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Abstract

In this paper we introduce a new method for automatically selecting knots in

spline regression. The approach consists in setting a large number of initial knots and

�tting the spline regression through a penalized likelihood procedure called adaptive

ridge. The proposed method is similar to penalized spline regression methods (e.g.

P-splines), with the noticeable di�erence that the output is a sparse spline regression

with a small number of knots. We show that our method � called A-spline, for

adaptive splines � yields sparse regression models with high interpretability, while

having similar predictive performance similar to penalized spline regression methods.

A-spline is applied both to simulated and real dataset. A fast and publicly available

implementation in R is provided along with this paper.
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1 Introduction

Spline regression has known a great development in the past decades (see Wahba, 1990;

Hastie et al., 2001; Ruppert et al., 2009; Wood, 2017) and has become a tool of choice

for semiparametric regression. This success can be explained by the fact that splines

are restrictive enough to bene�t from the simplicity of parametric estimation, and yet

are general enough to accurately approximate a large variety of smooth function. Spline

regression is performed by choosing a set of knots and by �nding the spline de�ned over

these knots that minimizes the residual sum of squares. The number of knots has an

important in�uence in the resulting �t: with not enough knots the regression is under�tted

and with too many knots it is over�tted. Choosing the position of knots is also an issue

since uniformly distributed knots can lead to over�tting in an area where there are few

points and under�tting in an area where there are many points.

The most widely used spline regression methods overcome this di�culties by using a

penalization approach. In smoothing splines, knots are set at each data point and the

wiggliness of the spline is controlled by penalizing over its integrated squared second order

derivative
∫
{f ′′ (t)}2 dt. The smoothing spline estimate has a closed-form expression and

computationally e�cient techniques have been developed. We refer to (Hastie et al., 2001,

Section 5) for a detailed explanation on smoothing splines. O'Sullivan (1986) generalized

smoothing splines to an arbitrary choice of knots. This allows to set fewer knots than the

sample size. Two R implementations are available in the package gam (Hastie, 2018; Hastie

et al., 2001) and the package mgcv (Wood, 2017). Later, Eilers and Marx (1996); Marx and

Eilers (1998) introduced a penalty based on the �nite order di�erences of the parameters.

The corresponding splines are called P-splines. This penalization is closely related to that

of O'Sullivan (see Eilers and Marx, 1996, Section 3): it is simpler since no integration

is involved, and it allows for generalizations to derivatives of higher order. However, O-

Sullivan's penalty is more general in that the knots do not have to be equally spaced. See

Wand and Ormerod (2010) and Eilers et al. (2015, Appendix A) for comparisons of the

two methods. A detailed review of P-splines is given in Eilers et al. (2015) and citations

therein. We note that P-splines are also closely related to Whittaker (1922)'s graduation

method, which can be seen as a P-spline of order 0 with knots placed at data points.
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These regularized approaches in spline regression are simple and computationally fast.

However, a spline regression with fewer knots is easier to interpret, which in many cases

is a desired goal. Thus, some attempts have been made to �nd a non-penalized regression

procedure with an automatic selection of knots. The idea is to choose more knots � and

so basis splines � in data-dense regions where the underlying function has more variability.

One could try to �nd the best knots by setting a very large number of knots and exploring

the set of splines de�ned on any subset of the knots. But as pointed out by Wand (2000),

this method is not tractable in practice. Previous attempts to �nd the best number and

location of knots can be found in the literature; we refer to Wand (2000) for a review.

Friedman (1991) has developed a multivariate variable selection technique called MARS

(Multivariate Adaptive Regression Splines). It uses a recursive partitioning of the domain

and sequentially selects the most relevant knots with a forward step size procedure followed

by backward step size procedure. See also (Friedman and Silverman, 1989) and (Hastie

et al., 2001, Section 9.4) for details. Luo and Wahba (1997) have later developed a closely

related approach for automatic selection of knots called Hybrid Adaptive Splines. Like

MARS, it uses a forward stepwise regression procedure and instead of using a backward

procedure to remove unnecessary knots, it �ts penalized splines. Other paths have been

taken to solve this computationally intensive problem. Namely, Jamrozik et al. (2010)

have o�ered to estimate the best location of knots using a di�erential evolution algorithm.

However, their approach was limited to a number of knots varying between 4 and 7 and to

splines of order 1.

In this article, we introduce a new computationally e�cient method to automatically

select the number and position of the knots from the data. It is called A-splines, for

adaptive splines. It is based on a regularization method with an approximate L0 norm

penalty. Although our approach is di�erent from P-splines, A-spline regression uses an

objective function closely related to that of P-spline. Our method is de�ned for splines of

any order q ≥ 0. In particular, using splines of order 0 � i.e piecewise constant functions

� allows to perform automatic detection of breakpoints. Splines of order 1, i.e. continuous

broken lines, can be used as a generalization of the linear model which allows for shifts in

the slope. In most cases when the true function f is assumed to be �smooth�, splines of
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order 3 are used, which yield a sparser model than the state-of-the-art spline regression

methods. Therefore, our method is to be preferred when the simplicity of the model is a

desired feature.

This paper is constructed as follows. Section 2 gives a short summary of B-splines and

B-spline regression. Section 3 introduces our spline regression method. In Section 4, our

method is extended to the generalized linear model framework. Section 5 deals with the

choice of the bias-variance tradeo� parameter. Section 6 compares the prediction perfor-

mance of our model to P-splines through a simulation study. Section 7 gives some details

about the fast implementation of the �tting algorithm. Finally, A-spline is illustrated on

several real datasets in Section 8.

2 B-spline Regression

2.1 B-spline Basis

In this section we recall the de�nition and some basic properties of splines and B-splines.

Throughout this work, let t1, . . . , tk be the ordered knots included in a real interval [a, b]. A

spline of order q ≥ 0 is a piecewise polynomial function of order q such that its derivatives

up to order q − 1 are continuous at every knot t1, . . . , tk. The set of splines of order q over

the knots t = (t1, . . . , tk) is a vector space of dimension q + k + 1.

A possible choice of spline basis is the truncated power basis: {x0, . . . , xq, (x− t1)q+, . . . ,

(x− tk)q+}, where (u)+ = max (u, 0). The �rst q + 1 functions of the basis are polynomials

and the other k functions are truncated polynomials of degree q. Decomposing a spline

into the truncated power basis brings out powers of large numbers, which lead to rounding

errors and numerical inaccuracies (De Boor, 1978, p. 85).

In order to solve this problem, De Boor (1978) introduced a spline basis � called B-

splines � more adapted to computational implementation of spline regression. A B-spline

is a spline which is non-zero over [xk, xk+q+1] for some k. For i = 1, . . . , q + k + 1, the i-th

B-spline of order q is noted Bi,q (x) and is de�ned by

Bi,q (x) =
x− ti
ti+q − ti

Bi,q−1 (x) +
ti+q+1 − x
ti+q+1 − ti+1

Bi+1,q+1 (x) if q > 0
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(a) Order 0 B-splines

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(b) Order 1 B-splines

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(c) Order 2 B-splines

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(d) Order 3 B-splines

Figure 1: Bases of B-spline of order 0 to 3 (Panels a to d) with 3 knots: (0.25, 0.5, 0.75).

Note that with 3 knots, there are 4 splines in the basis of order 0 and 7 splines in the basis

of order 3.
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and Bi,0 (x) = 1ti≤x<ti+1
. Important properties of a B-spline are: (i) the B-spline is non-

zero over an interval spanning q+ 2 knots; (ii) at a point, only q+ 1 B-splines are non-zero;

(iii) Bi,q (x) ∈ [0, 1]. An illustration of B-spline bases of order 0 to 3 is given in Figure

1. In practice, B-splines can be computed using the function bSpline from the R package

splines2 (Wang and Yan, 2017).

2.2 B-Spline Regression

Let (xi, yi) ∈ R × R be the univariate data and consider the non-parametric regression

setting

yi = f (xi) + εi, 1 ≤ i ≤ n, (1)

with i.i.d. Gaussian errors εi and where f is a �smooth� function. The function f is

estimated by a spline over an interval [a, b] containing all xis. Fitting the data consists in

minimizing the sum of squares

SS (a, t) =
n∑
i=1

{
yi −

q+k+1∑
j=1

ajBj,q (xi)

}2

, (2)

where a = (a1, . . . , aq+k+1) is the B-spline coe�cients. The knots t are present as parameter

of SS to highlight that the whole �tting procedure depends on the choice of the knots. This

is the framework of ordinary least squares regression with design matrix B = [Bj,q (xi)]i,j

and parameter a:

SS (a, t) = ‖y −Ba‖22. (3)

3 Automatic Selection of Knots

When there are many knots, spline regression is prone to over�tting. In the extreme case,

when there as as many parameters as data points, the �tted spline interpolates the data.

In this paper, we propose to estimate the spline which makes the best tradeo� between

model dimension (i.e. number of knots) and goodness of �t. To this e�ect, we choose a

high number of equally spaced initial knots and penalize over the number of knots. When

a B-spline is de�ned over the knots t1, . . . , tk and is such that ∆q+1aj∗ = 0 for some j∗, it
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can be reparametrized as a B-spline over the knots t1, . . . , tj∗−1, tj∗+1, . . . tk. Consequently,

one would like to penalize over the number of non-zero q + 1-order di�erences:

λ

2

k∑
j=q+2

‖∆q+1aj‖0, (4)

where ‖.‖0 is the L0 norm, i.e. ‖x‖0 = 0 if x = 0 and ‖x‖0 = 1 otherwise, and where the

parameter λ > 0 tunes the tradeo� between goodness of �t and regularity of the spline.

This penalty allows to remove a knot tj∗ that is not relevant for the regression, to merge

the adjacent intervals [tj∗−1, tj∗) and [tj∗ , tj∗+1) and to continue the �tting procedure with

a spline de�ned over the remaining knots. When λ → 0, the �tted function is a B-spline

with all knots t1, . . . , tk and when λ→∞, the �tted function is a polynomial of degree q.

However, the penalty in Equation (4) is non di�erentiable and the estimation is therefore

computationally non-tractable. To overcome this di�culty, an approximation method for

the L0 norm is introduced in the next section.

3.1 Adaptive ridge

Following the work from Rippe et al. (2012) and Frommlet and Nuel (2016), we approximate

the L0 norm by using an iterative procedure called Adaptive Ridge. The new objective

function is the weighted penalized sum of squares:

WPSS (a, λ) = ‖y −Ba‖22 +
λ

2

q+k+1∑
j=q+2

wj
(
∆q+1aj

)2
, (5)

where ∆aj = aj − aj−1 is the �rst order di�erence operator, ∆iaj = ∆i−1∆aj, and wj

are positive weights. The penalty is close to the L0 norm penalty when the weights are

iteratively computed from the previous values of the parameter a following the formula:

wj =
((

∆q+1aj
)2

+ ε2
)−1

,

where ε > 0 is a small constant. Indeed the function x 7→ x2/ (x2 + ε2) approximates the

function x 7→ ‖x‖0 when ε is su�ciently small. In practice, one typically sets ε = 10−5

(Frommlet and Nuel, 2016). At convergence, (∆q+1aj)
2
wj ' ‖∆q+1aj‖0 gives a measure of

how relevant the j-th knot is. One chooses a threshold of 10−2 and selects the knots with
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a weighted di�erences higher than 0.99, which we note tselj . The number of selected knots

will be noted kλ, such that the number of parameters of the selected spline is q + kλ + 1.

Since the selected knots are present in breakpoints of the curve, one then �ts unpenalized B-

splines over the knots tsel, as explained in Section 2.2. Consequently, this method provides a

regression model that is both regularizing and simple, in the sense that the model dimension

is small.

We note that Frommlet and Nuel (2016) give a more general formula for the weights

that allows to approximate any Lp norm, for p > 0. In particular, the L1 norm could be

chosen, which induces both shrinkage and selection of the coe�cient. Let us note that this

method was already developed by Eilers and De Menezes (2005) with B-splines of order 1

using an exact L1 norm and a median regression solver.

Algorithm 1 Adaptive Ridge Procedure for Spline Regression

Input: x,y, λ

Output: â

1: function Adaptive-Spline (x,y, λ)

2: a ← 0; w ← 1

3: while not converge do

4: anew ← arg mina WPSS (a, λ)

5: wj ←
((

∆q+1anewj

)2
+ ε2

)−1
6: a ← anew

7: end while

8: Compute tsel using (∆q+1a)
2
w

9: â ← arg mina SS
(
a, tsel

)
10: return â

11: end function

WPSS (a, λ) of Equation (5) easily rewrites

‖y −Ba‖22 + λDTWDa, (6)

where W = diag (w) and D is the matrix representation of the di�erence operator ∆q+1.
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The minimization of WPSS is explicit:

â =
(
BTB + λDTWD

)−1
BTy. (7)

A detailed explanation of the adaptive ridge procedure is given in Algorithm 1.

The penalty term is conveniently written with the circulating matrix D. However, for

computational e�ciency, D is never computed and instead we implement a fast computa-

tion algorithm for the penalty term. More details about the implementation are given in

Section 7.

Relation to P-Splines It is interesting to note that A-splines are closely related to

P-splines (Eilers and Marx, 1996), whose objective function writes:

PSS (a, λ) = SS(a) +
λ

2

k+q+1∑
j=p+1

(∆paj)
2 , (8)

where the di�erence order p is a parameter to be chosen. Thus, the implementation of

A-splines can be seen as a weighted P-splines �tting. The philosophies of A-splines and

P-splines are however very di�erent. P-splines avoid choosing the best knots by penalizing

over the di�erences of the coe�cients. Instead, we directly choose the best knots for spline

regression.

4 Generalized Linear Model

Spline regression has also been used to �t values in the general linear model setting, like in

Eilers and Marx (1996); Hastie et al. (2001). In this section, we extend A-spline regression

to the generalized linear model. In this setting, one estimates µ = E [y|x] = g−1 (Ba),

where g is the canonical link function and the variance of y is a function V of µ: Var [y] =

V (µ). Like the linear model, µ can be estimated using spline regression. The generalized

linear model is �tted using the Iteratively Reweighted Least Squares (IRLS) algorithm

(McCullagh and Nelder, 1989, Section 2.5). With weighted penalization, the IRLS iteration

writes:

â(k+1) =
(
BTΩ(k)B + λDTWD

)−1
BT

(
Ω(k)Bâ(k) + y − µ(k)

)
(9)
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where k is the step index and Ω(k) is the diagonal matrix with entries

ω
(k)
i,i =

1

V
(
µ
(k)
i

)
g′
(
µ
(k)
i

)2 ,
with µ

(k)
i = g−1

(
Biâ

(k)
)
. In practice, the estimation procedure in Algorithm 1 remains

the same, except that WPSS is minimized by the Newton-Raphson procedure given in

Equation (9).

5 Choice of the Penalty Constant

In this section, one selects the penalty that performs the best trade-o� between goodness

of �t and regularity. A �rst criterion is the AIC, which was used by Eilers and Marx (1996)

in a similar context:

AIC(λ) = SS (âλ) + 2 (q + kλ + 1) . (10)

A di�erent criterion is the Bayesian Information Criterion (BIC) (see Schwarz, 1978):

BIC (λ) = SS (âλ) + (q + kλ + 1) log n. (11)

Bayesian criteria maximize the posterior probability P(Mλ|data) ∝ P(data|Mλ)π(Mλ),

where P(data|Mλ) is the integrated likelihood and π (Mλ) is the prior distribution on the

modelMλ. This problem is equivalent to minimizing −2 logP(Mλ|data). By integration

P(Mλ|data) =

∫
a

P(data|Mλ,a)π(a)da,

where P (data|Mλ,a) is the likelihood and π(a) is the prior distribution of the parameter,

which is taken constant in the following. Thus Bayesian criteria are de�ned as

−2 logP (Mλ|data) = SS(âλ) + (q + kλ + 1) log n− 2 log π(Mλ) +OP(1).

The BIC is the Bayesian criterion obtained when one chooses a uniform prior on the model:

π(Mλ) = 1. As explained by �ak-Szatkowska and Bogdan (2011), a uniform prior on the

model is equivalent to a binomial prior on the model dimension. Therefore, the BIC tends to

give too much importance to models of dimensions around q+k+1
2

. Since the adaptive knot
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selection is performed with a large number of initial knots, this will result in underpenalized

estimators.

To this e�ect, Chen and Chen (2008) have developed an extended Bayesian information

criterion called EBIC0. The EBIC0 criterion is de�ned by choosing:

π(Mλ) =

(
q + k + 1

q + kλ + 1

)−1
and

EBIC0 (λ) = SS (âλ) + (q + kλ + 1) log n+ 2 log

(
q + k + 1

q + kλ + 1

)
. (12)

The EBIC0 assigns the same a priori probability to all models of same dimension.

Therefore the EBIC0 will tend to choose sparse models even with a high number of initial

knots. These criteria's selection performances are compared in the next section through a

simulation study.

6 Simulation Study

6.1 Comparing the Selection Criteria

A simulation study has been conducted to compare the performances of the three criteria.

Data are simulated as follows. The xi are taken uniformly over [0, 1] and yi are simulated

using Equation (1), where f is a known function and εi ∼ N (0, σ2
i ). We use four di�erent

functions: the Bump function

f1 (x) = 0.4
(
x+ 2 exp

[
−{16 (x− 0.5)}2

])
,

the Logit function

f2 (x) =
1

1 + exp {−20 (x− 0.5)}
,

the Sine function

f3 (x) = 0.5 sin (6πx) + 0.5,

and the SpaHet � for spatially heterogeneous � function

f4 (x) =
√
x (1− x) sin

(
2π
(
1 + 2−3/5

)
x+ 2−3/5

)
+ 0.5.
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(d) SpaHet Function

Figure 2: Simulated data using functions Logit (a), Sine (b), Bump (c) and SpaHet (d), in

solid line. Each dataset has size 200. The errors are chosen homoscedastic (σ = 0.15) for

(a) and (b) and heteroscedastic (σi =
(
0.3xi + 0.2

√
xi
)2
) for (c) and (d).
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Figure 3: A-spline and P-spline regressions over di�erent functions (tick lines). Basis

decomposition of the �tted splines are represented in thin lines. For the A-spline regression,

triangles represent the selected knots. The sample size is 200.
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(b) Sine
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(c) Bump
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(d) SpaHet

Figure 4: Mean squared errors of A-spline (solid line) and P-spline (dashed line) estimates

for di�erent sample sizes: 50, 100, 200, and 400. The simulations are performed with the

Bump, Logit, Sine, and SpaHet functions and repeated 500 times.
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Sample size AIC BIC EBIC

50 0.02220 0.02 0.02418

100 0.00754 0.00324 0.00248

200 0.00285 0.00136 0.00127

400 0.00131 0.00071 0.00072

(a) Logit Function

Sample size AIC BIC EBIC

50 0.02239 0.02001 0.02459

100 0.00755 0.00486 0.00458

200 0.00316 0.00231 0.00247

400 0.00156 0.00132 0.00141

(b) Sine Function

Sample size AIC BIC EBIC

50 0.02000 0.01801 0.02211

100 0.00735 0.00627 0.00479

200 0.00354 0.00234 0.00217

400 0.00177 0.00106 0.001

(c) Bump Function

Sample size AIC BIC EBIC

50 0.02082 0.01784 0.02138

100 0.00727 0.00509 0.00371

200 0.00333 0.00194 0.00161

400 0.00170 0.00081 8e− 04

(d) SpaHet Function

Table 1: Mean squared errors of adaptive spline regression for di�erent selection criteria and

for di�erent sample sizes. Di�erent datasets are simulated using four di�erent functions:

the Bump function (a), the Logit Function (b), the Sine function (c) and the SpaHet

function (d). The smallest value of each row is highlighted in bold.

These functions were used by Wand (2000) and Ruppert (2002) in similar contexts for

benchmarking the e�ciency of spline regression. The functions f1 to f4 have been rescaled

in order to vary in [0, 1], so that all simulation cases have similar signal-to-noise ratios. We

choose homoscedastic errors σi = 0.15 for the functions Logit and Sine and heteroscedastic

errors for the Bump and SpaHet functions: σi =
(
0.3xi + 0.2

√
xi
)2
, so that the variance

increases from 0 when x = 0 to 0.25 when x = 1. Data are simulated with sample sizes

50, 100, 200, and 400. Illustration of the functions and of the simulated data are given

in Figure 2. For each example 500 datasets were simulated. A-splines are �tted and we

compare the Mean Squared Error (MSE) of the estimated function for the three criteria:

‖f − f̂‖22 =

∫ 1

0

(
f (x)− f̂ (x)

)2
dx.

The median MSEs are displayed in Table 1 for each value of the sample size. For all

functions and for all criteria, the MSE decreases with the sample size, as is expected. The

comparison between the criteria brings the same conclusions for all four functions: the BIC

and EBIC0 always perform better than the AIC. Moreover, note that the EBIC0 always
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outperforms the BIC for the sample size 100, and performs almost as well for the sample

size 200. In conclusion, the BIC and EBIC0 are to be preferred over the AIC and overall;

the EBIC0 seems a better choice than the BIC.

6.2 Comparing A-splines with P-splines

In this section, the performance of A-splines is compared to penalized spline regression

methods. For the sake of simplicity, we limit our study to comparing A-splines and P-

splines. We use the same simulation setting as the previous section. We use the EBIC0

criterion to select the penalty.

Figure 3 represents the �tted functions with A-splines and P-splines for the four func-

tions with datasets of size 200. The thick lines represent the estimated functions; the

thin lines represent the splines' basis decomposition. With every function, A-spline and

P-spline yield similar estimates. The basis decomposition highlights that A-spline selects

very sparse models, which are also simpler. Over the 500 replications, A-spline selects a

median number of 9 splines for the Bump function, 6 for the Logit function, 11 for the Sine

function, and 7 for the SpaHet function.

A quantitative comparison is also made to ensure that A-spline has a predictive per-

formance comparable to P-spline. Figure 4 shows the MSE for A-splines (solid lines) and

P-splines (dotted lines) for every sample size and every function. It shows that for sample

size 50, P-splines performs better than A-splines on average. When the sample size in-

creases, A-splines performs almost as well as P-splines. These two remarks are true for all

four reference functions. In conclusion, for prediction purposes P-splines are to be favored

for very small dataset but for data sets of size 200 and above, A-splines and P-splines turn

out to have close to equal predictive performance.

7 Practical Implementation

In this section, the implementation of A-splines is explained in details. Particular attention

has been brought to the computation of matrix products. Consequently, �tting A-splines

is almost instantaneous: 1.3 seconds with q = 200 initial knots and n = 5000 on a standard
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laptop. In the next three sections, several bottlenecks in the computation of A-splines

are addressed. Matrix products computations are accelerated using an Rcpp (Eddelbuet-

tel, 2013) implementation. An R implementation of the A-spline estimation procedure is

publicly available in the package aspline1.

Let us note that the design matrix only appears in the regression model through BTB

and BTy, so apart from the computation of B, BTB, and BTy, which is done only once,

the algorithm does not depend on the sample size.

7.1 Adaptive Spline Regression with Several Penalties

The penalty constant λ tunes the tradeo� between goodness of �t and regularity. To choose

the optimal λ, regression is performed for a sequence of penalties λ = (λ`) , 1 ≤ ` ≤ L and

a criterion is used to determine which regression model to select. Computing the procedure

for a series of values of λ signi�cantly increases the computing time. Note that a small

variation of λ yields a small variation of âλ = arg mina WPSS (a, λ). Consequently, âλ`

is a good initial point for the minimization of WPSS(a, λ`+1). Making use of this hot

start signi�cantly speeds up the minimization of WPSS (a, λ`+1) and thus decreases the

computation time of the adaptive ridge procedure. This implementation of the adaptive

ridge is introduced in Rippe et al. (2012) and Frommlet and Nuel (2016) and a similar idea

is used in the implementation of the LASSO in the package glmnet (Friedman et al., 2010).

7.2 Fast Computation of the Weighted Penalty

The matrix inversion in Equations (7) and (9) is the computational bottleneck of the

adaptive ridge procedure. The matrix DTWD is symmetric and q-banded, and as noticed

by Wand and Ormerod (2010), so is BTB. Consequently, the inversion is done using

Cholesky decomposition and back-substitution, as implemented in the package bandsolve2.

This reduces the temporal complexity from O
(
(k + q + 1)3

)
to O ((k + q + 1) (q + 2)). For

example, if k = 50 and q = 3, the computation time will be reduced by a factor 500. It is

important to note that the matricesW and D are not stored in memory: only the vector

1github.com/goepp/aspline
2github.com/monneret/bandsolve
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w and the �rst row of D are used. This leads to improvements in spatial complexity, the

details of which are not given here.

7.3 Fast Computation of the Weighted Design Matrix

In the setting of generalized linear regression, the matrix productBTΩB in Equation (9) is

computed at each iteration of the Newton-Raphson procedure. Since the design matrix has

n rows, this operation makes the generalized linear regression computationally expensive for

large datasets. Fortunately B is sparse: it has q+ 1 non-zero elements in each row. Due to

this structure, the productBTΩB only has (q + k + 1) (q + 1) non-zero entries. Each entry

takes O
(
n
k

)
operations to compute on average. Thus the matrix product can be computed

with a O ((q + k + 1) (q + 1)n/k) temporal complexity, compared to the O
(
(q + k + 1)2 n

)
complexity of the naive implementation. For instance, even with q = 3 and k = 50, this

implementation is faster by a factor ∼ 700.

8 Real Data Applications

Our method is illustrated with several real data applications.

We �rst present a dataset of simulated motorcycle accidents used to crash-test helmets.

The data consists of 132 observations of helmet acceleration (in units of g) measured along

time after impact (in milliseconds). These data have being used as illustration of spline

regression by Silverman (1985) and Eilers and Marx (1996) and are available in Hand et al.

(1993). This dataset represents a good test for non parametric regression since the variance

of the errors varies a great deal and there are several breakdown moments in the data. A-

spline regression of order q = 3 is performed (Figure 5a). For the sake of the illustration,

our regression in compared to P-splines of order q = 3 (Figure 5b). We have set k = 40

equally spaced initial knots for both regression methods. In both �gures, the solid lines

represent the estimated �t and the dashed lines represent the decomposition of the �t onto

the B-spline family. The two estimations are almost equal. A-spline regression has selected

only 5 knots as relevant, and thus the �tted function is a linear combination of 5+3+1 = 9

splines.
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(b) P-splines

Figure 5: Motorcycle crash data: helmet acceleration (unit of g) as a function of time (in

ms). A-spline (a) regression and P-spline (b) regression are �tted. Bold lines represent

the estimates and grey lines represent the decomposition of the estimates onto the B-spline

bases.
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Figure 6: aCGH data of bladder cancer: probes 1 through 500. A-splines of order 0 are

�tted (solid line) as well as the mean values �tted using the PELT changepoint detection

method (dashed line).
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Figure 7: LIDAR data: log-ratio of light intensity as a function of the travelled distance.

A-splines of order 1 (solid line) and Multivariate Adaptive Regression Splines (dashed lines)

are �tted.
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Figure 8: Yearly number of coal accidents in Britain (grey bars) with P-splines regression

(dashed curve) A-spline regression (solid curve). The three knots selected by A-splines are

represented by vertical lines.

The second illustrative example uses a dataset of array Comparative Genomic Hy-

bridization (aCGH) pro�les for 57 bladder tumor samples (see Stransky et al., 2006, for

references and access to the data). This dataset was used by Bleakley and Vert (2011)

in the similar context of changepoint detection. The data represent the log-ratio of DNA

quantity along 2215 probes. For the illustration, the 500 �rst observations of individual

1's aCGH pro�le are used. We �t a spline of order 0, i.e. a piecewise constant function.

Indeed, A-splines of order 0 perform a regression with changepoint detection of the data,

which is a desired goal for these data. The �tted spline is represented in solid line in Figure

6. The estimated function performs a satisfying estimation of the changepoints and of the

mean values over each interval. Our regression method estimated 9 changepoints, each

corresponding to a shift in the mean value of the signal. Our method is compared to a

popular changepoint detection algorithm (dashed line of Figure 6) called PELT (Killick

et al., 2012). We used R package changepoint.np (Haynes et al., 2016) . This method

detects 8 changepoints, all of which correspond to a changepoint detected by the A-spline

regression.

The third example is based on the LIDAR data (Sigrist et al., 1994; Holst et al., 1996),

which is used by Ruppert et al. (2003) to illustrate regression methods. The data come

from a light detection and ranging (LIDAR) experiment. It consists of 221 observations
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of log-ratio of measured light intensity between two sources, as a function of the distance

travelled by the light before being re�ected (in meters). The data are available in the

R package SemiPar and are represented in Figure 7. The scatter plot clearly displays a

smooth decrease of the y-variable. More precisely, the y-variable is slightly decreasing for

lower values of x. There is a clear decrease of the slope between x = 550 m and x = 600

m, after which the slope gradually increases. To highlight these shifts in slope, splines of

order 1 (i.e. piecewise linear functions) are chosen to �t the data. The A-spline �t displays

two slope changes, at x = 567 m and x = 607 m. These moments visually correspond to

the two biggest shifts in slope. We also �t Friedman (1991)'s MARS procedure (in dashed

line, Figure 7) and compare it to A-splines. We use an implementation of the procedure

in the R package earth. This method also selects two breakpoints of the slope, at x = 558

and x = 612, which are very close to the breakpoints detected by A-splines.

The last example uses the data of the registered number of disasters in British coal mines

per year between the years 1850 and 1962 (Diggle and Marron, 1988). The number of coal

disasters in each year is assumed to be Poisson distributed and the mean of the distribution

is �tted using a Poisson regression. The data are �tted using A-spline regression of order 3.

The �tted curve µ̂ = g−1 (Bâ) is given in Figure 8. The 3 selected knots are represented

by vertical dashed lines. The regression is compared to P-splines (in dashed lines), which

yields a similar estimation � although less regularized.

9 Conclusion

In this paper we introduce a method called A-spline (for adaptive spline) performing spline

regression which automatically selects the number and position of the knots. For that

purpose, we set a large number of initial knots and use an iterative penalized likelihood

approach (the adaptive ridge) to sequentially remove the unnecessary knots. The model

achieving the best bias-variance tradeo� is selected using a Bayesian criterion: either the

BIC or the EBIC0.

Our method yields sparse models which are more interpretable than classical penalized

spline regressions (e.g. P-splines). Yet, a simulation study shows that our method has

predictive performances comparable to P-splines.
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When using A-spline with low order splines (e.g. 0 or 1), the approach allows performing

changepoint detection. Indeed, A-spline of order 0 �t a piecewise constant function to the

data and hence detect changepoint in terms of mean. A-spline of order 1 �ts a piecewise

linear continuous function (i.e. a continuous broken line) that detects changepoints in terms

of slope.

A fast implementation of A-spline is provided in R and Rcpp. Thanks to this, the

computation of A-spline is very fast (∼ 1 sec for n ∼ 10000 k ∼ 1000 on the standard

laptop), even when �tting generalized linear models with large sample sizes.

Our work can be naturally generalized to multivariate data using multidimensional B-

splines. Moreover, we limited our work to using B-splines for the sake of simplicity. But a

variety of other splines can be used instead. For example M-splines, which are a basis of

non-negative splines, could be used for �tting non-negative functions (e.g. densities) and

I-splines, which are a basis of monotonous splines, would yield a sparse isotonic regression

model. Finally, our spline regression method can be used for non-parametric transformation

of variables. In particular, splines of order 0 could provide an automatic categorization of

continuous covariates variables in regression models.
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