.
We call the quadratic form ϕ nonsingular if rad bϕ = {0}, regular if radϕ =
{0} and nondegenerate if ϕK is regular for every field extension K/F or
equivalently (by [3, Lemma 7.16]) if ϕ is regular and dimF rad bϕ 6 1.
(The last two terms are defined in [3], but nonsingular quadratic forms
are not defined there.) Note that every nonsingular form is nondegenerate
and every nondegenerate form is regular; moreover, all three conditions are
equivalent when charF 6= 2.

An F -subspace U ⊆ V such that ϕ(u) = 0 for all u ∈ U is called totally
isotropic (for ϕ). The Witt index of ϕ is the maximal dimension of a totally
isotropic subspace of V ; see [3, Prop. 8.11]. We write i0(ϕ) for the Witt
index of ϕ.

2.1. Lemma. Suppose that the quadratic form ϕ on V is regular and
isotropic. Then the F -vector space V is spanned by the isotropic vectors
of ϕ.

Proof. Let V0 be the F -subspace of V spanned by the isotropic vectors of
V . Let v ∈ V \ {0} be an isotropic vector. Since rad(ϕ) = {0} there exists
w ∈ V such that bϕ(v, w) = 1. If x ∈ V is such that bϕ(v, x) 6= 0, then
the vector x−ϕ(x)bϕ(v, x)−1v is isotropic, hence it belongs to V0, whereby
x ∈ V0. Hence V0 contains all vectors that are not orthogonal to v. In
particular w ∈ V0. If x ∈ V is orthogonal to v, then bϕ(v, x+w) = 1, hence
x+ w ∈ V0, and therefore x ∈ V0. This shows that V0 = V . �

Let K be a quadratic field extension of F . We fix a nonzero F -linear
functional s : K → F with s(1) = 0. Let V be a finite-dimensional K-vector
space and let ϕ : V → K be a quadratic form over K. The transfer s∗ϕ is
the quadratic form over F defined on V , viewed as an F -vector space, by

s∗ϕ(x) = s
(
ϕ(x)

)
for x ∈ V .

If ϕ is nonsingular, then s∗ϕ is nonsingular, by [3, Lemma 20.4]. For every
quadratic form ψ over F , we denote by ψK the quadratic form over K
obtained from ψ by extending scalars to K.

The following result is well-known (and easy to prove) in characteris-
tic different from 2: see [3, Proposition 34.1]. It appears to be new in
characteristic 2.
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2.2. Theorem. Assume that the quadratic form ϕ : V → K is nonsingular.
There exists a nondegenerate quadratic form ψ over F with dimψ = i0(s∗ϕ)
such that ψK is a subform of ϕ.

Proof. Suppose that i0(s∗ϕ) > 1, for otherwise there is nothing to show. If
ϕ is isotropic, then we fix u ∈ V \ {0} such that ϕ(u) = 0, otherwise we fix
u ∈ V \ {0} such that s∗ϕ(u) = 0. Note that if ϕ is isotropic over K, then
Ku is totally isotropic for s∗ϕ, whereby i0(s∗ϕ) > 2. Hence, if i0(s∗ϕ) = 1,
then we may choose ψ = ϕ|Fu.

Suppose now that i0(s∗ϕ) > 2. This implies that dimF V > 4. Since ϕ is
nonsingular, there exists v ∈ V \Ku such that bϕ(u, v) = 1. We fix λ ∈ K
with s(λ) = 1. We have s∗ϕ(u) = 0 and

bs∗ϕ(u, λv) = s
(
bϕ(u, λv)

)
= s(λ) = 1.

Therefore the restriction of s∗ϕ to the F -subspace U = Fu ⊕ Fλv is non-
singular and isotropic. Hence s∗ϕ|U is hyperbolic.

Let U ′ be the orthogonal complement of U in V with respect to bs∗ϕ and
let U ′′ be the orthogonal complement of Ku in V with respect to bϕ.

Since u and v are K-linearly independent, we may find x ∈ U ′′ such that
bϕ(λv, x) = 1, whereby λx ∈ U ′′ \ U ′. Hence U ′′ 6⊆ U ′. Since we have
dimF U

′ = dimF V − 2 = dimF U
′′, we conclude that U ′ 6⊆ U ′′.

As i0(s∗ϕ) > 2, the form s∗ϕ|U ′ is isotropic. It follows by Lemma 2.1
that U ′ is spanned by isotropic vectors for s∗ϕ. As U ′ 6⊆ U ′′, it follows
that we can find a vector w ∈ U ′ \ U ′′ with s∗ϕ(w) = 0. We obtain that
ϕ(w) ∈ F and, furthermore, bs∗ϕ(u,w) = 0 and bϕ(u,w) 6= 0, whereby
bϕ(u,w) ∈ F×. As bs∗ϕ(u, λv) = 1 and bs∗ϕ(w, λv) = 0, the vectors u
and w are F -linearly independent. Hence, by restricting ϕ to Fu⊕ Fw we
obtain a 2-dimensional quadratic form β over F .

For α ∈ K we have bϕ(u, αu) = αbϕ(u, u) = 2αϕ(u), and as ϕ(u) ∈ F
it follows that if bϕ(u, αu) ∈ F× then α ∈ F×. In particular, u and w are
even K-linearly independent. Thus βK is a 2-dimensional subform of ϕ.
Since bϕ(u,w) ∈ F× and since by our choice of u, either ϕ is anisotropic or
ϕ(u) = 0, we conclude that β is nonsingular.

Since s∗(βK) is hyperbolic, we obtain for the orthogonal complement
ϕ′ of βK in ϕ that i0(s∗ϕ

′) = i0(s∗ϕ) − 2. We may now repeat the same
argument for ϕ′ in place of ϕ. The statement thus follows by induction. �

2.3. Remarks.

(1) In the proof above, the fact that bϕ(u,w) 6= 0 readily implies that u
and w are K-linearly independent if charF = 2.

(2) If s∗ϕ is hyperbolic, then i0(s∗ϕ) = dimϕ, hence Theorem 2.2 shows
that ϕ = ψK for some quadratic form ψ over F . This particular case
of Theorem 2.2 is established in [3, Theorem 34.9].
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(3) If charF = 2 and if i0(s∗ϕ) is odd, then the quadratic form ψ in Theo-
rem 2.2 cannot be nonsingular, since a regular quadratic form in char-
acteristic 2 is nonsingular if and only if its dimension is even. In par-
ticular, ψK is not an orthogonal direct summand of ϕ. By contrast,
if i0(s∗ϕ) is even, then ψ is nonsingular hence ϕ ' ψK ⊥ ϕ′ for some
nonsingular quadratic form ϕ′. Since s∗(ψK) is hyperbolic it follows
that i0(s∗ϕ) = i0

(
s∗(ψK)

)
, hence s∗(ϕ

′) is anisotropic. In this case we
thus have an analogue of the result for symmetric bilinear forms [3,
Proposition 34.1].

(4) If the extension K/F is purely inseparable, then i0(s∗ϕ) is necessarily
even. This follows because the K-subspace spanned by each isotropic
vector for s∗ϕ is a 2-dimensional F -subspace that is totally isotropic
for s∗ϕ.

3. Proof of the main theorem

As in [3], we write Iq(F ) for the Witt group of nonsingular quadratic
forms of even dimension over F , and I(F ) for the ideal of even-dimensional
forms in the Witt ring W (F ) of nondegenerate symmetric bilinear forms
over F , and we let Inq (F ) = In−1(F )Iq(F ) for n > 2. Let also Br2(F )
denote the 2-torsion subgroup of the Brauer group of F . Recall from [3,
Th. 14.3] the group homomorphism

e2 : I2q (F )→ Br2(F )

defined by mapping the Witt class of a quadratic form ϕ to the Brauer
class of its Clifford algebra.

3.1. Lemma. Let K be a quadratic field extension of an arbitrary field F ,
and let s : K → F be a nonzero F -linear functional such that s(1) = 0. The
following diagram is commutative:

I2q (K)
s∗−−−−→ I2q (F )

e2

y ye2
Br2(K)

CorK/F−−−−−→ Br2(F ).

Here, CorK/F : Br2(K)→ Br2(F ) is the zero map if K is a purely insep-
arable extension of F .

Proof. We have I2q (K) = I(F )Iq(K) + I(K)Iq(F ) by [3, Lemma 34.16],

hence I2q (K) is generated by Witt classes of 2-fold Pfister forms that have a
slot in F . Commutativity of the diagram follows by Frobenius reciprocity
[3, Prop. 20.2], the computation of transfers of 1-fold Pfister forms in [3,
Lemma 34.14] and [3, Cor. 34.19], and the projection formula in cohomol-
ogy, see [6, Ex. 9 p. 63-64] or more generally [4, Prop. 3.4.10]. �
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Proof of Theorem 1.1. Since (ii)⇒ (i) is clear, it suffices to prove (i)⇒ (iii)
and (iii) ⇒ (ii).

If (i) holds, then we may represent Q in the form (LK/K, b) where L
is a quadratic étale F -algebra linearly disjoint from K and b ∈ K×, or in
the form (M/K, b) where M is a quadratic étale K-algebra and b ∈ F×.
In each case the projection formula in cohomology shows that CorK/F Q is
Brauer-equivalent to a quaternion algebra, hence (iii) holds.

Now, assume (iii) holds. If Q is split, then it contains an F -algebra
isomorphic to F × F , so (ii) holds. For the rest of the proof, we assume
Q is a division algebra. Let nQ be the norm form of Q, which is a 2-fold
Pfister quadratic form in I2q (K) such that e2(nQ) = Q in Br(K). Since
nQ represents 1, the transfer s∗(nQ) is isotropic, hence Witt-equivalent to
a 6-dimensional nonsingular quadratic form ϕ in I2q (F ). This form sat-
isfies e2(ϕ) = CorK/F (Q) in Br(F ) by Lemma 3.1, hence ϕ is an Albert
form of CorK/F (Q) as per the definition in [6, (16.3)]. In particular, since
CorK/F (Q) is not a division algebra, ϕ is isotropic by [6, (16.5)], and there-

fore i0
(
s∗(nQ)

)
> 2. By Theorem 2.2 there exists a nonsingular quadratic

form ψ over F with dimψ = 2 such that ψK is a subform of nQ. Since Q is
a division algebra, we have that ψK is anisotropic, hence ψ is similar to the
norm form of a unique separable quadratic field extension L/F . The field L
is linearly disjoint from K over F because ψK is anisotropic. On the other
hand, ψKL is hyperbolic, hence KL splits the form nQ, and it follows that
there exists a K-algebra embedding of KL in Q. Therefore, (ii) holds. �

3.2. Remark. It follows from the proof above that CorK/F Q is split if and
only if Q is extended from a quaternion F -algebra. If Q is extended from
a quaternion F -algebra, the fact that CorK/F Q is split comes from the
projection formula in cohomology or [6, (3.13)]. Conversely, if CorK/F Q is
split, then the quadratic form ϕ is hyperbolic by [6, (16.5)]. As in the proof
above, we deduce that there exists a nonsingular quadratic form ψ over F
with dimψ = 4 and ψK = nQ, whence Q is extended from a quaternion
F -algebra.

If K is a purely inseparable quadratic extension of F , all the statements
of Theorem 1.1 hold for every quaternion algebra over K. To see this, re-
call from our definition of CorK/F that the corestriction of every quaternion
K-algebra is split. Moreover, if Q = (M/K, b) with M a separable qua-
dratic extension of K, then the separable closure of F in M is a separable
quadratic extension of F contained in Q and linearly disjoint from K.

4. The Albert form of a corestriction

Let Q be a quaternion algebra over a separable quadratic field extension
K of an arbitrary field F . By definition (see [6, (16.3)]), the Albert forms of
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CorK/F Q are the 6-dimensional nonsingular quadratic forms in I2q (F ) such
that e2(ϕ) = CorK/F Q in Br2(F ); they are all similar. As observed in the
proof of Theorem 1.1, an Albert form of CorK/F Q may be obtained from
the Witt class of the (8-dimensional) transfer s∗(nQ) of the norm form of Q
for an arbitrary nonzero F -linear functional s : K → F such that s(1) = 0.
In this section, we sketch a more explicit construction of an Albert form
of CorK/F Q, inspired by Knus’s proof of the Albert–Draxl Theorem in [5],
and we use it to give an alternative proof of Theorem 1.1. The arguments
below also hold when K ' F × F .

We first recall the construction of the corestriction CorK/F Q. Let γ
be the nontrivial F -automorphism of K and let γQ denote the conjugate
quaternion algebra γQ = {γx | x ∈ Q} with the operations

γx+ γy = γ(x+ y), γx · γy = γ(xy), λ · γx = γ(γ(λ)x)

for x, y ∈ Q and λ ∈ K. The algebra γQ ⊗K Q carries a γ-semilinear
automorphism s defined by

s(γx⊗ y) = γy ⊗ x for x, y ∈ Q.

By definition, the corestriction (or norm) CorK/F (Q) is the F -algebra of
fixed points (see [6, (3.12)]):

CorK/F (Q) =
(
γQ⊗K Q)s.

Let Trd and Nrd denote the reduced trace and the reduced norm on Q.
Let also σ be the canonical (conjugation) involution on Q. Consider the
following K-submodule of γQ⊗K Q:

V = {γx1 ⊗ 1− 1⊗ x2 | x1, x2 ∈ Q and γ
(
Trd(x1)

)
= Trd(x2)}.

This K-module is free of rank 6 and is preserved by s, and one can show that
the F -space of s-invariant elements has the following description, where
TK/F : K → F is the trace form:

V s = {γy ⊗ 1 + 1⊗ y | y ∈ Q and TK/F (Trd(y)) = 0}.

Now, pick an element κ ∈ K× such that γ(κ) = −κ. (If charF = 2 we may
pick κ = 1.) The following formula defines a quadratic form ϕ : V s → F :
for y ∈ Q such that TK/F (Trd(y)) = 0, let

ϕ(γy ⊗ 1 + 1⊗ y) = κ ·
(
γ(Nrd(y))−Nrd(y)

)
.

Nonsingularity of the form ϕ is easily checked after scalar extension to an
algebraic closure of F , and computation shows that the linear map

f : V s →M2

(
CorK/F (Q)

)
given by ξ 7→

(
0 κ · (σ ⊗ id)(ξ)
ξ 0

)
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satisfies f(ξ)2 = ϕ(ξ) for all ξ ∈ V s. Therefore, f induces an F -algebra
homomorphism f∗ defined on the Clifford algebra C(V s, ϕ). Dimension
count shows that f∗ is an isomorphism

(4.1) f∗ : C(V s, ϕ)
∼−→M2(CorK/F Q).

The restriction to the even Clifford algebra is an isomorphism

C0(V
s, ϕ) ' (CorK/F Q)× (CorK/F Q) ,

hence the discriminant (or Arf invariant) of ϕ is trivial since the center of
its even Clifford algebra is split. This means ϕ ∈ I2q (F ), and (4.1) shows
that e2(ϕ) = CorK/F Q in Br2(F ), so ϕ is an Albert form of CorK/F Q.

We use the Albert form ϕ to sketch an alternative proof of Theorem 1.1.
If the base field F is finite, then Q is split and all the conditions in Theo-
rem 1.1 trivially hold. Therefore, we may assume F is infinite.

Suppose condition (i) of Theorem 1.1 holds. If x ∈ Q generates a qua-
dratic F -algebra disjoint from K, then Trd(x) ∈ F and Nrd(x) ∈ F (and
x /∈ K), hence γ(κx)⊗ 1 + 1⊗ (κx) ∈ V s is an isotropic vector of ϕ. Since
ϕ is an Albert form of CorK/F Q, it follows that CorK/F Q is not a division
algebra. Therefore, (i) implies (iii).

For the converse, suppose (iii) holds. Then there exists y ∈ Q such that
ξ = γy ⊗ 1 + 1 ⊗ y ∈ V s is an isotropic vector for ϕ. A density argument
shows that we may find such an element y with Trd(y) 6= 0. We obtain
that γ(Nrd(y))−Nrd(y) = 0, hence Nrd(y) ∈ F , and TK/F (Trd(y)) = 0.

We claim that y /∈ K. Suppose on the contrary that y ∈ K. Then we
have ξ = 1⊗ (y + γ(y)) 6= 0 and therefore TK/F (y) 6= 0. Since 2TK/F (y) =
TK/F (Trd(y)) = 0 6= TK/F (y) we conclude that char(F ) = 2 and y /∈ F .

But y2 = Nrd(y) since y ∈ K and Nrd(y) ∈ F because ϕ(ξ) = 0, hence
y2 ∈ F . This is a contradiction since K is an étale F -algebra.

Thus y /∈ K. Note that κy ∈ Q satisfies

Trd(κy) ∈ F× and Nrd(κy) = κ2 Nrd(y) ∈ F.
Therefore, κy generates a quadratic étale F -subalgebra ofQ linearly disjoint
from K, proving that (ii) (hence also (i)) holds.
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